Effect of Moisture on the Thermal Conductivity of Cellulose and Aramid Paper Impregnated with Various Dielectric Liquids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Used Materials
2.2. Preparation of Paper Samples with Various Moisture Content
2.3. Thermal Conductivity Measurements
3. Experiment Results and Analysis
3.1. Thermal Conductivity Coefficient of Unimpregnated Papers
3.2. Effect of the Moisture on the Thermal Conductivity of Impregnated Cellulose Paper
3.3. Effect of the Moisture on the Thermal Conductivity of Impregnated Aramid Paper
3.4. Comparison of Thermal Conductivity of Impregnated Cellulose and Aramid Paper in the Context of Their Moisture
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Thermal Conductivity Error Estimation
References
- Garcia, B.; Villarroel, E.D.; Garcia, D.F. A multiphysics model to study moisture dynamics in transformer. IEEE Trans. Power Deliv. 2019, 34, 1365–1373. [Google Scholar] [CrossRef]
- Sikorski, W.; Szymczak, C.; Siodla, K.; Polak, F. Hilbert curve fractal antenna for detection and on-line monitoring of partial discharges in power transformers. Eksploatacja i Niezawodność Maint. Reliab. 2018, 20, 343–351. [Google Scholar] [CrossRef]
- Gielniak, J.; Graczkowski, A.; Moranda, H.; Przybylek, P.; Walczak, K.; Nadolny, Z.; Moscicka-Grzesiak, H.; Gubanski, S.M.; Feser, K. Moisture in cellulose insulation of power transformers: Statistics. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 982–987. [Google Scholar] [CrossRef]
- Toudja, T.; Chetibi, F.; Beldjilali, A.; Moulai, H.; Beroual, A. Electrical and physicochemical properties of mineral and vegetable oils mixtures. In Proceedings of the IEEE 18th International Conference on Dielectrics Liquids (ICDL), Bled, Slovenia, 29 June–3 July 2014; pp. 1–4. [Google Scholar]
- Jeong, J.-I.; An, J.-S.; Huh, C.-S. Accelerated aging effects of mineral and vegetable transformer oils on medium voltage power transformers. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 156–161. [Google Scholar] [CrossRef]
- Emsley, M.; Stevens, G.C. Kinetic and mechanisms of the low temperature degradation of cellulose. Cellulose 1994, 1, 26–56. [Google Scholar] [CrossRef]
- Liao, R.; Liang, S.; Sun, C.; Yang, L.; Sun, H. A comparative study of thermal aging of the transformer insulation paper impregnated in natural ester and in mineral oil. Eur. Trans. Electr. Power 2010, 20, 518–533. [Google Scholar] [CrossRef]
- Bandara, K.; Ekanayake, C.; Saha, T.K.; Annamalai, P.K. Understanding the aging aspects of natural ester based insulation liquid in power transformer. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 246–257. [Google Scholar] [CrossRef]
- Hao, J.; Liao, R.; Chen, G.; Ma, Z.; Yang, L. Quantitative analysis ageing status of natural ester-paper insulation and mineral oil-paper insulation by polarization/depolarization current. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 188–199. [Google Scholar] [CrossRef] [Green Version]
- Dombek, G.; Nadolny, Z. Thermal properties of mixtures of mineral oil and natural ester in terms of their application in the transformer. In Proceedings of the International Conference Energy, Environment and Material Systems (EEMS), Polanica-Zdroj, Poland, 13–15 September 2017; pp. 01040-1–01040-6. [Google Scholar]
- Seytashmehr, A.; Fofana, I.; Eichler, C.; Akbari, A.; Borsi, H.; Gockenbach, E. Dielectric spectroscopic measurements on transformer oil-paper insulation under controlled laboratory conditions. IEEE Trans. Dielctr. Electr. Insul. 2008, 10, 903–917. [Google Scholar] [CrossRef]
- Dombek, G.; Nadolny, Z.; Marcinkowska, A. Effects of nanoparticles materials on heat transfer in electro-insulating liquids. Appl. Sci. 2018, 8, 2538. [Google Scholar] [CrossRef] [Green Version]
