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Abstract: This paper investigates the implementation of a wide-adjustable sensorless interior
permanent magnet synchronous motor drive based on current deviation detection under space-vector
modulation. A hybrid method that includes a zero voltage vector current deviation and an active
voltage vector current deviation under space-vector pulse-width modulation is proposed to determine
the rotor position. In addition, the linear transition algorithm between the two current deviation
methods is investigated to obtain smooth speed responses at various operational ranges, including at
a standstill and at different operating speeds, from 0 to 3000 rpm. A predictive speed-loop controller
is proposed to improve the transient, load disturbance, and tracking responses for the sensorless
interior permanent magnet synchronous motor (IPMSM) drive system. The computations of the
position estimator and control algorithms are implemented by using a digital signal processor (DSP),
TMS-320F-2808. Several experimental results are provided to validate the theoretical analysis.

Keywords: current deviation; SVPWM; IPMSM; wide-adjustable speed; sensorless drive

1. Introduction

Interior permanent magnet synchronous motors (IPMSMs) have better performance than any other
motors because of their robustness, high efficiency, and high ratio of torque to ampere characteristics [1].
They have been used in industry and household appliances, including machine tools, rolling mills,
high-speed trains, electric vehicles, and elevators [2,3]. A sensorless IPMSM drive system can save
space, reduce costs, and prevent the noise interference of high-frequency pulse-width modulation
(PWM) switching. The major sensorless technologies for an IPMSM include three methods. The first
method uses the extended back-electromotive force (back-EMF) estimation to obtain the estimated rotor
position [4–9]. The extended back-EMF estimation method, however, cannot effectively determine
the rotor position at low-speed. The second method uses a high-frequency injection voltage to
produce its related high-frequency currents [10–15]. The high-frequency injection method, however,
requires some extra hardware or software to implement a high-frequency generator and also produces
audible noise and electromagnetic interference [10–15]. To overcome these issues, the third method
uses a stator current deviation to estimate the rotor position. By detecting the current deviation
of the stator current, the position estimator has been successfully applied. For example, Bui et al.
studied a modified sensorless scheme by using a PWM excitation signal [16]. Wei et al. presented
a dual current deviation estimating method to obtain better accuracy of the position estimator [17].
Raute et al. investigated a sensorless technique with the analysis of the inverter nonlinearity effect [18].
Hosogay et al. implemented a position sensorless technique for low-speed ranges based on the d-axis
and q-axis current derivative method [19]. These studies have not required any high-frequency
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injecting signals or a back-EMF estimation [16–19]. These methods [16–19], however, have not been
applied for all ranges of different speeds.

To solve this problem, a current deviation of the stator current using the active voltage vector
(AVV) is developed in [20–23]. These papers, however, have only focused on middle- to high-speed
ranges. In this paper, two novel ideas are proposed as follows:

• a zero voltage vector (ZVV) rotor estimation method is originally proposed to obtain a
high-performance sensorless drive system at a zero-speed with full load conditions.

• a linear combination method, including a zero voltage vector (ZVV) algorithm and an AVV
algorithm, is proposed with predictive control to operate the sensorless IPMSM drive system from
0 rpm to 3000 rpm. This linear combination method is easily implemented when compared to
fuzzy-logic combination methods [24].

2. Mathematical Model of an IPMSM

2.1. The d-q Axis Synchronous Frame Model

According to the rotor flux-linkage coordinate system, the mathematical model of the IPMSM in
the d-q axis synchronous frame is expressed as follows:[

vd
vq

]
=

[
Rs +

d
dt Ld −ωeLq

ωeLd Rs +
d
dt Lq

][
id
iq

]
+

[
0

ωeλm

]
(1)

where vd and vq are the d-q axis voltages, Rs is the stator resistance, id and iq are the d-q axis currents, Ld
and Lq are the d-q axis inductances, ωe is the electrical rotor speed, and λm is the flux linkage generated
by the permanent magnet material, which is placed in the rotor. The addition of the reluctance torque
and electromagnetic torque can be obtained as

Te =
3
2

P
2

[
(Ld − Lq)id + λm

]
iq (2)

The dynamic mechanical equations of the rotor speed and rotor position are expressed as

d
dt
ωm =

1
Jm

(Te − TL − Bmωm) (3)

and
d
dt
θm = ωm (4)

The electrical rotor position and speed are independently expressed as follows:

θe =
P
2
θm (5)

and
ωe =

P
2
ωm (6)

where TL is the external load, Jm is the inertia, Bm is the viscous coefficient, ωm is the mechanical
angular speed, θm is the mechanical position, and θe is the electrical position.

