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Abstract: This research attempts to evaluate the impact of renewable electricity generation mix on
economic growth and CO2 emissions in Iran from 1980 to 2016. In this regard, by using EViews
10, the Structural Vector Autoregressive model (SVAR) is estimated by imposing the Blanchard and
Quah long-run restrictions. The yearly data on real Gross Domestic Production (GDP), the share of
electricity generation from renewable sources, and carbon dioxide emissions (CO2) caused by liquid,
solid, and gaseous fuels were used. The positive impact of one standard deviation shock of increasing
the share of renewable electricity on economic growth was confirmed by using Impulse Response
Function (IRF). Contrary to the expectation, the share of renewable electricity in the energy mix is not
at a desirable level to lower CO2 emissions, which partly could be explained by the dominant role of
fossil fuel in Iran (as an energy-driven country). Moreover, the findings of Variance Decomposition
(VD) verified the low share of electricity generated by renewable energy in explaining forecast error
variations in economic growth and CO2 emissions. It indicates that in this stage of development,
increasing the share of renewable electricity could not be considered as an appropriate strategy
to control environmental issues. Therefore, initiating and implementing environmental policies
could be considered as the most proper policies to lower CO2 emissions and to achieve the goal of
sustainable development.

Keywords: renewable electricity; economic growth; carbon dioxide emissions; structural vector
autoregressive; sustainable development; Iran

1. Introduction

Recently, greenhouse gas emissions, caused by the overconsumption of fossil fuels, have become
the most concerning environmental problem around the world, especially in developing countries [1].
Indeed, global energy consumption and environmental concerns might be affected by patterns of
energy consumption and production of these countries, which originate from their rapid economic
development and large population [2]. It is worthwhile to mention that despite the vital role of energy
in economic growth, the environmental side effects of increasing energy consumption, especially in the
early stage, need to be considered to achieve the goals of sustainable development.

Review of the relationship between economic growth and energy consumption has drawn
researchers’ attention, particularly after the oil crisis in the 1970s. Although the development
stage, sample size, country, studied variables, and econometric methods have led to varied results,
all studies have confirmed the linkage between Gross Domestic Production (GDP), as a proxy of
economic growth, and energy consumption [3]. While some studies have postulated the unidirectional
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causality running from economic growth to energy consumption (the growth hypothesis) or vice
versa (the conservation hypothesis), others have identified no interaction (the neutrality hypothesis)
or bidirectional causality (the feedback hypothesis) [4]. Furthermore, the relationship between
economic growth and environmental quality has been widely investigated since the 1990s. Initially,
this relationship was derived from the seminal work of Kuznets [5]. He showed that income inequality
increases along with income growth, stabilizes, and then decreases, indicating the inverted-U shaped
relationship between variables studied. Inspired by this concept, environmental economists have
postulated the relationship between income growth and environmental degradation. After that, the first
attempt dates back to the seminal works of Grossman and Krueger [6], Shafik and Bandyopadhyay [7],
Panayotou [8], and Selden and Song [9]. They confirmed the inverted-U shaped relationship
between economic growth and environmental deterioration and called it the Environmental Kuznets
Curve (EKC).

As stated before, in the early stage of economic growth, the positive impact of energy consumption
on economic growth is accompanied by upward trends in greenhouse gas emissions. This dilemma
led to the emerging concept of sustainable development. Achieving this level of development
needs to minimize the side effects, which decrease natural resources and environmental quality [10].
Investigating energy consumption has drawn more attention after countries’ consensus on energy
conservation and greenhouse gas reduction based on sustainable development. Therefore, shifting away
from fossil fuels to renewable energies has gained more attention to achieve these goals. To our best
knowledge, so far, there is no conclusive result in the current literature on the exact role of renewable
energy in economic growth and environmental degradation. The most related studies are illustrated in
Table 1.

Table 1. Summary of empirical studies.

