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Abstract: Smart grid (SG) is a next-generation grid which is responsible for changing the lifestyle of
modern society. It avoids the shortcomings of traditional grids by incorporating new technologies
in the existing grids. In this paper, we have presented SG in detail with its features, advantages,
and architecture. The demand side management techniques used in smart grid are also presented.
With the wide usage of domestic appliances in homes, the residential users need to optimize the
appliance scheduling strategies. These strategies require the consumer’s flexibility and awareness.
Optimization of the power demand for home appliances is a challenge faced by both utility and
consumers, particularly during peak hours when the consumption of electricity is on the higher side.
Therefore, utility companies have introduced various time-varying incentives and dynamic pricing
schemes that provides different rates of electricity at different times depending on consumption.
The residential appliance scheduling problem (RASP) is the problem of scheduling appliances at
appropriate periods considering the pricing schemes. The objectives of RASP are to minimize
electricity cost (EC) of users, minimize the peak-to-average ratio (PAR), and improve the user
satisfaction (US) level by minimizing waiting times for the appliances. Various methods have
been studied for energy management in residential sectors which encourage the users to schedule
their appliances efficiently. This paper aims to give an overview of optimization techniques for
residential appliance scheduling. The reviewed studies are classified into classical techniques,
heuristic approaches, and meta-heuristic algorithms. Based on this overview, the future research
directions are proposed.

Keywords: appliance scheduling; smart grid; demand response; heuristic; optimization; demand
side management

1. Introduction

Energy is one of the most important sources of socio-economic need and its growing demand
is putting a lot of pressure on the traditional electric grid. Utility companies are facing challenges to
fulfill this demand in residential households as well as industrial sectors. This issue can be solved
either by producing new generation units or by using the available energy effectively. The first
approach is expensive and time-consuming than the second one. Nowadays, information and
communication technology has been evolved and various schemes have been proposed for energy
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consumption optimization. The increase in the energy consumption of residential sectors increases
the load demand for consumers. Therefore, the burden on the existing power grid is increasing
manifold. In addition, the traditional grid is not equipped for the two way communication between
utility and consumers. It is unable to sense along the transmission lines which makes it unreliable
and inefficient [1]. There is a requirement for a new architecture that will overcome these issues.
Smart Grid is a future power grid that can enhance reliability, security, and control by upgrading
generation, transmission, and distribution systems of the existing electric grid. This can be achieved by
two-way communication between utility and end-users. By this communication, utilities can send the
information and power flow to end-users and receive feedback. SG allows the utility and consumer to
control electricity consumption through two-way communication between utility and consumers [2].
It provides opportunities for both consumers and utility companies to reduce the electricity cost.
Along with minimizing electricity cost (EC), the other concerns of the smart grid include minimum
peak-to-average ratio (PAR) and maximum user satisfaction (US) level. These objectives are achieved
at the consumer level by effective management of electricity load profiles of appliances. The utility
provides different pricing schemes: Time-of-use pricing (ToUP), critical peak pricing (CPP), real-time
pricing (RTP), and inclined block rate pricing (IBR). Thus, electricity can be consumed effectively
in the household appliances to optimize EC, PAR, and US according to mentioned pricing schemes.
This optimization problem is called a residential appliance scheduling problem.

Residential appliance scheduling problem has been extensively studied in the literature in various
ways [3–6]. Makhadmeh et al. [3] have carried out an extensive survey on optimization methods
for demand-side scheduling in smart homes. Jordehi [4] has presented a review on optimization
of demand response schemes in power systems. A review on demand response schemes based on
objective functions including reduction of aggregate power consumption, maximization of social
welfare, and minimization of electricity cost was conducted in [5]. Barbato and Capone [6] presented
optimization models and methods for residential and co-operative users using deterministic and
stochastic approaches. Shakeri et al. [7] have given an overview of demand response programs,
their practices along with home energy management system (HEMS) and load management techniques.
Leitão et al. [8] have presented a thorough review of HEMS with insights on the household appliance
management. In [9], authors have explained mathematical models and heuristic optimization
techniques integrated into HEMS for computing optimal appliance schedules and minimizing the
energy usage by shifting the home appliances from peak to off-peak periods without hampering the
user comfort. It is noted that, while the aforementioned reviews have been very valuable, they tend to
be narrower in scope. They often focus either on exact methods or meta-heuristic algorithms to address
the residential appliance scheduling problem (RASP). They tend to ignore the heuristic approaches for
RASP due to their unavailability. In this paper, we review the most pertinent studies on RASP with
focus on heuristic optimization.

The contributions of this overview are summarized as:

1. We have provided an overview of smart grid with its architecture, demand side management
techniques, and demand response programs used in smart grid including dynamic
pricing schemes.

2. Most of the existing surveys formulate RASP as a single objective problem focusing on cost
optimization only. In this paper, we have presented the residential appliance scheduling problem
using multi-objective optimization problem with three major optimization objectives which
include electricity cost, peak-to-average ratio, and user satisfaction level. The user satisfaction
parameter is formulated using the timing illustrations.

3. We have presented the survey of most relevant studies done in the area of appliance scheduling
with special focus on residential sector. The purpose of this overview is to give a more holistic
view on RASP techniques including classical, heuristic, and meta-heuristic techniques with their
objectives, contribution, and research gap.
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4. In this paper, we have classified the home appliances into shiftable interruptible,
shiftable non-interruptible, and non-shiftable appliances on the basis of user’s comfort to provide
clarity of classification. Several methods in existing literature do not consider non-shiftable
category for appliance scheduling. It may lead to cross the highest allowable threshold for power
consumption which can result in power failures in homes. Moreover, we have reviewed the
existing methods which use more number of appliances which enhance the performance of the
appliance scheduling algorithms.

The rest of the paper is structured as follows: In Section 2, smart grid, its architecture, demand side
management techniques, and demand response programs are discussed. Section 3 presents the
home energy management system model with classification of smart home appliances. In Section 4,
a comprehensive definition of RASP is provided. In addition, the formulation of RASP is discussed with
three major objective functions. Section 5 presents classical, heuristic, and meta-heuristic optimization
techniques for appliance scheduling along with possible future directions. Finally, the conclusions of
this overview are presented in Section 6.

2. Smart Grid

Smart grid (SG) concept is introduced at the beginning of the 2000s. It presents future power
systems integrating advanced sensing and communication technologies. SG has many definitions
but in short, it is an integration of Information and Communication Technology (ICT) into electric
generation, transmission, and distribution networks. It increases the efficiency and sustainability of
traditionally existing electric grid. The factors affecting the performance of the existing electric grid
are listed below:

• Increasing demand for electricity.
• Shortfalls of generating units.
• Increasing power losses.
• Peak load management.
• Integration of renewable energy sources.
• Difficulties in meter reading.
• Customer satisfaction.
• Aging assets.
• Security of supply

2.1. Characteristics of Smart Grid

A smart grid is a modern electric infrastructure network. It is equipped with ICT that enables the
grid to include renewable energy sources (RES) to manage the stability of the power system. A smart
grid uses advanced ICTs and intelligent controllers to enable automated power networks [10], in which
the RESs are integrated into the grid based on reliability, safety, and control in distributed generation
systems [11].

In the smart grid, the power demands of industrial sectors, residential homes, and buildings are
managed in such a way that the gap between the demand and supply is reduced. As the residential
sector contributes to high load, it becomes necessary to manage appliances effectively to reduce
the demand–supply gap and maintain system stability [12]. However, this is a challenging task
as the residential appliance scheduling problem mentioned in our paper is for multiple appliances
functioning at different times of the day. To achieve this task, home appliances must be scheduled
based on the power supplied by the utility. Smart grids help in achieving the optimal use of appliances.
Some of the functions of the smart grid are listed below:

• Efficient transmission of electricity.
• Reduced cost for utilities and thereby reducing cost for end-users.
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• Faster electricity restoration after power failures.
• Reduce peak load which will help in reducing electricity rates.
• Use of RESs.
• Use of customer-owned local power generation systems like plug-in electric vehicles (PEVs).