2.2. The a-b-c Axis Synchronous Frame Model

Considering the three-phase voltage balanced and Y-connected windings of an IPMSM,
the a-b-c-axis stator voltage equation can be stated as follows:
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vas

vbs
vcs

 =


ra 0 0
0 rb 0
0 0 rc




ias

ibs
ics

+ d
dt


λas

λbs
λcs

 (7)

where vas, vbs, and vcs are the a-, b-, and c-phase voltages, ra, rb, and rc are the a-, b-, and c-phase
resistances, and λas, λbs, and λcs are the a-, b-, and c-phase flux linkages. In Equation (7), the neutral
point voltage is assumed to be zero when the neutral point is free because the fundamental components
of the vas, vbs, and vcs are balanced. The relationship between the magnetic flux linkages of three-phase
stator windings and the three-phase self-inductances, stator currents, and rotor position can be stated
as follows: 

λas

λbs
λcs

 =


Laa Mab Mac

Mba Lbb Mbc
Mca Mcb Lcc




ias

ibs
ics

+ λm


cosθe

cos(θe −
2π
3 )

cos(θe +
2π
3 )

 (8)

where Laa, Lbb, and Lcc are the three-phase self-inductances, and Mab, Mac, Mba, Mbc, Mca, and Mcb are
the three-phase mutual inductances. The self-inductances are expressed as

Laa = Lls + LAA − LBB cos(2θe) (9)

Lbb = Lls + LAA − LBB cos(2θe +
2π
3
) (10)

and
Lcc = Lls + LAA − LBB cos(2θe −

2π
3
) (11)

The mutual inductances are expressed as

Mab = Mba == −
1
2

LAA − LBB cos(2θe −
2π
3
) (12)

Mbc = Mcb = −
1
2

LAA − LBB cos(2θe) (13)

and
Mca = Mac = −

1
2

LAA − LBB cos(2θe +
2π
3
) (14)

The LAA and LBB are constant parameters.

3. Zero Voltage Vector-Based Current Deviation Rotor Position Estimator

3.1. Basic Principle

The ZVV dominates the duty cycle of a PWM at a standstill and low-speed operating ranges; as a
result, one can substitute vd = 0 and vq = 0 into Equation (1) and obtain did

dt
diq
dt

 =
 −

Rs
Ld

Lq
Ld
ωe

−
Ld
Lq
ωe −

Rs
Lq

[ id
iq

]
−

 0
λmωe

Lq

 (15)

From Figure 1, the estimated position error θ̃e is first defined as follows:

θ̃e = θe − θ̂e (16)

where θ̃e and θ̂e are the estimated rotor position error and estimated rotor position, respectively.
Second, the estimated d- and -q axis currents are expressed as follows:
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[
îd
îq

]
=

 cos θ̃e − sin θ̃e

sin θ̃e cos θ̃e

[ id
iq

]
= T

(
θ̃e

)[ id
iq

]
(17)

where îd and îq are the estimated d-axis and q-axis currents, and T(θ̃e) is the coordinate transformation
matrix. By substituting Equation (17) into Equation (15), the dynamic equation of the ZVV-based
estimated q-axis current is

dîq
dt �

1
LdLq

{
Rs

[(
Lq − Ld

)
cos2

(
θ̃e

)
− Lq

]
−

1
2ωe

(
L2

q − L2
d

)
sin

(
2θ̃e

)}
îq

+ 1
LdLq

{
ωe

[(
L2

q − L2
d

)
cos2

(
θ̃e

)
− L2

q

]
−

Rs
2

(
Lq − Ld

)
sin

(
2θ̃e

)}
îd

−
λmωe

Lq
cos

(
θ̃e

) (18)
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where eθ  and êθ  are the estimated rotor position error and estimated rotor position, respectively. 
Second, the estimated d- and -q axis currents are expressed as follows: 

( )
ˆ cos sin
ˆ sin cos

d dd e e
e

q qq e e

i ii
T

i ii
θ θ θ
θ θ

 


 
       −

= =       
       

 (17) 

where d̂i  and q̂i  are the estimated d-axis and q-axis currents, and ( )eT θ  is the coordinate 
transformation matrix. By substituting Equation (17) into Equation (15), the dynamic equation of the 
ZVV-based estimated q-axis current is 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