Reference Country (ies) Methodology (ies)
Impact of Renewable
Energy/Electricity on

Economic Growth CO2 Emissions

[11] India SVAR + −

[12] The US, Denmark,
Portugal, Spain SVAR −

except for the US −

[13] China, India, Japan SVAR China (SR): −
LR: +

[14] Vietnam ARDL No effect

[15] Latin American and the
Caribbean countries

FMOLS, VECM
Granger Causality

Feedback
hypothesis No effect

[16] Iran ARDL, VECM, DOLS,
FMOLS +

[17] 42 developing (Iran) Panel Data +
[18] Turkey ARDL, FMOLS, CCR No effect
[19] 8 South American ARDL −

[20] 16 EU-countries PMG-ARDL −

+ and − indicate the positive and negative impacts of renewable energy/electricity on investigated variables.

To the best of the authors’ knowledge, no research has been conducted to investigate the impact of
unit standard deviation innovation of renewable electricity on economic growth and CO2 emissions in
the fossil fuel-based country with huge potential in renewable energies, high levels of CO2 emissions,
and commitment to lower the environmental issues, such as Iran. Therefore, this research aims to
fill this gap by considering three variables (real GDP, the share of renewable energy in energy mix,
and CO2 emissions) from 1980 to 2016 using the SVAR method.

Being located between two major world energy focus areas, the Persian Gulf and the Caspian
Sea, has given Iran a strategic position in energy supply and security. Indeed, ranking as the second
and the fourth gas (accounts for 9.3 percent of world gas reserves) and oil holder (having 17.2 percent
of the total world’s affordable oil condensate reserves) in 2017, Iran is considered an energy-driven
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economy [21]. Moreover, it has numerous potentials in renewable energies due to its location in one
of the World’s Sun Belts, enjoying 2800 sunny hours per year and an average 2000 kWh/m2 solar
insulation [22], and on the world’s Geothermal Belt. However, the share of renewable energy in the
total energy mix (2 percent) and electricity generation has remained low [21], which has increased the
concerns about environmental degradation. To solve this issue, the government must consider critical
measures to decrease the high dependency on fossil fuels and to diversify the energy mix. This study
intends to answer the following questions:

1. How does electricity generated by renewable sources contribute to the economic growth of Iran?
2. How is carbon dioxide affected by unit standard deviation shock of renewable electricity?
3. What is the contribution of renewable electricity in explaining forecast error variance

decomposition of economic growth and carbon dioxide emissions?
4. What is an appropriate energy policy for Iran as an energy driven country?

The rest of the paper is organized as follows. Section 2 reports the data and methodology. Section 3
discusses the conceptual framework including the empirical findings. Finally, the paper ends up with
pointing out the conclusion and policy implication in Section 4.

2. Methodology

Sims (1980) proposed an alternative to the large scale macro-econometric time series model,
called Vector Autoregressive (VAR). This model does not rely on incredible identifying assumptions [23].
In the initial version, the impulse response functions were obtained from Cholesky decomposition.
Since this decomposition method implied a causal ordering, achieving the incredible results were
unacceptable, when more than monetary shocks were considered [24]. To overcome this obstacle,
Bernanke [25], Blanchard Watson [26], and Sims [27] developed the SVAR model by imposing theoretical
constraints on the simultaneous impacts of impulses. Later on, Clarida and Gali [28] recognized the
impulse response functions by imposing the theoretical constraints on the long-run impacts of impulses.
Shortly, to identify the system and achieve economic interpretable impulse response functions and
to evaluate the impact of pursuing specific policy measures or significant changes in the economy,
the SVAR model was applied by imposing restrictions based on economic theory [13]. The conceptual
framework is illustrated in Figure 1.
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From Figure 1, examining the impact of electricity generation mix on GDP and environmental
quality needed to take six steps as follows:
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1. Checking variables stationary through conducting KPSS unit root tests [29] and estimating the
original VAR model.

2. Identifying the optimal lag length using several criteria.
3. Checking model stability by employing inverse roots of the characteristic polynomials.
4. Imposing the Blanchard and Quah long-run restrictions [30] based on the literature review and

economic theory.
5. Plotting the IRFs to consider the dynamic responses of endogenous variables to a unit standard

deviation shock of some of the other variables in the system over time.
6. Conducting VD to identify the importance of each exogenous shock in explaining the forecast

error variance of each variable.