- IEC 60076-2:2011. Power Transformers—Part 2: Temperature Rise for Liquid-Immersed Transformers; International Electrotechnical Commission (IEC): New York, NY, USA, 2011. [Google Scholar]
- Godina, R.; Rodrigues, E.M.G.; Matias, J.C.O.; Catalao, J.P.S. Effect of loads and other key factors on oil-transformer ageing: Sustainability benefits and challenges. Energies 2015, 8, 12147–12186. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Wu, J.; Wang, J.; Zhao, W. Reliability analysis and overload capability assessment of oil-immersed power transformers. Energies 2016, 9, 43. [Google Scholar] [CrossRef] [Green Version]
- Lopatkiewicz, R.; Nadolny, Z.; Przybylek, P.; Sikorski, W. The influence of chosen parameters on thermal conductivity of windings insulation describing temperature distribution in transformer. Przeglad Elektrotechniczny 2012, 88, 126–129. (In Polish) [Google Scholar]
- Dombek, G.; Nadolny, Z. Electro-insulating nanofluids based on synthetic ester and TiO2 or C60 nanoparticles in power transformer. Energies 2018, 11, 1953. [Google Scholar] [CrossRef] [Green Version]
- Xia, G.; Wu, G.; Gao, B.; Yin, H.; Yang, F. A new method for evaluating moisture content and aging degree of transformer oil-paper insulation based on frequency domain spectroscopy. Energies 2017, 10, 1195. [Google Scholar] [CrossRef] [Green Version]
- Betie, A.; Meghnefi, F.; Fofana, I.; Yeo, Z. Modelling the insulation paper drying process from thermogravimetric analyses. Energies 2018, 11, 517. [Google Scholar] [CrossRef] [Green Version]
- N’chos, J.S.; Fofana, I.; Hadjadj, Y.; Beroual, A. Review of physicochemical-based diagnostic techniques for assessing insulation condition in aged transformers. Energies 2016, 9, 367. [Google Scholar] [CrossRef]
- Bhalla, D.; Bansal, R.K.; Gupta, H.O.; Hari, O.M. Preventing power transformer failures through electrical incipient fault analysis. Int. J. Perform. Eng. 2013, 9, 23–31. [Google Scholar] [CrossRef]
- Sparling, B.; Aubin, J. Assessing water content in insulating paper of power transformers. Electr. Energy T&D Mag. 2007, 11, 30–34. [Google Scholar]
- Cui, Y.; Ma, H.; Saha, T.; Ekanayake, C.; Wu, G. Multi-physics modelling approach for investigation of moisture dynamics in power transformers. IET Gener. Transm. Dis. 2016, 10, 1993–2001. [Google Scholar] [CrossRef]
- Smolka, J.; Nowak, A.J. Experimental validation of the coupled fluid flow, heat transfer and electromagnetic numerical model of the medium-power dry-type electrical transformer. Int. J. Therm. Sci. 2008, 47, 1393–1410. [Google Scholar] [CrossRef]
- Yatsevsky, V.A. Hydrodynamics and heat transfer in cooling channels of oil-filled power transformers with multicoil windings. Appl. Therm. Eng. 2014, 63, 347–353. [Google Scholar] [CrossRef]
- Mithun, M.; Thankachan, B. A novel, cost effective capacitive sensor for estimating dissolved moisture in transformer oil. In Proceedings of the 10th International Conference on Sensing Technology (ICTS), Nanjing, China, 11–13 November 2016; pp. 1–6. [Google Scholar]
- Oommen, T.V.; Prevost, T.A. Cellulose insulation in oil-filled power transformers: Part II maintaining insulation integrity and life. IEEE Electr. Insul. Mag. 2006, 22, 5–14. [Google Scholar] [CrossRef]
- Su, Q.; James, R.E. Condition Assessment of High Voltage Insulation in Power System Equipment, 1st ed.; The Institution of Engineering and Technology: London, UK, 2008; pp. 121–158. [Google Scholar]
- Wickman, S.H. Transformer bushings and oil leaks. Transform. Mag. Spec. Ed. Bushing 2017, 4, 148–154. [Google Scholar]
- Sokolov, V.; Aubin, J.; Davydov, V.; Gasser, H.P.; Griffin, P.; Koch, M.; Lundgaard, L.; Roizman, O.; Scala, M.; Tenbohlen, S.; et al. Moisture Equilibrium and Moisture Migration within Transformer Insulation Systems; Cigré Technical Brochure 349; International Council on Large Electric Systems (CIGRE): Paris, France, 2008. [Google Scholar]