2 2 2

2 2 2 2

ˆ 1 1 ˆcos sin 2
2

1 ˆcos sin 2
2

cos

q
s q d e q e q d e q

d q

s
e q d e q q d e d

d q

m e
e

q

di
R L L L L L i

dt L L

RL L L L L i
L L

L

θ ω θ

ω θ θ

λ ω θ

  ≅ − − − −   

  + − − − −   

−

 

 



 (18) 

The values of the dL  and qL  are only a few mHs and are lower than 1 Henry. In consequence, 

dL  is much greater than 2
dL , and qL  is much greater than 2

qL . By omitting the 2
dL , 2

qL , and related 
items that are multiplied by the eω , the dynamic equation of the ZVV-based estimated q-axis current 
can be derived as follows: 

{ ( ) ( )

( )

2
ˆ

ˆcos

1 ˆ( )sin(2 ) cos
2

q s
d q e q q

d q

m e
d q e d e

q

di R
L L L i

dt L L

L L i
L

θ

λ ωθ θ

 ≅ − − + 

+ − −




 
 (19) 

Because the estimated position error e
θ  is close by zero at steady-state, it is feasible to assume 

that ( )sin 2 eθ ≅ 2 ,eθ  ( )sin eθ ≅ ,eθ  ( )2cos 1eθ ≅ , and ( )cos 1eθ ≅ . By using these guestimates into 

Equation (19), the following equation can be obtained 

( ) ˆˆ ˆ
s d q dq s q m e

e
q d q q

R L L idi R i
dt L L L L

λ ωθ
−

≅ − + −  (20) 

Figure 1. The coordinate transformation relationship.

The values of the Ld and Lq are only a few mHs and are lower than 1 Henry. In consequence, Ld is
much greater than L2

d, and Lq is much greater than L2
q . By omitting the L2

d, L2
q , and related items that are

multiplied by the ωe, the dynamic equation of the ZVV-based estimated q-axis current can be derived
as follows:

dîq
dt �

Rs
LdLq
{−

[(
Ld − Lq

)
cos2

(
θ̃e

)
+ Lq

]
îq

+ 1
2 (Ld − Lq) sin (2θ̃e) îd

}
−
λmωe

Lq
cos

(
θ̃e

) (19)

Because the estimated position error θ̃e is close by zero at steady-state, it is feasible to assume that
sin

(
2θ̃e

)
�2θ̃e,sin

(
θ̃e

)
�θ̃e,cos2

(
θ̃e

)
� 1, and cos

(
θ̃e

)
� 1. By using these guestimates into Equation (19),

the following equation can be obtained

dîq
dt
� −

Rs îq
Lq

+
Rs

(
Ld − Lq

)
îd

LdLq
θ̃e −

λmωe

Lq
(20)

3.2. The ZVV Rotor Position Estimating Scheme

In fact, the estimated speed ω̂e is employed to replace the real speed ωe. The estimated rotor
position θ̃e can be assumed to be zero under steady-state conditions. Equation (20), as a result,
is rearranged as follows:

dîq
dt

+
Rîq + λmω̂e

Lq
�

R
(
Ld − Lq

)
i∗d

LdLq
θ̃e (21)

Then, a new variable, Dîq, can be defined as follows:

Dîq ,
dîq
dt

+
Rs îq + λmω̂e

Lq
(22)

Substituting (22) into Equation (21), one can obtain

Dîq � Kqθ̃e (23)
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and

Kq ,
Rs

(
Ld − Lq

)
i∗d

LdLq
(24)

From Equation (23), the Dîq is nearly proportional to the estimated position error θ̃e. Figure 2 illustrates
the proposed ZVV-based estimator. First, by using the coordinate transformation, one can transfer the
a-, b-, and c-phase current deviations into the estimated d-q axis current deviations. Then, one can
derive the current deviation dîq/dt. By summation of the dîq/dt, λmω̂e/Lq, and Rs îq/Lq, one can obtain
Dîq. Next, one can compute the value of θ̃e after dividing Dîq by Kq and, thus, obtain the estimated
position error. After that, one can use a proportional-integral (PI) controller to acquire the estimated
rotor speed and obtain the estimated position by using an integral operation.
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4. Active Voltage Vector-Based Current Deviation Rotor Position Estimator