2.1. Structural Vector Autoregressive Model

The analysis starts by investigating the relationship between prediction errors (ut), and structural
disturbance (εt) in the VAR model of order p (VAR (p)) with K endogenous variables using
Equation (1) [25,27].

yt = ν+ A1yt−1 + · · ·+ Apyt−p + ut = AÝt−1 + ut (1)

where ν is K × 1 vector and stands for fixed, no stochastic drift component. Ýt−1 ≡
(
1, ýt−1, · · · , ýt−p

)
is

(Kp + 1) dimensional. A ≡
(
ν, A1, · · · , Ap

)
is K × (Kp + 1); ut = ´(u1t, · · · , uKt) is a K-dimensional

white noise residuals process. Therefore, it is not correlated serially, has zero mean and covariance
matrix

∑
u.

By multiplying the Equation (1) by an invertible (K ×K) matrix A, the structural relationships
between the variables are obtained as follows:

Ayt = Aν+ AA1yt−1 + · · ·+ AApyt−p + Aut = AAYt−1 + Aut

Aut = wt = (w1t , · · · , wKt )
/ indicates the structural innovation (shocks), assuming

that A has a unit main diagonal and wt ∼ (0,
∑

w) has a diagonal covariance matrix∑
w = A

∑
u `A = diag

(
σ2

1, · · · , σ2
K

)
. Consequently, specifying the i jth element of A by ai j, the kth

structural equation is as follows:

ykt = −
K∑

i = 1
i , k

akiyit + a∗kYt−1 + wkt

where a∗k shows the kth row of AA.
To ensure identifying properties of matrix A and estimating its consistency, the constraints should

be imposed on this matrix, which are called the A-model by [31].
Specifying wt = B−1ut or ut = Bwt and regarding the structural form, the structure can be imposed

using Equation (2).
yt = ν+ A1yt−1 + · · ·+ Apyt−p + Bwt = AÝt−1 + Bwt (2)

In Equation (2), ut, the reduced-form innovations are substituted by Bwt, assuming wt have a
unit covariance matrix such that wt ∼ (0, IK), and

∑
u = BB́, which is named B-model. In this model,

the identifying restrictions are imposed on the structural matrix B, which implies the short run impacts
of the structural shocks (wt).

Considering the combination of the A- and B-model is a way to facilitate imposing the identifying
restrictions, Equation (3), which referred to the AB-model by [32] is

Ayt = Aν+ AA1yt−1 + · · ·+ AApyt−p + Bwt = AAÝt−1 + Bwt (3)
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In Equation (3), wt ∼ (0, IK), and
∑

u = A−1B ´BA−1 [33].

2.2. Imposing Long-Run Restrictions

The long-run impacts of shocks are the accumulated impacts of the shocks, which are zero in the
stable and stationary VAR models. Denoting A(1) ≡ IK −A1 − · · · −Ap, the relevant long-run multiplier
matrix is written as Equation (4).

Ξ = A(1)−1A−1B (4)

The B-model with long-run multiplier matrix Ξ = A(1)−1B is commonly used in practice [34].
According to Blanchard and Quah [30], triangular matrix is the most general set of constraints,
which restrains Ξ. The linear restrictions on Ξ in B-model can be illustrated as follows:

Qlvec(Ξ) = Ql(A(1)−1,⊗ IK) vec(B) = ql

where Ql, and ql stand for a suitable known restriction matrix and a suitable vector, respectively.
Consequently, given the reduced-form parameters, the implied restrictions for the structural parameters
B are linear restrictions with restriction matrix as Equation (5).

Q = Ql(A(1)−1,⊗ IK) (5)

In a model with integrated and co-integrated variables, a shock has lasting impacts on the variables.
In this case, the long-run effects matrix for the B-model is as follows:

Ξ = β⊥

ὰ⊥
IK −

p−1∑
i=1

Γi

β⊥

−1

ὰ⊥B

β⊥, and α⊥ are orthogonal complements of β, and α, respectively [33]. In the same way, B must be
replaced by A−1 or by A−1B for the A- and AB model, respectively.