2.2. Consumer Perspective

The SG promises several opportunities for consumers to save energy bills. In addition, it
encourages consumers to install small-scaled home-based renewable energy sources. However, it
depends on the consumer to act smartly on the available information. The consumers are benefited by
using the smart grid in the various ways which are described in this section:

• The consumer will no longer have to wait for monthly electricity bills to know how much electricity
he/she uses. Using the smart meter, a timely and clear picture can be obtained.

• The consumer can be able to see the price of electricity at a particular hour so that he/she can
manage the use of electricity. It will ensure the less usage when the price is high.

• Consumers can be able to generate their own power by putting rooftop solar which will help
them save money and manage the electricity well and will also be able to contribute the surplus
power to main grid.

2.3. Smart Grid over Existing Grid

A systematic comparison between smart grid and existing traditional grid is covered in this
subsection, that focuses on technology, metering infrastructure, communication, generation, sensors,
monitoring, fault management, and restoration. Table 1 shows the advantages of the SG over the
existing grid.

Table 1. Advantages of smart grid over existing grids.

Characteristics Existing Grid Smart Grid

Technology

Uses completely electromechanical
technology meaning it has no

communication between devices
and no regulation.

Uses completely digital technology
facilitating remote control, self-regulation,
increased communication between devices

Metering
Infrastructure Manual reading of meters

Uses smart meter which makes consumers
aware of their power consumption

Communication
One way communication between
utility and consumers to exchange

power flow and information

Bi-directional communication between
utility and consumer to exchange

power flow and information.

Generation
The power is generated from a

centralized location.
Power is distributed from multiple

substations and plants to balance the load.

Sensors
The existing grid is not equipped
to handle many sensors in power

lines

SG allows multiple sensors to locate
the problem.

Monitoring
Energy distribution must be

manually monitored

Self-monitoring using digital technology
allowing balance power loads troubleshoot

outages

Fault management
Comes across with failures and

blackouts
Converts them into adaptive and islanding

mode

Restoration
Manual restoration is required

for repairing failures.
No manual interference is required, uses

self-healing mechanism
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2.4. Architecture of Smart Grid

The architecture of the smart grid is shown in Figure 1. It comprises of various domains that
include generation, transmission, distribution, end users, service providers, energy market, operations,
and demand response. Each of these domains is discussed below:

Smart	Grid

Generation

Service
providers

Distributi-
onOperations

Demand
response

Transmi-
ssion

End	UsersEnergy
market

Generation
of	electricity
in	bulk

Carries
electricity

Distributes
electricity	to
consumers

Consumers 
of 

electricity

Provides
services	to
consumers

Consumers 
and	utility 

participants

Managers	of
movement
of	electricity

Incentive/
price based 

strategy

Figure 1. Architecture of smart grid.

2.4.1. Generation

It is the domain that generates electricity from various forms of energy which includes Thermal,
hydro, wind, coal, solar, biomass, RESs, etc. New requirements of generation domain include
greenhouse gas emission controls, increase in RESs, electric vehicles, and provision of storage such
as batteries.

2.4.2. Transmission

It acts as an interface between the generation and distribution domains. This domain transfers
energy from generating sources to distribution sources via several substations. The transmission
network is operated by regional transmission operator (RTO) whose goal is to balance load and supply
across the network.

2.4.3. Distribution

This domain is responsible for distributing the electricity to consumers via the AC or DC network.
This domain connects intelligent electronic devices (IEDs) to smart meters (SM). Also, it manages them
through a bi-directional wired/wireless communication channel.
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2.4.4. End Users

It is the domain where electricity is consumed. Usually, it is classified into two sub-domains
which include home/building users and industrial users. The end-user domain and its functions are
depicted in Figure 2.

End user 
domain

Home and 
building 

automation

Industrial
automation

Control various 
functions within

Homes and 
Buildings

Includes various
processes such

as manufacturing,
warehousing

Figure 2. End-user domain participators.

2.4.5. Service Provider

It is the domain that provides services to the distributors and end-users. These services include
installation, maintenance, billing, end-user account maintenance, monitoring and controlling home
energy use, managing customer relationships, etc.

2.4.6. Market

It is the domain where market assets are bought and sold. The key issues in the market domain
are listed below:

• Communication mechanism for prices between markets and end-user domain.
• Interoperability among providers (supply) and consumers (demand).
• Regulation of trading, retailing, and wholesaling of energy.
• Extension of pricing signals to each end-user.

2.4.7. Operations

It helps in the smooth operation of the power system. It includes network operations, supervising
network connectivity, meter reading and control, supply chain logistics, maintenance of continuous
power supply, security management such as fault analysis, etc.

2.4.8. Demand Response (DR)

Demand response (DR) is a strategy by which a consumer can play a key role in the operation of
the smart grid either by reducing the peak load or shifting the electricity consumption from on-peak
hours to off-peak based on dynamic pricing schemes employed by the utility. The DR programs are
classified into two types namely incentive-based DR programs and price-based DR programs. Demand
response is discussed in detail in Section 2.6.
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2.5. Demand Side Management (DSM)

Demand side management (DSM) is one of the important components in a smart grid that
promises consumers to decide their electricity consumption patterns. The DSM [13,14] is a key feature
of energy management in the smart grid. It can be defined as an alteration of consumption patterns
of users to bring the desired changes in the load curves of power systems. It focuses on utilizing
power-saving strategies, dynamic electric tariffs, incentive-based DR programs to reduce the peak load
instead of having to install new generating capacities, or reinforcing the transmission and distribution
corridor. The objectives of DSM include: utilize RESs, maximize economic benefit, minimize power
from the utility, and minimize peak load.

2.5.1. Necessity of DSM

The DSM is necessary due to following reasons:

• Increasing usage of appliances during peak hours and peak energy deficit.
• Scarcity of fossil fuels.
• Global warming concern.
• Penetration of highly stochastic RESs.

Since power demand is regularly increasing, there could be a need of installing new generation
units for the required power in the future. The DSM manages this issue by reducing peak load.
Therefore, we can certainly delay the new installations for a few years. However, consumers need
to act smartly by shifting their power consumption from on-peak to off-peak to maintain a balance
between demand and supply [15]. The DSM helps utility companies in reducing the peak load and
flatten the load profiles for consumers. This makes the grid more sustainable as well as helps in
minimizing overall operational costs. During the on-peak consumption hours, there is a sudden
spike in demand. It solves this issue by reducing power consumption during peak hours rather than
burdening new installations and generation capacities to fulfil the demand [16–18]. Thus, the DSM
aims to balance the supply and the demand for power systems [19].

The DSM techniques are deployed to overcome power consumption challenges. Several DSM
techniques are used in the literature [20–26]. The key objectives of these techniques are the minimization
of peak load and electricity cost. Most of the techniques are system-specific strategies [20,21,23,26],
and few of which are inapplicable to practical scenarios that require a large number of electric
appliances. In [26], dynamic programming is used to achieve DSM while the authors in [20,23] have
used linear programming. These techniques are computationally slower and not capable to manage a
large number of appliances. The SG requires handling a large number of appliances with controllable
loads. Some of these appliances are required to function over a few hours (for example, refrigerator).
Thus, DSM techniques need to manage all possible durations of appliance loads. In addition, there is a
requirement of DSM techniques which are faster as well as effective. Logenthiran et al. [27] proposed a
demand-side management technique using an evolutionary heuristic algorithm. Further, a genetic
algorithm-based DSM for a power optimization problem was presented in [28].

Figure 3 represents six different load curves of the demands of residential users. The load curve is
defined as the variation of load concerning time. There are six different DSM techniques in which load
curves are altered between on-peak and off-peak duration [29–31] which are listed below:
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a. Peak Clipping b. Valley Filling c. Load Shifting

d. Load Reduction e. Load Growth f. Flexible Load Shape

Figure 3. Demand side management techniques.

