Wind Tunnel Study on Wake Instability of Twin H-Rotor Vertical-Axis Turbines
Abstract
:1. Introduction
2. Methods
2.1. Wind Tunnel and Twin Turbine
2.2. Measurements
2.3. Wavelet Analysis Method
3. Results and Discussion
3.1. Forward-Moving Counter-Rotating Turbine
3.1.1. Time-Averaged Wake Characteristics
3.1.2. Dynamic Characteristics of Evolution
3.1.3. Asymmetrical Mode
3.2. Backward-Moving Counter-Rotating Turbine
3.2.1. Time-Averaged Wake Characteristics
3.2.2. Dynamic Characteristics of Evolution
3.2.3. Self-organisation Characteristics
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Balduzzi, F.; Bianchini, A.; Carnevale, E.A.; Ferrari, L.; Magnani, S. Feasibility analysis of a Darrieus vertical-axis wind turbine installation in the rooftop of a building. Appl. Energy 2012, 97, 921–929. [Google Scholar] [CrossRef]
- Tjiu, W.; Marnoto, T.; Mat, S.; Ruslan, M.H.; Sopian, K. Darrieus vertical axis wind turbine for power generation ii: Challenges in HAWT and the opportunity of multi-megawatt darrieus VAWT development. Renew. Energy 2015, 75, 560–571. [Google Scholar] [CrossRef]
- Rajaopalan, R.G.; Rickerl, T.L.; Klimas, P.C. Aerodynamic interference of vertical axis wind turbines. J. Propul. Power 1990, 6, 645–653. [Google Scholar] [CrossRef]
- Wu, T.Y. Flow through a heavily loaded actuator disc. Schiffstechnik 1962, 47, 134–138. [Google Scholar]
- Conway, J.T. Exact actuator disk solutions for non-uniform heavy loading and slipstream contraction. J. Fluid Mech. 2000, 365, 235–267. [Google Scholar] [CrossRef]
- Madsen, H.A. The Actuator Cylinder—A Flow Model for Vertical Axis Wind Turbines. Ph.D. Thesis, Aalborg University Centre, Aalborg, Denmark, 1982. [Google Scholar]
- Sørensen, J.N.; Shen, W.Z. Numerical modeling of wind turbine wakes. J. Fluids Eng. Trans. ASME 2002, 124, 393–399. [Google Scholar] [CrossRef]
- Shen, W.Z.; Zhang, J.H.; Sørensen, J.N. The actuator surface model: A new navier-stokes based model for rotor computations. J. Sol. Energy Eng. Trans. ASME 2009, 131, 110021–110029. [Google Scholar] [CrossRef]
- Medici, D.; Alfredsson, P.H. Measurements on a wind turbine wake: 3D effects and bluff body vortex shedding. Wind Energy 2006, 9, 219–236. [Google Scholar] [CrossRef]
- Araya, D.B.; Colonius, T.; Dabiri, J.O. Transition to bluff-body dynamics in the wake of vertical-axis wind turbines. J. Fluid Mech. 2017, 813, 346–381. [Google Scholar] [CrossRef] [Green Version]
- Zanforlin, S.; Nishino, T. Fluid dynamic mechanisms of enhanced power generation by closely spaced vertical axis wind turbines. Renew. Energy 2016, 99, 1213–1226. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Chen, C.; Huang, C.; Hwang, C. Power output analysis and optimization of two straight-bladed vertical-axis wind turbines. Appl. Energy 2017, 185, 223–232. [Google Scholar] [CrossRef]
- Lam, H.F.; Peng, H.Y. Measurements of the wake characteristics of co- and counter-rotating twin h-rotor vertical axis wind turbines. Energy 2017, 131, 13–26. [Google Scholar] [CrossRef]
- Zdravkovich, M.M.; Pridden, D.L. Interference between two circular cylinders; Series of unexpected discontinuities. J. Ind. Aerodyn. 1977, 2, 255–270. [Google Scholar] [CrossRef]
- Alam, M.M.; Moriya, M.; Sakamoto, H. Aerodynamic characteristics of two side-by-side circular cylinders and application of wavelet analysis on the switching phenomenon. J. Fluids Struct. 2003, 18, 325–346. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, H.J.; Yiu, M.W. The turbulent wake of two side-by-side circular cylinders. J. Fluid Mech. 2002, 458, 303–332. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.J.; Zhou, Y.; So, R.M.C. Reynolds number effects on the flow structure behind two side-by-side cylinders. Phys. Fluids 2003, 15, 1214–1219. [Google Scholar] [CrossRef]
- Zou, L.; Wang, K.; Jiang, Y.; Wang, A.; Sun, T. Wind tunnel test on the effect of solidity on near wake instability of vertical-axis wind turbine. J. Mar. Sci. Eng. 2020, 8, 365. [Google Scholar] [CrossRef]