2.3. Model Specification

To investigate the impact of the mix of renewable electricity on economic growth and CO2

emissions, in this research, the long-run constraints method was applied, in which vector Y(t) includes
intended variables as Equation (6).

yt = (RES LGDP, LCO2) (6)

Three structural impulses are imposed on the model Equation (7).

εt =
(
εRES, εLGDP, εLCO2

)
(7)

where εRES stands for the logarithm of renewable electricity generation impulse. εLGDP indicates for
the logarithm of real gross domestic production impulse. εLCO2 represents the logarithm of carbon
dioxide emissions impulse.

The long-run structural innovation in the matrix form can be shown as Equation (8).
RES

LGDP
LCO2

 =


C11(L) C12(L) C13(L)
C21(L) C22(L) C23(L)
C31(L) C32(L) C33(L)



εLRES

εLGDP

εLCO2

 (8)

In this matrix C(L) =
∞∑

J=0
CJ(L).
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Following [11–13], it assumed that there is a one-sided relation from renewable electricity
generation to real GDP and CO2 emissions, and from real GDP to CO2 emissions (Figure 2).Energies 2020, 13, x FOR PEER REVIEW 6 of 15 
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The long-run restrictions introduced by [30] are imposed on Equation (8). The lower triangular
matrix is obtained (Equation (9)).

C(L) =


C11(L) 0 0
C21(L) C22(L) 0
C31(L) C32(L) C33(L)

 (9)

3. Data and Empirical Finding

3.1. Data

The yearly data was used over 1980–2016 to investigate the impact of expanding the share of
renewable electricity on GDP and CO2 emissions. GDP is the real gross domestic production (billions
constant 2010 US$); RES stands for the share of renewable energy in the electricity generation mix,
measured in billion Kwh, following Hdom [19]; and CO2 is the per capita emissions of carbon dioxide
caused by solid, liquid, and gas fuel consumption, measured in metric tons. The data of real GDP was
retrieved from the World Development Indicator database [35], and the data of CO2 emissions and the
share of renewable sources in electricity generation were sourced from the U.S. Energy Information
Administration [36]. To reduce the data variability and to avoid the heteroscedasticity problem in the
error terms, the data were converted to the logarithm form [37], except RES. The descriptive statistics
of studied variables are summarized in Table 2.

Table 2. Descriptive statistic.

RES LGDP LCO2

Mean 9.575796 5.726277 5.689736
Median 7.264000 5.680259 5.680323

Maximum 22.45900 6.214520 6.467844
Minimum 3.662000 5.168314 4.695737
Std. Dev. 4.910548 0.327201 0.530751
Skewness 1.124100 0.038299 −0.090554
Kurtosis 3.008702 1.706429 1.851405

Jarque–Bera 7.581718 2.518792 2.028106
Probability 0.022576 0.283825 0.362746

Sum 344.7286 206.1460 204.8305
Sum Sq. Dev. 843.9720 3.747111 9.859376

L shows the logarithm form of the studied variables.

From Table 2, renewable electricity had the highest mean value and standard deviation.
Accordingly, the lowest mean value and the standard deviation was for carbon dioxide emissions and
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economic growth, respectively. Furthermore, since the null hypothesis in the Jarque-Bera test refers to
the log normal distribution of studied variables, RES followed log normal distribution.

3.2. Empirical Findings

Although Augmented Dicky Fuller (ADF) and Philips Perron (PP) are the most common criteria
among conventional unit root tests, which have been used widely in the literature, they are not robust
enough in small samples [38]. In this respect, the unit root test proposed by Kwiatkowski, Phillips,
Schmidt, and Shin (KPSS) [29] was performed to check the variable stationary. Note that the null
hypothesis in this test indicated variable stationary. The results of unit root tests on the level of the
variables are summarized in Table 3.

Table 3. The unit root test at the level of variables (intercept included) [29].