(a) Peak Clipping: [29,31]
It is a direct load control technique which focuses on decreasing the demand during peak hours.
This technique is important where there is a problem of investments to install new generation
units.

(b) Valley Filling: [30]
It focuses on increasing consumption during off-peak hours. The demand in off-peak hours is
achieved by encouraging end-users to consume the electricity by paying lower prices during
that time.

(c) Load shifting: [31]
It is a widely used and most effective DSM technique. It is achieved by shifting the load from
peak to off-peak hours. Customers are encouraged by paying cheaper tariffs during off-peak
hours. This technique is the best solution from a utility point of view.

(d) Load Reduction: [29]
This technique is also called as strategic energy conservation. As shown in Figure 3d, the area
under the new characteristic is reduced than the previous one. Thus, the peak can be reduced.
Load reduction is achieved by using more efficient appliances which is also important at the
global level.

(e) Load Growth: [29–31]
This technique is also called as load building. It increases the power consumption of users
with a certain limit. It is achieved by encouraging users to spend the electricity to maintain the
power system capacities and for the smooth operation of the power system.

(f) Flexible Load Shape: [29–31]
In this technique, there is redistribution of loads to various time slots. Here, customers with
flexible loads are identified who are ready to control their consumption in exchange for various
incentives.

2.6. Demand Response

Out of the total electricity produced in the world, the residential sector consumes about 30–40%
of it [32]. As the population is growing, the demand for electricity is increasing. Thus, peak demand is
also increasing. Conventionally, utility provider companies used to balance the demand and supply
through traditional power units. However, with an increase in global warming and greenhouse
emissions, it is not preferred. To solve this issue, utility companies increased energy generation
capacities. By integrating more RESs, incorporating the energy storage systems like batteries, EVs,
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and deploying DR programs, the goal of demand–supply balance is achieved. Thus, DR programs
provide opportunities for users to play a part in the operation of smart grids by reducing the peak load
or shifting the energy consumption in response to dynamic pricing or other methods of incentives.
The following are the goals of the demand response:

• To reduce total electricity consumption.
• To reduce the total required power generation.
• To promote the idea of clean and green energy.

Figure 4 depicts the classification of DSM. The DSM is used for achieving the energy efficiency of
the smart grid [33,34]. However, the demand response is a key component in DSM [5,35]. In simple
words, DR is the demand which is responsive to economic signals. DR is used in the smart grid to
design efficient programs [36]. The main difference between DSM and DR is that DSM is performed
at the utility side whereas DR is performed at both utility and consumer side separately/together to
achieve minimum peak load and electricity cost.

Energy 
management

programs

Demand 
response
programs

DSM

Figure 4. Demand side management (DSM) classification.

The literature provides various definitions of DR. Authors in [37,38] define DR as “changes in
electric usage by end-use customers from their normal consumption patterns in response to changes in
the price of electricity over time, or to incentive payments designed to induce lower electricity use
at times of high wholesale market prices or when system reliability is jeopardized”. This definition
indicates that DR programs aim to help power systems during peak demand or contingencies. Figure 5
depicts the DR classification. DR programs are classified into incentive-based DR and price-based
DR [39].

Incentive
based DR

End users are awarded
incentives for changing
consumption patterns

Pricing
based DR

End users are charged
with different rates at
different times

Demand
response

Figure 5. Demand response classification.

2.6.1. Incentive-Based DR

Incentive-based DR (IBDR) provides incentives to the consumers for changing their consumption
patterns as per the desire of the utilities. IBDR is an agreement between utility and end-users.
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Utility companies directly control the consumer’s electricity loads and consumers in return get the
incentives from utility. It is more flexible about aiding the utilities to attain the required demand
response resources. IBDR includes direct load control, emergency demand response program,
demand bidding program, capacity market program, interruptible tariffs, and ancillary service
markets [40]. For the IBDR program, there are fixed or time-varying incentives and specific constraints
to administrate the consumer’s appliances remotely [41,42]. The consumers are expected to reduce
their power consumption during the peak hours of high system stress [43]. For example, in direct
load control-based IBDR [44], heavy load appliances such as water heater and air conditioners can be
remotely turned off by the utility.

2.6.2. Price-Based DR

A price-based DR (PBDR) program passes on the benefits of the wholesale electricity price market
directly to consumers so that they can pay for electricity at different times of the day. In the PBDR
program, the time-varying prices encourage the consumers to adjust their flexible loads to different
periods to avail the facility of lower prices [45]. The utility companies employ dynamic pricing
schemes to affect consumer behavior. The PBDR pricing schemes include time-of-use pricing (ToUP),
critical peak pricing (CPP), real-time pricing (RTP), and inclined block rate (IBR) as shown in Figure 6.
In ToUP, the electricity prices vary during the day. Thus, the consumers are encouraged to shift their
consumption from peak hours to off-peak hours [46–48]. A CPP is the scheme in which prices are
very high when consumption is more than 20 kW. The price is a pre-specified for forecasted critical
periods [49,50]. The RTP is a scheme that changes dynamically every hour or day. Utility announces
the upcoming day’s predicted real-time price beforehand which is called day ahead pricing (DAP)
and customers then schedule their consumption a day before the execution [51–53]. In IBR, electricity
pricing is divided into multiple blocks. Initially, the price of the first block is at the lowest. As the
consumer purchases more electricity during a month, IBR pricing falls to the second block which is
more expensive. This process is repeated until the month is over. At the end of the month, IBR is reset
and next month will start again from block 1. In practical applications, the PBDR program is usually
more suited for residential customers than the IBDR program [54]. The pricing schemes are discussed
in detail below:

• Time-Of-Use Pricing (ToUP):
A ToUP is adjusted on different time blocks during a day (for example, four-hour block). The rate
of ToUP is different at different blocks. Typically, a day is divided into three blocks which are
peak, mid-peak, and off-peak. The price during peak periods is kept high by the utility. The cost
of electricity is high when consumed during peak hours. Therefore, consumers are encouraged
to minimize their usage in peak hours and shift it to mid-peak or off-peak hours to balance the
load profile.

• Critical Peak Pricing (CPP):
A CPP is implemented in homes only when electricity usage is more than 20 kW and where the
facility of a smart meter is available which records the consumption after every fifteen minutes.
If load demand is very high (more than 20 kW) during a specific period, then the period is
called as critical period. The CPP is declared only when the day is forecasted as a critical period.
This scheme is similar to ToUP. In a critical period, the normal peak pricing of ToUP is replaced
by CPP. Thus, consumers have to shift their consumption out of the critical period to balance the
power demand.

• Real-Time Pricing (RTP):
The price in RTP varies depending on hours/days. This impacts the consumption of users
during peak periods. A RTP can be classified into two schemes, namely, day-ahead pricing (DAP)
and hourly pricing (HP). In the DAP scheme, utility publishes price details to users one day
beforehand. For HP, it is provided every hour before consumption. The advantages of RTP are
discussed in [55]. A RTP can be classified into two parts: first part records the consumer response
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based on real-time prices [56], while the second part records the consumer response based on
optimized real-time prices published by utility [57].

• Inclining Block Rate (IBR):
IBR scheme is adopted by pacific gas and electric, Southern California Edison, San Diego
gas companies since 1980s. This pricing scheme charges more for each incremental block of
consumption. For instance, first block of 50 kWh consumption costs 2 units, the second block
of 50 kWh would cost 2.5 units and so on. In other words, it offers multi-level pricing. If the
electricity consumption during a block exceeds a certain threshold, then price will also increase to
a higher value for subsequent blocks. The motive behind IBR scheme is to encourage consumers to
self-generate the electricity by using local generating resources, to conserve the energy efficiently,
to distribute the load to different time periods of the day to avoid high electricity rates. Thus, this
pricing scheme provides help in reducing PAR to achieve demand response.

Time of
use Pricing

Critical Peak
Pricing

Price based
Demand Response

Real time
Pricing

Inclined Block
Rate

Figure 6. Classification of price-based demand response.