- Li, Y.; Zhou, K.; Zhu, G.; Li, M.; Li, S.; Zhang, J. Study on the influence of temperature, moisture and electric field on the electrical conductivity of oil-impregnated pressboard. Energies 2019, 12, 3136. [Google Scholar] [CrossRef] [Green Version]
- Saha, T.K.; Purkait, P. Understanding the impacts of moisture and thermal aging on transformer’s insulation by dielectric response and molecular weight measurements. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 568–582. [Google Scholar] [CrossRef]
- Huang, L.; Wang, Y.; Li, X.; Wei, C.; Lu, Y. Effect of moisture on breakdown strength of oil-paper insulation under different voltage types. In Proceedings of the IEEE International Conference on High Voltage Engineering and Application (ICHVE), Athens, Greece, 10–13 September 2018; pp. 1–4. [Google Scholar]
- Wang, Y.; Xiao, K.; Chen, B.; Li, Y. Study of the impact of initial moisture content in oil impregnated insulation paper on thermal aging rate of condenser bushings. Energies 2015, 8, 14298–14310. [Google Scholar] [CrossRef]
- Sikorski, W.; Walczak, K.; Przybylek, P. Moisture migration in an oil-paper insulation system in relations to online partial discharge monitoring of power transformers. Energies 2016, 9, 1082. [Google Scholar] [CrossRef] [Green Version]
- Experiences in Service with New Insulating Liquids; Cigré Technical Brochure 436; International Council on Large Electric Systems (CIGRE): Paris, France, 2010.
- Christina, A.J.; Salam, M.A.; Rahman, Q.M.; Wen, F.; Ang, S.P.; Voon, W. Causes of transformer failures and diagnostic methods—A review. Renew. Sustain. Energy Rev. 2018, 82, 1442–1456. [Google Scholar] [CrossRef]
- Shroff, D.H.; Stannett, A.W. A review of paper aging in power transformers. IEEE Proc. C Gener. Transm. Distrib. 1985, 132, 312–319. [Google Scholar] [CrossRef]
- Lundgaard, L.E.; Hansen, W.; Linhjell, D.; Painter, T.J. Aging of oil-impregnated paper in power transformers. IEEE Trans. Power Deliv. 2004, 19, 230–239. [Google Scholar] [CrossRef]
- Mosinski, F. The influence of water and oxygene on load and lifetime of power transformers. In Proceedings of the Transformer During Operation Conference, Kolobrzeg, Poland, 20–22 April 2005; pp. 117–119. (In Polish). [Google Scholar]
- Daghrah, M.; Wang, Z.; Liu, Q.; Hiker, A.; Gyore, A. Experimental study of the influence of different liquids on the transformer cooling performance. IEEE Trans. Power Deliv. 2019, 34, 588–595. [Google Scholar] [CrossRef] [Green Version]
- Velandy, J.; Garg, A.; Narasimhan, C.S. Thermal performance of ester oil transformers with different placement of cooling fan. In Proceedings of the 9th Power India International Conference (PIICON), Sonepat, India, 29 February–1 March 2020; pp. 1–7. [Google Scholar]
- Velandy, J.; Garg, A.; Narasimhan, C.S. Continuos thermal overloading capabilities of ester oil transformer in oil directed cooling conditions. In Proceedings of the 9th Power India International Conference (PIICON), Sonepat, India, 29 February–1 March 2020; pp. 1–7. [Google Scholar]
- Cabeza-Prieto, A.; Camino-Olea, M.S.; Rodriguez-Esteban, M.A.; Llorente-Alvarez, A.; Saez-Perez, M. Moisture influence on the thermal operation of the late 19th century brick façade, in a historic building in the city of Zamora. Energies 2020, 13, 1307. [Google Scholar] [CrossRef] [Green Version]
- Nikitsin, V.I.; Alsabry, A.; Kofanov, V.A.; Backiel-Brzozowska, B.; Truszkiewicz, P. A model of moist polymer foam and a scheme for the calculation of its thermal conductivity. Energies 2020, 13, 520. [Google Scholar] [CrossRef] [Green Version]
- DuPontTM Nomex® 926. Technical Data Sheet. Available online: https://www.dupont.com/fabrics-fibers-and-nonwovens/nomex-electrical-insulation.html (accessed on 3 May 2020).