Variable
KPSS Test Statistic Stationary Order

At Level At 1st Difference

RES 0.616 0.356 I (1)
LGDP 0.714 0.046 I (1)
LCO2 0.727 0.240 I (1)

The critical value at 5% level of significant equals 0.463.

As exhibited in Table 3, the series of all investigated variables had unit root at the level, and they
became stationary at the first difference (I (1)). To estimating a VAR system, the optimal lag length should
be determined. In this case, there were several criteria such as sequential modified likelihood-ratio
test (LRT), Final Prediction Error (FPE), Akaike Information Criterion (AIC), Schwartz Information
Criterion (SC), and Hannan–Quinn Information Criterion (HQ). The results are shown in Table 4.

Table 4. Optimal lag criteria.

Lag LRT FPE AIC SC HQ

0 NA 0.013111 4.179277 4.315323 4.225052
1 186.0963 * 3.71 × 10−5 * −1.692383 * −1.148199 * −1.509282 *
2 13.91959 3.81 × 10−5 −1.682298 −0.729975 −1.361870
3 11.81004 4.09 × 10−5 −1.650323 −0.289862 −1.192569

* indicates the optimal lag lengths based on the criterion.

As illustrated in Table 4, based on four separate criteria, including one lag, the underlying Vector
Autoregressive (VAR) model was confirmed. Although identifying the optimal lag length is a simple
criterion to verify the VAR model stability, the inverse roots of the characteristic polynomials should be
assessed in the next step. The stability of the model verifies if the inverse roots of AR characteristic
polynomial lie within the unit circle [31]. The result of the stability test is illustrated in Figure 3.

The results satisfy the stability of the model and the reliability of the coefficients. Furthermore,
the results of the residual serial correlation LM test is shown in Table 5.

Table 5. Residual serial correlation LM test.

Lag Lagrange Multiplier Statistic p-Value

1 8.672702 0.4689
2 7.617272 0.5740
3 4.974177 0.8369
4 7.148563 0.6224
5 5.737527 0.7664
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According to Table 5, the null hypothesis cannot be rejected in five lags at a 5% significance level,
indicating no serial correlation among residuals.

To describe the dynamic responses of endogenous variables to a unit standard deviation shock
of some of the other variables in the system over time, the impulse responses of real GDP and CO2

emissions to the positive shock of renewable electricity are depicted over a 30-year forecast (Figures 4
and 5, respectively).
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From Figure 5, LGDP affected positively from the one standard deviation shock in RES in about three 
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by the low share of renewable sources in total energy mix and electricity generation. There are several 
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From Figure 4, the positive impact of one standard deviation shock in RES on LGDP was
revealed. More precisely, the response was positive; however, it gradually disappeared in the medium
term. This finding is consistent with the outcome of [11,16,17], and the results of the SVAR model,
which indicated that an increase in renewable electricity boosts economic growth in Iran.

From Figure 5, LGDP affected positively from the one standard deviation shock in RES in about
three periods (years). This result is in line with the finding of [14,15,18] and the case of Iran could
be explained by the low share of renewable sources in total energy mix and electricity generation.
There are several reasons behind it, which can be listed as follows:

1. Low gasoline and diesel prices (Figures 6 and 7) caused by widespread supply of combustible fuels
and allocating significant subsidies to them. Based on the report of IEA entitled “World Energy
Outlook 2018”, allocating $69 billion for fossil fuels ($26.6 billion, $26 billion, and $16.6 billion for
oil, natural gas, and electricity, respectively), Iran ranks as the world’s largest country in terms
of allocating fossil fuel consumption subsidies. This amount accounts for 15 percent of total
GDP [39].

2. The low share of renewable energy in the energy mix and electricity generation [21] despite its
high potential.

3. The lack of access to advanced renewable technologies, which is caused by imposing sanctions.
4. Failure to invest in energy savings and reduce energy intensity due to financial difficulties,

which are partially caused by the sanctions.

As it is shown in Figure 6, Iran ($0.07) holds second place in the world in terms of the gasoline
price, followed by Venezuela.