3. Home Energy Management System (HEMS)

A DR programs can be implemented for residential, commercial, and industrial users.
Among these, residential users have proved to be more responsive in DR since the residential appliances
are more elastic, interruptible, and shiftable [58]. The amount of electricity consumed in the residential
sector has increased rapidly because of the modernistic lifestyle. A recent study shows that the
residential sector consumes 30% of overall electrical energy [59,60]. Thus, demand-side management
of smart homes has become essential to meet their excessive electricity consumption. The DR programs
for residential users is called as home energy management. To implement DR programs in the
residential sector, advanced metering infrastructure (AMI) is installed in every home. AMI keeps the
track of energy consumption usage of different appliances at different times. It determines the on-off
status of home appliances at different times. For every smart home, there exists HEMS model which
helps consumers by scheduling their appliances with minimum electricity consumption and maximum
user comfort. In addition, it provides communication between home appliances and utility companies
to shift the demand. HEMS allows consumers to automate energy use within a household. HEMS is
capable of sending signals to smart home controllers to shift their appliances to avoid power blackouts
during peak periods. There are various advantages of HEMS for consumers including electricity bill
reduction, peak load reduction, maximum utilization of RESs, achieve energy efficiency.

Figure 7 depicts the HEMS model with its components. In this model, we have considered the
central DSM controller, smart meter, energy consumption scheduler (ECS), and home appliances.
HEMS comprises software and hardware devices. Central DSM controller co-ordinates communication
between utility and home. Consumer preference is the ordered priority of appliances to be scheduled by
the user according to their comfort. A smart meter is responsible for two-way communication between
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the utility and the consumer. It collects detailed information about the user’s consumption pattern.
HEMS starts functioning when utility sends dynamic pricing signals to the smart meter. These signals
are further sent to energy consumption scheduler. ECS is the heart of home energy management
system which is capable of exchanging the information among HEMS components. Various algorithms
are embedded in ECS to generate the appliance schedules of the user. Finally, the smart meter sends
the user feedback to the utility. In the HEMS model below, we have categorized the home appliances
into three types which are shiftable interruptible appliances, shiftable non-interruptible appliances,
and non-shiftable appliances. Appliance classification is discussed in Section 3.1.

Central
DSM

Controller
Shiftable 

Interruptible
Appliances

Utility grid

Energy
Consumption

Scheduler

Smart Meter

Consumer
Preferences

Smart Home Appliances

Communication
Power

Shiftable 
non-interruptible

Appliances

Non-Shiftable 
Appliances

Figure 7. Home energy system management model.

3.1. Appliance Classification

In this subsection, we have broadly classified 13 frequently operating home appliances into three
categories based on the clarity of classification which are non-shiftable appliances (NS), shiftable
non-interruptible appliances (SNI), and shiftable interruptible appliances (SI). The classification of the
appliances varies depending on the user. Table 2 displays smart appliances along with their average
power ratings (kWh) and the corresponding duration in time slots (hr).

• Non-Shiftable (NS) appliances:
These appliances cannot be shifted to other slots. They should remain ON continuously without
any interruption for the entire duration for which they are scheduled. For instance, refrigerator,
tube-lights.

• Shiftable Non-Interruptible (SNI) appliances:
These appliances can be adjusted to any other time slots. However, these appliances cannot be
interrupted during their functioning. For instance, washing machine, electric heater.

• Shiftable Interruptible (SI) appliances:
These appliances are flexible and can be adjusted to other time intervals. They can be interrupted
during their functioning. For instance, vacuum cleaner, dishwasher, etc.
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Table 2. Power ratings of different appliances of a single user with a length of operational time.

Category Appliances Power Rating Duration/LOT

Non Shiftable Appliances

Refrigerator 0.3 24
Television 0.6 3
Tube Light 0.1 8

Fan 0.1 4
Air Conditioner 1.5 6

Laptop 0.1 2
Oven 1.7 2

Shiftable Non-Interruptible
Appliances

Washing Machine 3 6
Electric Iron 1 3
Water Heater 1.1 6

Shiftable-Interruptible
Appliances

Vacuum Cleaner 1.2 2
Dishwasher 2.5 4

Clothes dryer 3 5

3.2. Datasets for Appliances Classification and Their Energy Consumption

In literature, various smart home appliances are classified according to the user’s comfort
and clarity of classification. Authors in the literature have used their own classification for
scheduling of home appliances. Faisal et al. [61] classified fifteen appliances into seven
interruptible, two non-interruptible, and six base appliances. The interruptible appliances include
the vacuum cleaner, sensors, PHEV, dishwasher, stove, microwave, and other occasional loads.
The non-interruptible appliances are clothes washer and spin dryer while the base appliances include
oven, TV, PC, laptop, radio, and coffee maker. Shuja et al. [62] classified fifteen appliances into
seven shiftable, two non-shiftable, and six fixed appliances. Shiftable appliances include water pump,
water heater, vacuum cleaner, dishwasher, steam iron, air conditioner, and refrigerator. Non-shiftable
appliances include washing machines and tumble dryer while fixed appliances include TV, oven,
desktop PC, blender, laptop, and ceiling fan.

Thirteen smart home appliances were used in [63] classified into eight shiftable and five
non-shiftable appliances. Shiftable appliances include air conditioner, clothes dryer, washing machine,
dishwasher, refrigerator, coffee maker, water heater, and space heater while the non-shiftable appliances
were fan, light, iron, toaster, and microwave oven. Abbasi et al. [64] used eleven appliances
which were classified into three categories fixed appliances, shiftable appliances, interruptible
appliances. Fixed appliances include light, oven, blender, coffee maker. Shiftable appliances include
cloth dryer, washing machine, dishwasher while the interruptible appliances were water heater,
iron, vacuum cleaner, space heater. Eight shiftable appliances namely dishwasher, refrigerator air
conditioner, clothes dryer, water heater, coffee maker, space heater, dishwasher and six non-shiftable,
namely, fan, light, blender, clothes iron, oven, and vacuum cleaner were used in [65]. The datasets for
energy consumption profiles for different appliances of various households are given in [66–68].

4. Residential Appliance Scheduling Problem (RASP)

There are many scheduling problems encountered in various fields. The main goal of scheduling
any event is to perform the intended activities/tasks in an organized manner without any interruption.
Some of the general scheduling problems mentioned in the literature are job scheduling [69], flow shop
scheduling [70], and power scheduling problems [71].

The day by day increase in the electricity demand for residential sectors is responsible for
increasing the gap between demand and supply. To reduce this gap, there exist two possible solutions:
(i) Installing new generation units. (ii) Efficient utilization of energy sources. The first approach is
not feasible as it is expensive and takes more time to build new units. Hence, the second approach
is preferred as it is economical and does not require installing new units. The primary objective of a
smart grid is to utilize the energy sources so that it reduces the power demand during peak periods
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and thereby reduces the cost of power generation. To achieve this objective, the optimization of power
consumption is necessary. With the development of SG, it is possible to optimize power consumption
by scheduling smart home appliances effectively. The reduction of the electricity bill is the major
advantage gained by consumers in optimizing their appliance consumption. Non-scheduling of
appliances leads to high electricity cost, imbalance in demand and supply, high power demand during
peak periods. For a smart home with multiple appliances, in peak hours, the electricity demand is
higher than electricity production. Thus, HEMS can face difficulties in maintaining the balance between
demand and supply. To avoid this problem, a proficient scheme is required that can distribute the load
between peak hours and off-peak hours. This is called power scheduling. In the power scheduling
problem, the objective of consumers is to have a minimum electricity bill, minimum consumption,
minimum PAR, minimum waiting time. In smart homes, the majority of electricity is consumed by the
use of various appliances. Therefore, it is required to modify their consumption pattern effectively to
achieve the aforementioned objectives. Thus, we study the topic of power scheduling in smart homes.