4.1. The AVV Rotor Position Estimation Scheme

At middle and high speeds, the current deviation of the AVV in the a-b-c-stationary frame is used
to estimate the position. From Figure 3, when the a-phase upper leg turns on and the b-phase and
c-phase lower legs turn on, one can obtain

Vdc = vas − vbs (25)

By substituting Equation (7) into (25), one can derive

Vdc = rsias +
dλa

dt
− rsibs −

dλb
dt

(26)
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Substituting Equation (8) into (26), one can derive

Vdc = rsias +
d
dt (Laaias + Labibs + Lacics + λm cosθe) − rsibs

−
d
dt (Lbaias + Lbbibs + Lbcics + λm cos(θe −

2π
3 ))

(27)

By substituting Equations (9)–(14) into Equation (27) and doing some mathematical processes,
one can obtain

Vdc =
[(

1
2 (3LAA + 2Lls) +

√
3 sin

(
2θe −

π
3

)
LBB

)
dias
dt +

(
−

1
2 (3LAA + 2Lls) +

√
3 sin(2θe + π)LBB

) dibs
dt

+
(√

3 sin
(
2θe +

π
3

)
LBB

)
dics
dt

]
+ 2
√

3ωeLBB
[
sin

(
2θe +

π
6

)
ias + sin

(
2θe −

π
2

)
ibs + sin

(
2θe +

5π
6

)
ics

]
−λmωe

(
3
2 sinθe +

√
3

2 cosθe

)
+ rs(ias − ibs)

(28)

In addition, from Figure 3, when the a-phase upper leg turns on and the b-phase and c-phase lower
legs turn on, one can obtain the voltage between the b-phase and c-phase as follows:

0 = vbs − vcs (29)

By using the similar processes shown in Equations (26)–(29), one can derive

0 =
[(√

3 sin(2θe + π)LBB
)

dias
dt +

(
1
2 (3LAA + 2Lls) +

√
3 sin

(
2θe +

π
3

)
LBB

) dibs
dt +

(
−

1
2 (3LAA + 2Lls) +

√
3 sin

(
2θe −

π
3

)
LBB

)
dics
dt

]
+2
√

3ωeLBB
[
sin

(
2θe −

π
2

)
ias + sin

(
2θe +

5π
6

)
ibs + sin

(
2θe +

π
6

)
ics

]
+
√

3λmωe cosθe + rs(ibs − ics)
(30)

Moreover, from Figure 3, when the a-phase upper leg turns on and the b-phase and c-phase lower
legs turn on, one can obtain

ias = −(ibs + ics) (31)

Taking the differential of both sides in Equation (31), one can obtain

dias

dt
= −(

dibs
dt

+
dics

dt
) (32)

From Equations (28), (30), and (32), one can obtain the following equation:

dias
dt _mode A+

=
{
4Vdc

(
2
3 Lls + LAA + LBB cos(2θe)

)
+ 2ωeLBB[(

−3ias sin(2θe) +
√

3(ibs − ics)(3LBB + cos(2θe))
)

(3LAA + 2Lls) + Ka] + Rsa
}
/[(2Lls + 3L∆)(2Lls + 3LΣ)]

(33)

where
L∆ = LAA − LBB (34)

and
LΣ = LAA + LBB (35)

When the switching state of the inverter is at a zero voltage state, the motor short circuits. Consequently,
the direct-current (DC) voltage Vdc is equal to zero. By substituting Vdc = 0 into Equation (33),
one can obtain

dias
dt _mode 0 =

{
2ωeLBB

[(
−3ias sin(2θe) +

√
3(ibs − ics)(3LBB + cos(2θe))

)
(3LAA + 2Lls) + Ka] + Rsa

}
/[(2Lls + 3L∆)(2Lls + 3LΣ)]

(36)
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From Equation (36), the current deviation dias/dt_mode 0 includes a resistance influencing part,
a back-EMF influencing part, and an inductance influencing part. To eject the influences of the
back-EMF and resistance parts, the a-phase compensated current deviation Dias_mode A+ is computed as

Dias_mode A+ = dias
dt _mode A+

−
dias
dt _mode 0

=
4Vdc[ 2

3 Lls+LAA+LBB cos(2θe)]
(2Lls+3L∆)(2Lls+3LΣ)

(37)

From Equation (37), one can observe that the Dias_mode A+ is only related to the inductance and input
DC voltage Vdc. By using a similar method, one can derive the b-phase compensation current deviation
and the c-phase compensation current deviation.