As seen in Figure 7, Iran ranks as having the second-lowest diesel price in the world. The low
gasoline and diesel prices reduce the private sector’s incentives to invest in alternative energies such
as renewable and energy-efficient technologies.

Finally, the response of CO2 emissions to a positive one standard deviation shock in real GDP is
depicted in Figure 8.

According to Figure 8, a positive standard deviation shock to LGDP increases LCO2 emissions
over time. This result could be attributed to the low energy price (as stated before), which increases the
energy intensity (Figure 9).
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Figure 9. Energy intensity level of primary energy [35].

The upward trend of energy intensity shows that over the period, more energy is consumed to
produce one unit of output, indicating that higher growth rate emits more carbon dioxide.

To compare the importance of each exogenous innovation (shock) in explaining the forecast error
variance of each variable in the same VAR model, the VD was applied. The LCO2 and LGDP forecast
error variance decomposition is illustrated through Figures 10 and 11, respectively.
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From Figure 10, on average more than 88.6 percent of forecast error variations in CO2 emissions
were explained by itself. However, the share of renewable electricity in explaining the variation in CO2

emissions was too small (1.2 percent). This finding confirms the stronger environmental impact of
economic growth compared to electricity generation from renewable sources.

Based on Figure 11, LGDP explains the largest proportion of forecast error in its value (on average
71.2 percent), while RES had a lower contribution in explaining the variations in LGDP (9.6 percent).

4. Conclusions and Policy Implication

This study was conducted to evaluate the impact of electricity generation mix on economic growth
and CO2 emissions (as a proxy of environmental degradation) in Iran spanning the period 1980–2016.
The SVAR model was applied, and the [30] long-run restrictions were imposed. The result of the
inverse roots of VAR characteristics polynomial tests confirmed a well-specified SVAR model.

The impulse response function was conducted to answer the first two research questions.
The results demonstrated the positive impact of unit standard deviation shock of renewable electricity
to economic growth. Contrary to the expectation, increasing the share of renewable sources in the
electricity mix could not reduce carbon dioxide emissions. This finding could be explained by (1)
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the lack of access to advanced renewable technologies; and (2) the focus of economic and social
system of the country’s energy services on development of conventional energies (allocating a huge
amount of subsidy) [41–43] to keep fossil fuel prices at a low level, which decreased the private
sector’s motivations to invest in renewable technologies sources, absence of sustainable energy and
environmental policies [22,41,43–50].

The variance decomposition was conducted to answer the fourth research question. The results
verified the low share of renewable electricity in explaining forecast error variations in economic
growth and CO2 emissions. Finally, from the empirical findings, increasing the share of renewable
energy in generating electricity is not a proper strategy to decrease environmental degradation at this
stage of development (the last research question). Therefore, implementing environmental policies
such as (1) reviewing and recommending the required amendments to the existing law; (2) increasing
environmental regulation especially in the most energy-intensive sectors like power plants and
transportation sectors; and (3) implementing robust performance monitoring systems could be the
most appropriate policy.

However, providing the required infrastructure to expand renewable energies usage in the next
stages of development should be considered by the government and policymakers. For instance,
to decrease the dependence on fossil fuels, liberalizing fossil fuel prices and using the money to
establish/expand the required renewable sources infrastructures would be an alternative. The required
budget could be provided either by creating joint venture agreements or obtaining financial aid and
technical support services from international organizations including the Organization of the Petroleum
Exporting Countries (OPEC).
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DH PC Dumitrescu–Hurlin Panel Causality test
DOLS Dynamic Least Square
EKC Environmental Kuznets Curve
FMOLS Fully Modified Least Square
FPE Final Prediction Error
GDP Gross Domestic Production
HQ Hannan–Quinn Information Criterion
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LRT Likelihood-Ratio test
LR Long-run
PMG-ARDL Panel Pooled Mean Group-Autoregressive Autoregressive Distributive Lag Model
SC Schwartz Information Criterion
SR Short run
SVAR Structural Vector Autoregressive model
VAR Vector Autoregressive
VD Variance Decomposition
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