The residential appliance scheduling problem (RASP) is a problem that considers residential home
appliances and schedules them within a specific time interval provided by the consumer concerning a
set of constraints. These constraints are classified into two types, namely, soft constraints and hard
constraints [72]. Soft constraints are the constraints that are not mandatory to satisfy but it is desired to
follow them. For example, the appliance can be scheduled at the beginning of its operational period
to finish its working before its ending time whereas hard constraints are those which are mandatory
to satisfy. For example, the appliance must be scheduled within its stipulated period of operation.
Overall, RASP achieves the following objectives:

• To minimize electricity cost (EC).
• To minimize peak-to-average ratio (PAR).
• To maximize user satisfaction (US) level.

4.1. Appliance Scheduling Model

This section provides an appliance scheduling model with the help of three objective functions.
For simplicity, we have formulated RASP for a single residential home. However, it can be extended
to multiple homes as well. Three optimization functions required for RASP are explained with their
mathematical formulations.

4.1.1. Minimization of Electricity Cost (EC)

The EC is the cost paid by consumers to the utility and is computed as power consumed by
appliances weighted with the price announced by the utility in that hour. The formulae for calculation
of EC over an hour and complete day are given by Equations (1) and (2).

Electricity cost for 1 h:

EC =
n

∑
i=1

P(Ai)× LAi × B (1)

Electricity cost for a complete day:

EC over a day =
24

∑
h=1

n

∑
i=1

P(Ai)× LAi × Bh (2)

where, Ai denotes the specific appliance. P(Ai) is the power rating of each appliance. Here we have
considered n appliances. LAi denotes the length of operational time of each appliance and Bh is
electricity tariff price generated by the utility for corresponding hour h. h = 1, 2, · · · , 24.
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The objective function for cost optimization can be written as:

minimuze
24

∑
h=1

n

∑
i=1

P(Ai)× LAi × Bh (3)

4.1.2. Minimization of Peak to Average Ratio (PAR)

Peak to average load ratio is computed as:

PAR =
Max Demand

Average Demand
(4)

Max Demand is maximum load consumed by home appliances in a smart home for a particular
hour and average demand is load consumed in one day.

Let us assume Loadh be the load consumed in an hour. It is calculated using Equation (5):

Loadh =
n

∑
i=1

P(Ai) (5)

where, P(Ai) is the power rating of all the appliances which are functioning during that hour.
Similarly, loadavg is the average load for the entire day which is computed using Equation (6):

Loadavg =
∑24

h=1 ∑n
i=1 P(Ai)

24
(6)

The Equation (4) for PAR can be symbolized as below:

PAR =
max(Loadh)

Loadavg
(7)

The objective function for PAR optimization can be written as:

minimize PAR s.t. CostScheduled < CostUnscheduled (8)

The Equations (3) and (8) form a part of RASP. Since the consumption of electricity and the price
of electricity at peak hours is high, it results in a high electricity bill. Therefore, our goal is to minimize
the consumption of electricity during peak hours and thereby reducing electricity costs.

4.1.3. Maximization of User Satisfaction (US)

This parameter is evaluated in terms of waiting time (WT). Smaller the waiting time, the higher
is the user satisfaction level. Thus, to improve US, we need to minimize the waiting time or delay
for appliances to start. Figure 8 depicts the execution pattern of the appliance. OT is operational
time for appliance i.e., allowable duration for the appliance to schedule which is given by the user.
LOT is length of operational time i.e., time for which appliance is running. Here, for illustration of the
waiting time, we have considered one appliance. OT1 and OT2 denote starting and ending times of
appliance to be scheduled. LOT1 is the actual starting time when the appliance is started by HEMS
and LOT2 is ending time when the appliance stops running. Thus, Appliance LOT = LOT2 − LOT1,
where Appliance LOT denotes the length of operational time for the appliance.
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OT1

LOT1 LOT2

OT2

Appliance LOT

Appliance OT given by User

Figure 8. Execution pattern for an appliance with timing illustrations.

Waiting time value lies between 0 and 1. The WT for a single appliance is computed using
Equation (9).

Waiting time =
LOT1 − OT1

OT2 − OT1 − Appliance LOT
=

{
0 : US is high
1 : Otherwise

(9)

5. Optimization Techniques for RASP

The residential appliance scheduling problem is an optimization problem for scheduling the
appliances in an energy-efficient manner with minimum EC, minimum PAR, and the maximum US.
Mahmood et al. [73] have presented the overview of load management techniques in which the
authors have described the home energy management system and optimization techniques associated
with it. Beaudin and Zareipour [74] have discussed the comparative analysis of literature in HEMS.
They have presented a review on multi-objective appliance scheduling techniques. Schminke [75]
has presented an overview of the current state of research on energy management systems in
buildings. Makhadmeh et al [3] have carried out a comprehensive survey of power scheduling
problem considering exact algorithms and meta-heuristic algorithms. However, authors have not
considered heuristic approaches for RASP. In this overview of RASP, we have classified the existing
research works into three categories which include classical techniques, heuristic approaches, and
meta-heuristic algorithms with a focus on heuristic approach towards optimization. An overview of
the aforementioned techniques has been presented in this section.

5.1. Classical Techniques

The RASP can be solved by different classical optimization techniques. Mainly, RASP can be
formulated as a linear programming (LP) and non-linear programming (NLP) problem. Depending
on the formulation, LP or NLP model can be used to solve RASP. To determine the on-off status of
appliances, binary decision variables are required. Thus, mixed-integer linear programming (MILP) or
mixed-integer non-linear programming (MINLP) techniques are used. These techniques can guarantee
an optimal solution. Various LP- and NLP-based optimization techniques to solve RASP in smart
homes have been studied in the literature. The following section presents an overview of the existing
classical techniques for RASP.
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5.1.1. LP and MILP Techniques

LP problems are the simplest forms of optimization problem where objectives and constraints are
linear. In LP, a global optimum solution is guaranteed. In addition, the structure of MILP is modular
and can be modified to fit into the desired optimization objectives. Some of the LP techniques for
RASP are presented in this section.

Kurucz et al. [23] have used a linear programming model using direct load control (DLC) for
appliance scheduling. The PAR reduction has been achieved through this model. The proposed model
is used for finding the optimal number of residential consumers participating in the DLC program.
Chen et al. [76] have proposed an LP-based appliance scheduling algorithm for smart homes to
compute deterministic scheduling. The total cost for the consumer is minimized in the proposed
algorithm. Authors have used the time-varying RTP pricing model. The energy-efficient stochastic
scheduling algorithm has considered the uncertainties in appliance scheduling and the monetary
expenses of consumers are minimized by optimally scheduling the appliances. In Mohsenian et al. [77],
optimal residential energy consumption model is proposed. The model attempts to minimize
electricity payment of household and waiting time for the operation of household appliances. A linear
programming model is proposed for the optimization of objective functions with the combination of
IBR and RTP schemes. The simulation results show that there is a significant reduction in PAR as well.
The results show 38% PAR and 25% bill saving. The results also show that the design can be extended
for more households which helps in PAR minimization and load balancing.

In [78], the appliance scheduling optimization problem is formulated as a computationally efficient
mixed-integer linear programming (MILP) problem. The authors have analyzed the consumption
scheduling mechanism within the home area network. The objective of this study is to minimize
EC paid by the user. Six appliances each for six dwellings are considered. The results show that
the cost reduction is extended to 16% from 3%. The MILP model for appliance scheduling in
smart homes was proposed in [79]. The study has focused on the minimization of the total cost
of electricity. A detailed HEM structure is proposed considering the energy storage system and
distributed generation. Thermostatic and non-thermostatic control loads have been modeled using
MILP to achieve total cost reduction.