- Nynas Nytro Draco Technical Data Sheet. Available online: http://www.smaryoleje.pl/nynas.html (accessed on 4 May 2020).
- Midel 7131 Synthetic Ester Transformer Fluid. FIRE Safe and Biodegradable. Available online: https://www.midel.com/app/uploads/2018/05/MIDEL-7131-Product-Brochure.pdf (accessed on 4 May 2020).
- Cargill Dielectric Fluids. EnvirotempTM FR3TM Fluid. Available online: https://www.cargill.com/doc/1432160189547/fr3-dielectric-fluid-data-sheet.pdf (accessed on 4 May 2020).
- Martin, D.; Perkasa, C.; Lelekakis, N. Measuring paper water content of transformers: A new approach using cellulose isotherms in nonequilibrium conditions. IEEE Trans. Power Deliv. 2013, 28, 1433–1439. [Google Scholar] [CrossRef]
- Atanasova-Höhlein, I.; Agren, P.; Beauchemin, C.; Cucek, B.; Darian, L.; Davidov, V.; Dreier, L.; Gradnik, T.; Grisaru, M.; Koncan-Gradnik, M.; et al. Moisture Measurement and Assessment in Transformer Insulation—Evaluation of Chemical Methods and Moisture Capacitive Sensors; International Council on Large Electric Systems (CIGRE): Paris, France, 2018. [Google Scholar]
- IEC 60814. Insulating Liquids—Oil-Impregnated Paper and Pressboard—Determination of Water by Automatic Coulometric Karl Fischer Titration; International Electrotechnical Commission (IEC): New York, NY, USA, 1997.
- Przybylek, P. Water saturation limit of insulating liquids and hygroscopicity of cellulose in aspect of moisture determination in oil-paper insulation. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 1886–1893. [Google Scholar] [CrossRef]
- Przybylek, P. A Comparison of bubble evolution temperature in aramid and cellulose paper. In Proceedings of the IEEE International Conference on Solid Dielectrics (ICSD), Bologna, Italy, 30 June–4 July 2013; pp. 983–986. [Google Scholar]
- Lopatkiewicz, R.; Nadolny, Z.; Przybylek, P. The influence of water content on thermal conductivity of paper used as a transformer windings insulation. In Proceedings of the IEEE International Conference on the Properties and Applirations of Dielectric Materials (ICPADM), Bangalore, India, 24–28 July 2012; pp. 1–4. [Google Scholar]
- Lopatkiewicz, R.; Nadolny, Z.; Przybylek, P. Influecne of water content in paper on its thermal conductivity. Przeglad Elektrotechniczny. 2010, 86, 55–58. (In Polish) [Google Scholar]
- Chen, H.; Ginzburg, V.V.; Yang, J.; Yang, Y.; Liu, W.; Huang, Y.; Du, L.; Chen, B. Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog. Polym. Sci. 2016, 59, 41–85. [Google Scholar] [CrossRef]
- Chae, H.G.; Kumar, S. Minaking strong fibres. Science 2008, 319, 908–909. [Google Scholar] [CrossRef]