By transferring the a-, b-, and c-axis current deviations into the α− and β− axis current-deviations,
one can obtain the current deviation Diα and Diβ as follows:

[
Diα
Diβ

]
=

 1 −
1
2 −

1
2

0
√

3
2 −

√
3

2




Dias_mode A+

Dibs_mode B+

Dics_mode C+

 (38)

By substituting the a-b-c-phase compensated current deviation into Equation (38), the Diα can be
simplified as

Diα =
6VdcLB cos(2θe)

(2Lls + 3L∆)(2Lls + 3LΣ)
(39)

and the Diβ can be simplified as

Diβ =
−6VdcLB sin(2θe)

(2Lls + 3L∆)(2Lls + 3LΣ)
(40)

By using the following tan−1 mathematical process, one can obtain the AVV-based estimated electrical
rotor position as follows:

tan−1(
−Diβ
Diα

) = 2θe (41)

4.2. Space-Vector Extension And Compensation

The current deviation is used to estimate the position and is discussed in this section. To obtain
the current deviation, two different currents are sampled for each switching state, and then the
current deviation can be computed. In the real world, the time interval between the two-sampling
intervals should be large enough to obtain an accurate current deviation. However, some turn-on
or turn-off intervals are reduced as the motor speed increases. In addition, the switching interval is
also varied when the voltage vector moves to different positions. To solve this issue, an extension
with a compensation method is used [13]. When the digital signal processor (DSP) detects that the
time interval of the switching state is too short, an extension time is automatically provided to make
the switching time maintain a minimum required switching time, Tmin. In this paper, the minimum
required switching time interval Tmin is set as 20 µs.

However, the extension time of the switching state causes DC bias and harmonics. Therefore,
a compensation time of the whole switching interval is required. Figure 4a,b show the space-vector
pulse width modulation (SVPWM) switching states used in this paper. In each switching interval,
which is 100 µs, three switching states are generated. Figure 4a shows the T1 switching state when it is
too short. When this occurs, the switching state “100” is extended, and its complementary state “011”
is compensated for at the end because the voltage in the whole-time interval Ts should be balanced.
As a result, the DC bias is reduced to zero, and the ac harmonics are compensated. Figure 4b shows
the T2 switching state when it is too short. When this occurs, the switching state “110” is extended.
Then, “001” is compensated for at the end of the entire switching interval Ts.
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the waveform, shown in Figure 5, the current deviation is obtained for every sampling time, sT . The 
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Figure 4. Space-vector pulse width modulation extension and compensation. (a) T1 voltage vector;
(b) T2 voltage vector.

5. Current Deviation Detection Technique

In this paper, the current deviation is used to estimate the position of IPMSM. As a result,
the precise detection of the current deviation at AVV and ZVV is very important. As one can observe
in the waveform, shown in Figure 5, the current deviation is obtained for every sampling time, Ts. The
current spike can be avoided by carefully selecting the sampling instance. The first current sampling
instance of each switching state is delayed 10 µs after the power device turns on. The second current
sampling instance is 5 µs before the next switching state occurs. After that, the current deviation
can be computed by subtracting the second captured current with the first captured current over the
time difference.
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The current deviation can be precisely obtained since the time period of AVV is extended if it is
too narrow when the motor is operated at middle- and high-speeds. The current-deviation of the ZVV
can be obtained because of the large duty cycle of the ZVV when the motor is operated at a standstill
and low-speed ranges.
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6. Linear Transition from Standstill and Low-Speed to High-Speed

A linear transferring method between the ZVV and AVV algorithms is displayed in Figure 6.
This linear transition method is easy to implement and can achieve better performance than other
advanced transition methods, such as fuzzy logic methods. Even though fuzzy logic methods have
better performance and faster responses, they need more complex computations [24]. A lower bound
transition speed, which is 60 rpm, is defined as ωs1. In addition, a higher bound transition speed,
which is 100 rpm, is defined as ωs2. A weighting factor β is utilized in the subsequent equations:

θ̂e = βθ̂zvv + (1− β)θ̂avv (42)

and
ω̂e = βω̂zvv + (1− β)ω̂avv (43)
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The weighting factor β in (42) and (43) is defined as follows:

β =


1

ωs2−ω̂e
ωs2−ωs1

0

, when ω̂e ≤ ωs1

, when ωs1 < ω̂e < ωs2

, when ω̂e ≥ ωs2

(44)

where θ̂zvv and θ̂avv are the estimated positions by using the ZVV and the AVV algorithms, respectively.
The ω̂ zvv and ω̂ avv are the estimated speeds after using the ZVV and AVV algorithms. By using this
method, the estimated positions and estimated speeds can be accurately obtained.