- Battisti, L.; Persico, G.; Dossena, V.; Paradiso, B.; Raciti Castelli, M.; Brighenti, A.; Benini, E. Experimental benchmark data for H-shaped and troposkien VAWT architectures. Renew. Energy 2018, 125, 425–444. [Google Scholar] [CrossRef]
- Ross, I.; Altman, A. Wind tunnel blockage corrections: Review and application to savonius vertical-axis wind turbines. J. Wind. Eng. Ind Aerod. 2011, 99, 523–538. [Google Scholar] [CrossRef]
- Posa, A. Influence of Tip Speed Ratio on wake features of a Vertical Axis Wind Turbine. J. Wind. Eng. Ind. Aerod. 2020, 197, 104076. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Farge, M. Wavelet transforms and their applications to turbulence. Ann. Rev. Fluid Mech. 1992, 24, 395–457. [Google Scholar] [CrossRef]
- Howell, R.; Qin, N.; Edwards, J.; Durrani, N. Wind tunnel and numerical study of a small vertical axis wind turbine. Renew. Energy 2010, 35, 412–422. [Google Scholar] [CrossRef] [Green Version]
- Tescione, G.; Ragni, D.; He, C.; Ferreira, C.J.S.; van Bussel, G.J.W. Near wake flow analysis of a vertical axis wind turbine by stereoscopic particle image velocimetry. Renew. Energy 2014, 70, 47–61. [Google Scholar] [CrossRef]
- Posa, A.; Parker, C.M.; Leftwich, M.C.; Balaras, E. Wake structure of a single vertical axis wind turbine. Int. J. Heat Fluid Flow 2016, 61, 75–84. [Google Scholar] [CrossRef]
- Sumner, D.; Heseltine, J.L.; Dansereau, O.J.P. Wake structure of a finite circular cylinder of small aspect ratio. Exp. Fluids 2004, 37, 720–730. [Google Scholar] [CrossRef]
- Kraichnan, R.H. Inertial ranges in two-dimensional turbulence. Phys. Fluids 1967, 10, 1417–1423. [Google Scholar] [CrossRef] [Green Version]
- Maassen, S.R.; Clercx, H.J.H.; van Heijst, G.J.F. Self-organization of quasi-two-dimensional turbulence in stratified fluids in square and circular containers. Phys. Fluids 2002, 14, 2150–2169. [Google Scholar] [CrossRef] [Green Version]
- Schneider, K.; Farge, M. Decaying two-dimensional turbulence in a circular container. Phys. Rev. Lett. 2005, 95, 244502. [Google Scholar] [CrossRef] [Green Version]
- Clercx, H.J.H.; Maassen, S.R.; van Heijst, G.J.F. Spontaneous spin-up during the decay of 2D turbulence in a square container with rigid boundaries. Phys. Rev. Lett. 1998, 80, 5129–5132. [Google Scholar] [CrossRef] [Green Version]
- Molenaar, D.; Clercx, H.J.H.; Van Heijst, G.J.F. Transition to chaos in a confined two-dimensional fluid flow. Phys. Rev. Lett. 2005, 95, 104503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frisch, U.; Sulem, P.L. Numerrical simulation of the inverse cascade in two-dimensional turbulence. Phys. Fluids 1984, 27, 1921–1923. [Google Scholar] [CrossRef]
- Qian, J. Inverse energy cascade in two-dimensional turbulence. Phys. Fluids 1986, 29, 3608–3611. [Google Scholar] [CrossRef] [Green Version]
Array # | Turbine 1 | Turbine 2 |
---|---|---|
1 | Anticlockwise rotation | Clockwise rotation |
2 | Clockwise rotation | Anticlockwise rotation |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Zou, L.; Wang, A.; Zhao, P.; Jiang, Y. Wind Tunnel Study on Wake Instability of Twin H-Rotor Vertical-Axis Turbines. Energies 2020, 13, 4310. https://doi.org/10.3390/en13174310
Wang K, Zou L, Wang A, Zhao P, Jiang Y. Wind Tunnel Study on Wake Instability of Twin H-Rotor Vertical-Axis Turbines. Energies. 2020; 13(17):4310. https://doi.org/10.3390/en13174310
Chicago/Turabian StyleWang, Kun, Li Zou, Aimin Wang, Peidong Zhao, and Yichen Jiang. 2020. "Wind Tunnel Study on Wake Instability of Twin H-Rotor Vertical-Axis Turbines" Energies 13, no. 17: 4310. https://doi.org/10.3390/en13174310
APA StyleWang, K., Zou, L., Wang, A., Zhao, P., & Jiang, Y. (2020). Wind Tunnel Study on Wake Instability of Twin H-Rotor Vertical-Axis Turbines. Energies, 13(17), 4310. https://doi.org/10.3390/en13174310