- Vargaftik, N.B.; Filippov, L.P.; Tarzimanov, A.A.; Totski, E.E. Handbook of Thermal Conductivity of Liquids an Gases, 1st ed.; CRC Press: Cleveland, OH, USA, 1994; pp. 48–75. [Google Scholar]
- Dombek, G.; Nadolny, Z. Liquid kind, temperature, moisture, and ageing as an operating parameters conditioning reliability of transformer cooling system. Eksploatacja i Niezawodność—Maintenance and Reliability 2016, 18, 413–417. [Google Scholar] [CrossRef]
- Dombek, G.; Nadolny, Z. Influence of paper type and liquid insulation on heat transfer in transformers. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1863–1870. [Google Scholar] [CrossRef]
- Kuang, Y.C.; Chen, G.; Jarman, P. Recovery voltage measurement on oil-paper insulation with simple geometry and controlled environment. In Proceedings of the IEEE International Conference on Solid Dielectrics (ICSD), Toulouse, France, 5–9 July 2004; pp. 1–4. [Google Scholar]
- Wang, S.; Wei, J.; Yang, S.; Dong, M.; Zhang, G. Temperature and thermal aging effects on the frequency domain spectroscopy measurement of oil-paper insulation. In Proceedings of the IEEE 9th International Conference on the Properties and Applications of Dielectric Materials (ICPADM), Harbin, China, 19–23 July 2009; pp. 329–332. [Google Scholar]
Type of Tested Material | Abbreviation Used in the Text |
---|---|
Cellulose paper impregnated with mineral oil | CP-MO |
Cellulose paper impregnated with synthetic ester | CP-SE |
Cellulose paper impregnated with natural ester | CP-NE |
Aramid paper impregnated with mineral oil | AP-MO |
Aramid paper impregnated with synthetic ester | AP-SE |
Aramid paper impregnated with natural ester | AP-NE |
Unimpregnated cellulose paper | - |
Unimpregnated aramid paper | - |
Temperature T (°C) | Thermal Conductivity Coefficient λ (W·m−1∙K−1) | |
---|---|---|
Cellulose Paper | Aramid Paper | |
25 | 0.076 | 0.061 |
40 | 0.086 | 0.075 |
60 | 0.098 | 0.088 |
80 | 0.110 | 0.101 |
100 | 0.121 | 0.110 |
Type of Insulation System | Water Content of Paper WCP (%) | Temperature T (°C) | ||||
---|---|---|---|---|---|---|
25 | 40 | 60 | 80 | 100 | ||
Thermal Conductivity Coefficient λ (W·m−1∙K−1) | ||||||
Cellulose paper impregnated by mineral oil | 0.50 | 0.152 | 0.164 | 0.176 | 0.191 | 0.204 |
0.87 | 0.153 | 0.162 | 0.176 | 0.188 | 0.203 | |
1.03 | 0.150 | 0.162 | 0.176 | 0.189 | 0.206 | |
1.30 | 0.152 | 0.164 | 0.178 | 0.194 | 0.207 | |
1.68 | 0.155 | 0.167 | 0.184 | 0.200 | 0.213 | |
1.92 | 0.159 | 0.169 | 0.185 | 0.202 | 0.215 | |
2.24 | 0.158 | 0.168 | 0.182 | 0.198 | 0.213 | |
2.84 | 0.163 | 0.174 | 0.191 | 0.205 | 0.217 | |