Ratnam et al. [80] proposed an LP-based algorithm for HEMS. The objective of the algorithm
is to maximize the operational savings. The proposed algorithm has considered the data of 145
residential users. The result shows that most of them exhibit operational savings. In [81], the RASP
optimization problem is modeled as MILP. The authors have used the multi-objective mixed-integer
linear programming (MOMILP) technique to solve RASP. The objective of the proposed model is
to reduce PAR and EC. The authors have incorporated a battery storage system to save power and
enhance the effectiveness of the proposed model. In [82], HEMS for appliance scheduling has been
proposed. The main objective of the work is to minimize the energy cost while maintaining user
satisfaction level. The MILP optimization model is developed to achieve the aforementioned objectives.
The authors have considered renewable local energy sources, electric vehicles, and batteries. The results
show that cost saving is exhibited major change from 8% to 389%. Rafkaoui et al. [83] used MILP-based
optimization algorithm to minimize PAR and EC in for scheduling five home appliances. The algorithm
compares EC with and without RES. The result shows that EC is reduced by 38% without RES and
47% with RES.

5.1.2. NLP and MINLP Techniques

This section presents non-linear programming-based models for solving the RASP problem.
NLP techniques are used for solving optimization problems in which the relationship between
objectives and decision variables is non-linear. The MINLP problems are difficult to solve. It may
not guarantee a solution even if it exists. Since RASP is formulated as a linear problem in most of
the existing works, very few optimization algorithms using non-linear programming techniques are
published in the literature.
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In [84], authors have used MINLP to schedule ten home appliances to minimize EC. In the
proposed design, the ToUP scheme is used with the facility of incentivizing the user during peak hours.
The results show that EC is reduced by more than 25%.

Shafie-Khah et al. [85] used NLP for deciding on and off status of appliances in different time
slots. The objective functions considered in this method are the reduction of EC and consumer fatigue.
Different price-based and incentive-based programs with CPP, ToUP, RTP are used. A stochastic-based
HEMS model is proposed considering the uncertainties of EVs, energy storage systems and small-scaled
RESs. The result shows that the proposed system considerably reduces EC and consumer fatigue.

In [86], the MINLP model is considered for the optimization of energy hubs. The objective of the
proposed approach is to reduce the total cost of an energy hub. The focus is to schedule day ahead
appliances in an energy hub with an RTP scheme. The consumption of energy hub at different times
with different loads are considered. The approach shows that the total cost of an energy hub and the
total cost of purchased electricity from the grid is reduced.

Ampimah et al. [87] proposed a constrained non linear programming (CNLP)-based scheme
for optimization of residential consumption of electricity. The objective of the proposed scheme is to
reduce EC and PAR. The credit function is used to enable residential users to shift their load from
on-peak to off-peak periods. The consumers are encouraged to minimize peak load and increase the
off-peak load to help generators reduce the overall cost and increase revenue at off-peak.

The RASP is complex and involves a large number of appliances. It involves finding the
best solution to achieve the optimization objectives. The classical techniques mentioned in this
section are efficient for solving low scale optimization problem where less number of appliances
are involved. However, these techniques fail to solve high scale optimization problems. Moreover,
classical techniques face difficulties in convergence. These techniques often converge at a local
optimum solution. In addition, some of these optimization techniques are computationally expensive
and difficult to solve. Thus, there is a need for optimization techniques that are efficient and faster.
Heuristic approaches are often used to find the optimal solution and they are faster than classical
techniques. The following section presents the overview of heuristic approaches to solve residential
appliance scheduling problems.

5.2. Heuristic Approaches

Heuristic approaches are knowledge-based approaches to find an approximate solution to an
optimization problem based on the specified rules. For energy scheduling, these approaches require
knowledge of the energy systems in homes. They are efficient, well designed, and faster than classical
techniques. In addition, they are useful for reducing the computational burden of an appliance
scheduling algorithm and capable of approximating the optimal schedule. Recent literature on RASP
focus on heuristic approaches. However, these approaches achieve good but not the optimal solution.

A heuristic algorithm to compute price update step size and price update interval has been
proposed in [88]. It is noted that due to network delays and transmission errors, price update intervals
may get fluctuated. The proposed algorithm indicates that the deviation of the power load can be
limited for several users.

In [89,90], authors have proposed and partially evaluated a heuristic approach for scheduling
the residential appliances. The approach uses greedy processing to schedule home appliances.
The proposed approach aims to minimize EC with a set of constraints over the appliances.
Initial simulation-based investigations indicated that the obtained cost was within 5% of the
exact algorithm.

An aggregator-based residential demand response approach for scheduling smart home
appliances has been proposed in [91]. The aggregator entity is responsible for scheduling the
residential consumer assets that include smart appliances. The authors have introduced a new
customer incentive pricing (CIP) scheme. The objective of this approach is to optimize the profit of
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aggregators. The simulation results of the proposed heuristic approach show that the aggregator profit
is optimized.

A heuristic scheduling algorithm for residential home IDSS has presented in [92]. IDSS is an
intelligent decision support system that enables consumers to respond to varying electricity prices
during a day. RTP, ToUP, two-tier pricing (2TP) schemes have been used. The heuristic approach
greedily schedules the appliances to minimize EC. The results indicate that the gap between optimal
achievable costs is negligible.

Jindal et al. [93] have used a heuristic approach for appliance scheduling. The appliance
scheduling problem is divided into subproblems of different time slots. The heuristic solution is
designed for each subproblem. The objective of the proposed approach is to manage the load
requirements of the home to create a balance between supply and demand. The authors have designed
a heuristic-based appliance scheduling scheme that determines the optimal appliance schedule by
achieving the load balance in the system. Matallanas et al. [94] described an artificial neural network
(ANN) control system for active demand-side management (ADSM). The control system consists of
a scheduler and coordinator. Both these modules are implemented in ANN. The system achieves
the objective of maximizing the local generation, scheduling the appliances, and enhancing the local
energy performance.

A residential energy management mechanism for the smart grid using markov decision process
(MDP) proposed in [95]. The objective of the work is to minimize the energy expenses of consumers.
central energy management unit layer (CEMU) interacts with home energy management unit (HEMU)
to fulfill the energy demand. CEMU follows its dynamic pricing mechanism. The results show that
expenses for the consumer are reduced.

Lee et al. [96] have proposed backtracking-based power scheduling scheme for smart grid homes.
They have designed a power scheduler capable of reducing the peak load. The proposed model aims
to reduce the peak load in homes and power transmission networks. The authors have considered
homes where the number of appliances is less than ten. The results show that the proposed method
reduces the peak load of up to 23.1%.

Tiptipakorn and Lee [97] have developed consumer-centered control strategies for a heavy load
such as air conditioner and water heater as they account for the highest electricity consumption.
The objective of the work is to balance user comfort and consumer price preferences. The proposed
control strategy achieves the said objectives with saving in EC for consumers.

The comparative analysis of the aforementioned schemes is given in Table 3.

Table 3. Summarized heuristic approaches for the residential appliance scheduling problem (RASP).

Sr No. Scheme Technique Pricing Objective of Scheme

1 [88]
Price update interval-based

heuristic approach Dynamic

To study the effects of network
delay and transmission error to
achieve desired power load for

residential users

2 [89,90] Greedy strategy RTP
To schedule the appliances one

after the other

3 [91]
Aggregator-based
heuristic approach CIP

To schedule the appliances with
optimization of aggregator profit

4 [92] Greedy strategy
RTP,

ToUP,
2TP

To minimize EC in-home IDSS
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Table 3. Cont.

Sr No. Scheme Technique Pricing Objective of Scheme

5 [93]
Heuristic solutions for

each sub-problems Fixed
To determine optimal appliance
schedule to balance demand and

supply

6 [94]
Artificial neural

network Dynamic

To maximize the use of local
generation and enhance the

performance of local energy in
the residential sector

7 [95]
Markov decision-based

approach Dynamic
To reduce the energy expenses

of consumers

8 [96]
Backtracking-based

scheduling algorithm Dynamic
To reduce the peak load in

smart homes.

9 [97]
Load control strategy

for optimization RTP
To balance user comfort and

consumer price preferences along
with saving electricity bills.