7. Predictive Speed Controller Design

Predictive controllers have been applied in chemical process industries, robotic controls, and other
multivariable systems [25–27]. Recently, predictive controllers have been successfully employed in
motor drives and power electronics [28–30]. A predictive speed controller is designed to improve the
responses of the drive systems. By omitting the external load TL from (3), when the d-axis is zero, it is
possible to derive the transfer function Gp(s) of the IPMSM, which is shown in Figure 7, as follows:

Gp(s) =
ωm(s)
iq(s)

=
Kt/Jt

s + (Bt/Jt)
(45)

By inserting a zero-order hold device and taking the z-transformation, one can obtain

Gp(z) =
ωm(z)
iq(z)

=
Kt

Bt

(1− e−
Bt
Jt

Ts)

(z− e−
Bt
Jt

Ts)

(46)
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From (46), it is straightforward to derive the speed prediction as

ωm(n + 1) = asωm(n) + bsiq(n) (47)

where

as = e−
Bt
Jt

Ts (48)

and
bs =

Kt

Bt
(1− e−

Bt
Jt

Ts) (49)

The predictive speed equation is shown as

_
ωm(n + 1) = asωm(n) + bsiqp

∗(n)
= asωm(n) + bsiqp(n− 1) + bs∆iq∗(n)

(50)

The performance index can be defined as [28–30]

Jp(n) = α
[_
ωm(n + 1) −ωm

∗(n + 1)
]2
+

[
∆iq∗(n)

]2
(51)

After taking ∂Jp(n)/∂∆iq∗(n) = 0, one can obtain

2αbs
[
asωm(n) + bs

(
iqp(n− 1) + ∆iq∗(n)

)
−ωm

∗(n + 1)
]
+ 2∆iq∗(n) = 0 (52)

Next, one can obtain

∆iq∗(n) =
αbs

αbs2 + 1

[
ωm
∗(n + 1) − asωm(n) − bsiqp(n− 1)

]
(53)

and
k =

αbs

αbs2 + 1
(54)

Finally, the q-axis current command is

iqp
∗(n) = iqp(n− 1) + ∆iq∗(n) (55)

Load disturbance compensation is shown in Figure 7. By computing the difference between kti∗q(n) and
Jt(∆ωm/∆t) + Btωm, the estimated mechanical load can be obtained. Next, the external load T̂m(n)
is estimated by using a low-pass filter. After that, the compensation current iqc(n) can be obtained.
Finally, the q-axis current command iq∗(n), which is the summation of the iqp

∗(n) and the compensation
current iqc(n), can be computed, shown in Figure 7.
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8. Implementation

The implemented circuit of the sensorless IPMSM drive system is discussed here. Figure 8a
demonstrates the closed-loop block diagram of the implemented drive system. The digital signal
processor (DSP) executes the position estimation and predictive control algorithms. As a result, the DSP
is the control center of the IPMSM drive system. Figure 8b displays the implemented circuit, including
an inverter, a 3-phase driving circuit, a DSP, two A/D converters, and two Hall-effect current sensing
circuits. Figure 8c demonstrates the drive system with a dynamometer, which is driven by a DC
permanent magnet motor to equip the external load. By suitably adjusting the input voltage of the
DC motor, a varied load can be obtained. The IPMSM is an 8-pole, 7.7 A, 2000 rpm, 2 kW IPMSM.
The motor has the following parameters: stator resistance = 0.32 Ω, d-axis self-inductance = 0.0049 H,
q-axis self-inductance = 0.0078 H, flux linkage = 0.16 V.s/rad, inertia = 0.00455 kg-m2, viscous coefficient
= 0.003 N.m.s/rad, switching frequency of the inverter = 10 kHz, DC bus voltage = 300 V, current-loop
sampling interval = 100 µs, and the speed-loop sampling interval = 1 ms.
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9. Experimental Results

To verify the theoretical analysis, several measured results are demonstrated in this section.
The speed-loop PI controller is designed by a pole assignment technique. Figure 9 demonstrates the
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relation between the q-axis current deviations and estimated position errors at 0 rpm. When the d-axis
current is too low, the amplitude of the q-axis current deviation is also very low. In order to enhance the
amplitude of the current deviation to reduce the estimated rotor position error, a higher d-axis current
is selected for the rotor position estimation at a standstill condition. From Figure 9, the relationship
between the q-axis current deviation and the estimated position error is nearly a sinusoidal curve.
In addition, the current deviation slope and the estimated position error have the same polarity.
Therefore, it is reasonable to use the q-axis current deviation slope to estimate the position, as explained
in Section 3. Figure 10a demonstrates the estimated and real positions, and they are similar. However,
the estimated rotor position varies above and below the real positions. Figure 10b demonstrates
the estimated and real speeds at 5 rpm. Both of them have obvious speed ripples, which are near
±1 rpm. In addition, the speed computed from rotor estimation has larger speed ripples than the speed
measured by an encoder, which provides more accurate speed information. Figure 10c demonstrates
the estimated position error with only nearby ±2 electrical degrees. This result shows that the estimated
d-axis moves above and below the real d-axis. Figure 11a demonstrates the rotor speed and estimated
speed at 0 rpm under an 11 N·m external load. According to this figure, the estimated speed follows
the real speed well, even though a heavy load is added. However, the estimated speed has a larger
speed ripples than the speed obtained from the encoder. Figure 11b demonstrates the estimated and
real positions using an encoder. Both of them finally reach 0 electrical degrees at steady-states, at which
the motor provides maximum holding torque. Figure 11c shows the position error at 0 rpm under
an 11 N·m load. The estimated error is at a near −2 degrees at no load; however, it reaches 2 degrees
under an 11 N·m load. According to Figure 11a–c, one can conclude that the proposed method can
provide a high-performance speed control at a standstill with a heavy load.
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Figure 12a,b show the comparison of the a-phase output current of the hysteresis current control
and the proposed extension and compensation SVPWM when the motor is running at 600 rpm under a
1.5 N·m external load. As we can observe, the output current with the proposed method provides
lower current harmonics than the hysteresis current control method. The major reason is that hysteresis
control uses an infinite gain for a current-loop and then creates high current harmonics. Figure 13a
shows the a-phase current and its related sampling signal. The current is detected twice for each
switching interval in order to compute the current deviation. Figure 13b shows the extended and
compensated SVPWM switching states. In that figure, it can be seen that the sampling interval Ts is
100 µs. The first and second applied voltage vectors are “110” and “010” and are both less than 20 µs.
Therefore, these voltage vectors need to be extended at the first stage and then be compensated for at
the next stage. Besides that, the switching time for the zero voltage vector reaches 20 µs, and it does
not need to be extended. The extended voltage vectors “110” and “010” also need to be compensated
for in the opposite direction, which is “001” and “101”, to keep the total time of switching states from
changing. Hence, the compensation for switching states “001” and “101” are performed before the end
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of the switching interval Ts. Figure 13c shows the related switching points (broken lines) and sampling
points (solid lines). As can be observed, two current sampling points are required for the AVV “110”
and “010” and the ZVV “000”.
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Figure 14a–d show the α and β current responses using the AVV and ZVV algorithms at 60 rpm
under a 2 N·m load. Figure 14a shows the iα and iβ using the AVV and the blue line is iα and the red line
is iβ. Figure 14b shows the iα and iβ using the ZVV and the blue line is iα and the red line is iβ. As we can
observe, at low speeds, the ZVV performs better than the AVV with fewer current ripples and current
distortions. The reason is that the ZVV uses a lot of zero vectors, but the AVV does not. In addition,
the αβ trajectory for the ZVV is closer to a circle. This is why the ZVV is employed for low-speed
ranges. Figure 15a–c illustrate the transitional responses from the ZVV algorithm to the AVV algorithm.
Figure 15a shows the estimated and real speeds at about 150 rpm. According to the transition rules in
Equations (48)–(50), when the speed is below 60 rpm, the ZVV estimation algorithm is used. However,
when the motor is at more than 100 rpm, the AVV rotor estimation algorithm is used. If the speeds are
between those two limitations, a weighting factor is considered, which allows the two estimators to
transition smoothly to obtain estimated speeds and positions. Figure 15b compares the estimated and
real positions, and they are close at a standstill and low-speed ranges. Moreover, during the transitional
interval, the estimated and real positions can provide smooth transient responses to demonstrate
that the proposed method is practical and useful. Figure 15c demonstrates the estimated position
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errors. The errors are near six electrical degrees during transitional intervals and then are reduced
to two electrical degrees at steady-states. Figure 16a demonstrates the reverse speed responses from
600 rpm to −600 rpm by using a predictive controller. Figure 16b demonstrates the real and estimated
position responses, and both of them are similar. The results show that the proposed rotor position
estimator can track the real position very well in transient responses and at steady-states. Figure 16c
demonstrates the measured estimated rotor position errors, which are near ±4 electrical degrees during
the transient responses. The estimated motor position errors in these transient responses are larger
than the estimated rotor position errors at a steady-state.Energies 2020, 13, x FOR PEER REVIEW 14 of 23 
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Figure 17a,b show the measured responses of the drive system with different values of external 
loads. Figure 17a shows the responses when a 1 N·m load is added. As we can observe, the estimated 
rotor position and estimated rotor speed can follow measured rotor position and rotor speed well. 
The position error is only ± 2 electrical degrees. Figure 17b shows the responses when a 4 N·m load 
is added, and the estimated position error is near ±3 electrical degrees. Based on these experimental 
results, the performance of the sensorless drive system can work well at 1 N·m load and 4 N·m load. 