5.3. Meta-Heuristics Algorithms

Meta-heuristic algorithms are used to solve various optimization problems. Meta-heuristic is a
concept of iterative generation process which guides the underlying heuristics to optimize the search
space. These algorithms are more efficient and converging than the classical approaches because of
their efficiency to explore the search space to reach a global optimum solution [98]. They make very
few assumptions about the problem being optimized. They use a large population size that travels
randomly within a search space until the solution is converged. Meta-heuristics can often find good
solutions with less computational time than classical and heuristic approaches. These algorithms
make complex problems like RASP solvable in an acceptable time. Several meta-heuristic algorithms
for RASP are studied in the literature. Genetic algorithm (GA) [63,71], particle swarm optimization
(PSO) [99], wind-driven optimization (WDO) [100], ant colony optimization (ACO) [63] are some of the
most prominent meta-heuristic algorithms. The existing research works in meta-heuristic algorithms
involve HEMS-based appliance scheduling methods. Dynamic pricing schemes are used to evaluate
the performance of the proposed schemes. These schemes schedule the appliances in such a way that
EC, PAR are minimized and user satisfaction is maximized. Some of the nature-inspired meta-heuristic
algorithms are discussed below:

In [101], a genetic algorithm-based thermal control model is developed for optimal scheduling
of inverter ACs. The authors have considered inverter-ACs specifically instead of single-speed ACs
because, nowadays, inverter ACs are installed in residential buildings. The proposed model proved
that EC and PAR are reduced while meeting the thermal constraints. Chui et al. [102] have proposed
a genetic algorithm-based support vector machine multiple-kernel approach for load monitoring
with consideration of 20 appliances. Genetic algorithm helps in solving multi-objective optimization
problem to achieve the overall accuracy of 91.8%.

In [61], a meta-heuristic scheme named updated population scheme is proposed to minimize
EC while maximizing the US level. The proposed scheme uses fifteen home appliances for
scheduling. RTP signal is used to evaluate the performance of the scheme. It is compared with two
meta-heuristic algorithms which are single swarm optimization (SSO) and earthworm algorithm (EWA).
The simulation results show that the proposed scheme met the desired objectives. Khan et al. [103]
have proposed a novel scheme to schedule home appliances to minimize the waiting time for appliances
and thus, improve the user satisfaction level. The proposed scheme has considered twelve home
appliances for scheduling. The scheme is evaluated by comparing it with the jaya optimization
algorithm (JOA) and the flower pollination algorithm (FPA). CPP is used to evaluate the performance
of the scheme. It is noted that the proposed scheme outperforms both JOA and FPA. The results show
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that EC is reduced by 58% and PAR is reduced by 56% compared to that of an unscheduled scenario.
Shuja et al. [104] proposed a load shifting technique for cost reduction. The authors have employed
JOA on bat algorithm (BA) to develop candidate solution updation algorithm (CSUA). Fifteen smart
home appliances are considered with ToUP and CPP signals for evaluation of the proposed technique.
The simulation results depicts that the load is shifted from higher price period to lower price period
which in turn reduces the electricity cost.

In [62], a new meta-heuristic algorithm is proposed for scheduling the consumption patterns
of home appliances. This study has considered fifteen home appliances for scheduling. RTP and
CPP pricing signals are incorporated into the scheme to calculate EC. The proposed algorithm named
runner updation optimization algorithm (RUOA) is compared with the strawberry algorithm (SBA)
and the firefly algorithm (FA) to minimize EC and PAR. It is noted that RUOA outperforms both
SBA and FA to achieve the RASP objectives. However, the scheme fails to improve the US level.
Rahim et al. [63] proposed HEMS-based GA, binary PSO, and ACO controllers to schedule home
appliances. The objectives of the proposed model are minimum EC, minimum PAR, and the maximum
US. The RASP is formulated as a multiple-knapsack problem. The combined pricing model of ToUP
and IBR is used. The proposed model is used for thirteen home appliances and is evaluated for 24 times
slots. The simulation results show that GA-based controller performs better than BPSO and ACO
controllers. EC is reduced by 48.79%, 40.43%, and 28.26% for GA, BPSO, and ACO, respectively.

Abbasi et al. [64] proposed a novel meta-heuristic load shifting technique to schedule the
appliances in a smart home. The objective of the proposed technique is to manage the load in such a
way that EC and WT are minimized and PAR is maintained throughout the operation of appliances.
Eleven home appliances are considered for scheduling with CPP and RTP signals. The proposed
technique is compared with SBA and EWA. The results show that EC using the CPP scheme for SBA,
EWA, and the proposed approach is reduced by 18.75%, 30.65%, and 26.99%, respectively. Thus,
EWA outperforms the other two schemes while EC using RTP for SBA, EWA, and the proposed
approach is reduced by 13.99%, 15.25%, and 27.05%, respectively. Here, the proposed technique
outperforms the others when the RTP scheme is considered. Further results show that the proposed
technique minimizes the waiting time. However, it compromises for PAR in case of CPP signal. For the
RTP signal, the proposed scheme minimizes the waiting time and cost. However, it compromises
for PAR.

Mohsin et al. [105] have proposed a harmony search algorithm (HSA) for varying time intervals.
They have considered intervals of 5, 30, and 60 min. Four objectives with the minimization of EC,
PAR, WT, and maximization of the US are considered. It is noted that the simulation results show the
proposed algorithm performs better than an unscheduled scenario and shorter time intervals produced
better results than longer intervals. In [106], the authors have adapted EWA and GA to address RASP.
The objective of the proposed adaptation is to minimize EC, PAR, and WT for 16 home appliances with
14 interruptible and 2 non-interruptible appliances. The simulation results show that GA and EWA
reduce the EC by 35% and 20% than the unscheduled mode. GA also outperforms EWA when PAR is
considered. PAR is reduced by 50% by GA while EWA reduced PAR by 40%. Ayub et al. [107] have
proposed EWA- and HSA-based schemes for appliance scheduling to reduce PAR and EC by shifting
home appliances from peak hours to off-peak hours. ToUP scheme is used for evaluating the EC of six
appliances. It is noted that EC and PAR are reduced by 12% and 9% using HSA while EWA reduced EC
and PAR by 17% and 6.8%. Thus, EWA outperforms HSA while reducing EC whereas HSA performs
better than EWA in the reduction of PAR. Tariq et al. [108] presented FPA- and HSA-based appliance
scheduling schemes to address RASP. CPP is used to determine EC. The purpose of the scheme is to
schedule 16 appliances to reduce EC and PAR and evaluate the behavior of waiting time. It is noted
that FPA outperforms HSA in EC and PAR reduction. However, HSA performed better than FPA in
minimizing the trade-off between the EC and the US level.

Awais et al. [109] have proposed a novel algorithm by merging the best features of bacterial
foraging optimization algorithm and flower pollination algorithm. The objective of the proposed
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algorithm is to minimize EC and PAR with affordable WT. 14 appliances are considered for the
evaluation of the algorithm with RTP and CPP pricing signals. Results demonstrate that the hybrid
bacterial flower pollination algorithm (HBFPA) shows reduction in EC and PAR with reasonable WT.
In [110], authors have proposed a GWO-based appliance scheduling scheme with the integration of
smart battery to reduce EC and PAR. IBR scheme is combined with RTP to balance the power demand
of 38 appliances. The results show that the RASP objectives are achieved with the use of a smart
battery scheme. GWO is compared with GA to evaluate the performance of the scheme. It is noted that
GWO performed better than GA to reduce EC and PAR. Iqbal et al. [111] have proposed three hybrid
optimization schemes for EC and PAR reduction: (1) hybrid of WDO and GWO referred as wind
driven GWO (WDGWO). (2) Hybrid of WDO and BPSO named wind driven BPSO (WBPSO). (3) Wind
driven GA (WDGA) which is hybrid of WDO and GA. The simulation results show that the proposed
techniques outperforms the existing meta-heuristic techniques. Apart from above algorithms, a number
of other nature-inspired meta-heuristic algorithms with optimization of all three major objectives are
studied in literature. They are summarized in Table 4:

Table 4. Summary of meta-heuristic algorithms.