Figure 16. Measured responses from 0 rpm to 600 rpm to−600 rpm. (a) speeds; (b) positions; (c) position
estimated errors.

Figure 17a,b show the measured responses of the drive system with different values of external
loads. Figure 17a shows the responses when a 1 N·m load is added. As we can observe, the estimated
rotor position and estimated rotor speed can follow measured rotor position and rotor speed well.
The position error is only ±2 electrical degrees. Figure 17b shows the responses when a 4 N·m load is
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added, and the estimated position error is near ±3 electrical degrees. Based on these experimental
results, the performance of the sensorless drive system can work well at 1 N·m load and 4 N·m load.Energies 2020, 13, x FOR PEER REVIEW 20 of 23 
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Figure 17. Measured responses of different loads at 600 rpm. (a) 1 N·m; (b) 4 N·m. 

Figure 18a demonstrates a comparison of the speed responses by using different controllers. The 
PI controller has near 10% overshoot, which requires 0.3 s to reach a steady-state. However, the 
predictive controller only has a 3% overshoot and can reach a steady-state quickly. Figure 18b 
demonstrates the load disturbance responses at 600 rpm with a 2 N·m load. The PI controller drops 
by 150 rpm, but the predictive controller drops by only 60 rpm. In addition, the predictive controller 
has a quicker recovery time than the PI controller. Figure 18c demonstrates the step-input responses 
at different speeds by using the proposed predictive controller. All of them are linear responses. The 
reason is that the predictive controller uses more state variables than the PI controller. This 
demonstrates that the proposed drive system has wide and adjustable ranges, which include different 
speed ranges. 

Figure 17. Measured responses of different loads at 600 rpm. (a) 1 N·m; (b) 4 N·m.

Figure 18a demonstrates a comparison of the speed responses by using different controllers. The PI
controller has near 10% overshoot, which requires 0.3 s to reach a steady-state. However, the predictive
controller only has a 3% overshoot and can reach a steady-state quickly. Figure 18b demonstrates
the load disturbance responses at 600 rpm with a 2 N·m load. The PI controller drops by 150 rpm,
but the predictive controller drops by only 60 rpm. In addition, the predictive controller has a quicker
recovery time than the PI controller. Figure 18c demonstrates the step-input responses at different
speeds by using the proposed predictive controller. All of them are linear responses. The reason is that
the predictive controller uses more state variables than the PI controller. This demonstrates that the
proposed drive system has wide and adjustable ranges, which include different speed ranges.
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10. Conclusions

A sensorless DSP-based IPMSM drive system using current deviation detection is implemented
in this paper. The ZVV rotor estimating method, which is very suitable for IPMSMs operating at
zero-speeds and low-speeds, is originally investigated. Experimental results show that this ZVV
estimating method can achieve high-performance sensorless speed control at zero-speed under full
load conditions. In addition, a linear combination method, which is the simplest method to combine a
ZVV algorithm and an AVV algorithm, is also proposed in this paper. As a result, the IPMSM drive
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system can be operated from 0 r/min to 3000 r/min. This linear combination method is more easily
implemented than fuzzy-logic combination methods.
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