Sr No. Scheme Meta-Heuristic Algorithms Pricing Number of
Appliances Objective of Scheme

1 [63] GA, BPSO, ACO ToUP and IBR 13
EC minimization,

PAR minimization,
US maximization

2 [112] PIO and BFO CPP 16
EC minimization,

PAR minimization,
US maximization

3 [113] BFO and SBA RTP 12
EC minimization,

PAR minimization,
US maximization

4 [114] FPA RTP 16
EC minimization,

PAR minimization,
US maximization

5 [115] GWO and BFO TOU 6
EC minimization,

PAR minimization,
US maximization

6 [116] HSA, FA, and BFO TOU 15
EC minimization,

PAR minimization,
US maximization

7 [117] GA and CSA RTP 6
EC minimization,

PAR minimization,
US maximization

8 [118] SBA and EDE RTP 16
EC minimization,

PAR minimization,
US maximization

5.4. Discussion and Directions for Future Research

Following are the discussion and future research directions of the review:

• This paper provides an overview of RASP techniques in three categories: (i) Classical techniques;
(ii) heuristic approaches; (iii) meta-heuristic algorithms. Three major optimization objectives are
considered which are minimization of EC, minimization of PAR, and maximization of the US level.
Dynamic pricing schemes are used to evaluate the performances of these scheduling techniques.

• Classical techniques such as LP, NLP are capable of finding an exact solution to an optimization
problem. RASP requires more complex computations because it involves the scheduling
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of multiple appliances at the same time. Thus, the classical techniques fail to solve such
computationally expensive and high dimensional problems in an acceptable time.

• Heuristic approaches for RASP are used to find an approximate solution to an optimization
problem. They are well designed, efficient, and faster techniques that are capable of finding a
near-optimal appliances schedule for RASP. The heuristic approach used in [92] proved that the
difference between optimally achievable cost and heuristic-based achieved cost is negligible.

• Many meta-heuristic algorithms such as ACO [63], GA [71], PSO [99] are inspired by natural
phenomena. These algorithms explore the alternative meaning of optimizing RASP objectives
and scheduling the power profile of home appliances at any hour of the day. These algorithms
can be effective for a given instance of RASP. However, in some cases, because of the nature of
convergence, these algorithms can take a long time without a satisfactory solution.

• Based on the conducted review, the most commonly studied optimization objectives for RASP are
electricity cost, peak-to-average ratio, and user satisfaction level. Very few studies in the literature
have optimized all three objectives simultaneously. In the future, there is a scope of proposing a
new objective with novel fitness function which combines all the three objectives with potentially
better results.

• RASP is also a scheduling problem in which appliances are required to be scheduled one after
the other. The consumer prioritizes the appliances and schedules them in a time-wise fashion.
The priority concept in appliance scheduling can be correlated with the scheduling of CPU in
the operating system. Some of the known CPU scheduling algorithms are first-come-first-served,
shortest job first, round robin, pre-emptive-based priority, non-pre-emptive-based priority
algorithms. Thus, in the future, RASP can be studied concerning priority or above-mentioned
scheduling algorithms.

• Since the phenomenon in nature/ecosystem exhibits optimization properties, the nature-inspired
algorithms have come forward in the optimization domain. No study in the literature describes
the exact simulation of meta-heuristics to appliances. Thus, there is a need for a step-by-step
simulation of nature-inspired algorithms with an appliance scheduling problem.

• Demand response programs for the smart grid have been thoroughly studied in the literature.
However, a detailed investigation is recommended in the demand response for the wholesale
electricity market where bidding and competition for electricity are involved.

• All the heuristic approaches for RASP have not been explored in the literature. In this paper,
we have reviewed heuristic approaches for appliance scheduling in detail. In the future, there is
further scope of proposing a new heuristic approach for RASP with mathematical modeling.

• In literature, residential appliance scheduling is studied to a large extent. A similar overview is
required in the case of the Industrial Appliance Scheduling Problem (IASP). Since very high loads
are involved in industries, specific industries (For example, mining industry, printing industry)
can be studied concerning appliance scheduling. Thus, there is a possible future scope in the
industrial domain.

6. Conclusions

In this paper, smart grid concept is studied in detail with its characteristics and advantages over
existing electric grids. The architecture of smart grid is described with its domains. We have discussed
demand side management techniques along with demand response programs for RASP. DR programs
are reactive solutions designed to encourage the users to change their consumption pattern. These
programs achieve peak load reduction by fixed or time-varying incentives and dynamic price schemes.
Home energy management system model with its components is discussed with classification of
home appliances into three categories, namely shiftable interruptible, shiftable non-interruptible, and
non-shiftable appliances.
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A comprehensive definition of residential appliance scheduling problem is discussed. The RASP
is formulated as multi-objective optimization problem with three major objectives which are EC
minimization, PAR minimization and US maximization. In addition, we have presented a wide
range of optimization techniques proposed to address the residential appliance scheduling problem.
The state-of-the-art RASP is classified into classical, heuristic, and meta-heuristic algorithms.

In classical techniques, RASP is formulated based on mathematical optimization models like
linear and non-linear programming. These techniques achieve global optimum with exact solutions.
However, these techniques are computationally expensive and results in high computing times.
Heuristic approaches are faster and useful for approximating the optimal schedule of appliances.
The studies in this overview show that the difference between the optimal achievable solution and
heuristic solution is negligible. Finally, the overview of nature-inspired meta-heuristic algorithms is
presented. Meta-heuristic algorithms can solve computationally expensive problems like RASP in an
acceptable time. These algorithms exhibit faster convergence to achieve optimal schedule in appliance
scheduling.
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Abbreviations

The following abbreviations are used in this manuscript:

2TP Two-Tier Pricing
ACO Ant Colony Optimization
ADSM Active Demand Side Management
AMI Advanced Metering Infrastructure
ANN Artificial Neural Network
BFO Bacterial Foraging Optimization
CEMU Central Energy Management Unit
CIP Customer Incentive Pricing
CPP Critical Peak Pricing
CNLP Constrained Non Linear Programming
CSA Crow Search Algorithm
DAP Day Ahead Price
DLC Direct Load Control
DR Demand Response
DSM Demand Side Management
EC Electricity Cost
ECS Energy Consumption Scheduler
EDE Enhanced Differential Evaluation
EV Electric Vehicles
EWA Earth Worm Algorithm
FA Firefly Algorithm
FPA Flower Pollination Algorithm
GA Genetic Algorithm
GWO Grey Wolf Optimization
HEMS Home Energy Management System
HEMU Home Energy Management Unit
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HP Hourly Pricing
HSA Harmony Search Algorithm
IBDR Incentive-Based Demand Response
IBR Inclined Block Rate
ICT Information and Communication Technology
IDSS Intelligent Decision Support System
IED Intelligent Electronic Vehicles
JOA Jaya Optimization Algorithm
LOT Length of Operational Time
LP Linear Programming
MDP Markov Decision Process
MILP Mixed-Integer Linear Programming
MINLP Mixed- Integer Non-linear Programming
MOMILP Multi Objective Mixed-Integer Linear Programming
NLP Non Linear Programming
NS Non Shiftable Appliances
OT Operational Time
PAR Peak-to-Average Ratio
PBDR Price-Based Demand Response
PEVs Plug-in Electric Vehicles
PIO Pigeon Inspired Optimization
PSO Particle Swarm Optimization
RASP Residential Appliance Scheduling Problem
RESs Renewable Energy Sources
RTO Regional Transmission Operator
RTP Real Time Pricing
RUOA Runner Updation Optimization Algorithm
SBA Strawberry Algorithm
SG Smart Grid
SI Shiftable Interruptible appliances
SM Smart Meter
SNI Shiftable Non-interruptible appliances
SSO Single Swarm Optimization
ToUP Time-of-Use Pricing
UCM User Comfort Maximization
US User Satisfaction
WDO Wind Driven Optimization
WT Waiting Time
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