4.00 | 0.163 | 0.173 | 0.190 | 0.203 | 0.217 | |
4.80 | 0.166 | 0.176 | 0.188 | 0.204 | 0.217 | |
Cellulose paper impregnated by synthetic ester | 0.18 | 0.174 | 0.185 | 0.198 | 0.211 | 0.220 |
1.00 | 0.176 | 0.187 | 0.199 | 0.210 | 0.221 | |
2.38 | 0.178 | 0.190 | 0.202 | 0.212 | 0.223 | |
3.12 | 0.179 | 0.191 | 0.202 | 0.212 | 0.222 | |
4.11 | 0.180 | 0.194 | 0.206 | 0.217 | 0.225 | |
4.32 | 0.184 | 0.194 | 0.207 | 0.216 | 0.226 | |
4.85 | 0.185 | 0.199 | 0.208 | 0.219 | 0.227 | |
5.53 | 0.186 | 0.198 | 0.211 | 0.220 | 0.228 | |
Cellulose paper impregnated by natural ester | 0.31 | 0.204 | 0.212 | 0.221 | 0.230 | 0.237 |
0.93 | 0.205 | 0.212 | 0.220 | 0.231 | 0.239 | |
2.28 | 0.206 | 0.214 | 0.224 | 0.236 | 0.242 | |
3.15 | 0.208 | 0.215 | 0.225 | 0.236 | 0.241 | |
4.36 | 0.210 | 0.217 | 0.227 | 0.237 | 0.242 | |
4.71 | 0.211 | 0.217 | 0.228 | 0.238 | 0.244 | |
5.27 | 0.212 | 0.219 | 0.229 | 0.241 | 0.248 | |
5.74 | 0.213 | 0.221 | 0.231 | 0.243 | 0.249 | |
6.63 | 0.215 | 0.225 | 0.234 | 0.246 | 0.252 |
Type of Insulation System | Water Content of Paper WCP (%) | Temperature T (°C) | ||||
---|---|---|---|---|---|---|
25 | 40 | 60 | 80 | 100 | ||
Thermal Conductivity Coefficient λ (W·m−1∙K−1) | ||||||
Aramid paper impregnated by mineral oil | 0.07 | 0.128 | 0.140 | 0.149 | 0.164 | 0.178 |
1.59 | 0.131 | 0.142 | 0.153 | 0.168 | 0.181 | |
1.96 | 0.132 | 0.144 | 0.155 | 0.169 | 0.183 | |
3.84 | 0.135 | 0.146 | 0.157 | 0.171 | 0.184 | |
Aramid paper impregnated by synthetic ester | 0.50 | 0.144 | 0.155 | 0.168 | 0.181 | 0.192 |
2.12 | 0.148 | 0.160 | 0.171 | 0.184 | 0.196 | |
2.44 | 0.149 | 0.160 | 0.173 | 0.184 | 0.197 | |
3.94 | 0.151 | 0.161 | 0.173 | 0.185 | 0.197 | |
Aramid paper impregnated by natural ester | 0.43 | 0.157 | 0.169 | 0.179 | 0.190 | 0.200 |
1.82 | 0.161 | 0.172 | 0.181 | 0.193 | 0.205 | |
2.09 | 0.162 | 0.173 | 0.183 | 0.194 | 0.207 | |
3.52 | 0.164 | 0.174 | 0.183 | 0.193 | 0.208 |
Material | a | Δa | b | Δb |
---|---|---|---|---|
(W·m−1·K−1) | (W·m−1·K−1∙%−1) | |||
CP-MO | 0.189 | 0.002 | 0.0038 | 0.0009 |
CP-SE | 0.209 | 0.001 | 0.0019 | 0.0003 |
CP-NE | 0.229 | 0.001 | 0.0023 | 0.0002 |
AP-MO | 0.135 | 0.001 | 0.0018 | 0.0004 |
AP-SE | 0.181 | 0.001 | 0.0012 | 0.0003 |
AP-NE | 0.191 | 0.002 | 0.0010 | 0.0007 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dombek, G.; Nadolny, Z.; Przybylek, P.; Lopatkiewicz, R.; Marcinkowska, A.; Druzynski, L.; Boczar, T.; Tomczewski, A. Effect of Moisture on the Thermal Conductivity of Cellulose and Aramid Paper Impregnated with Various Dielectric Liquids. Energies 2020, 13, 4433. https://doi.org/10.3390/en13174433
Dombek G, Nadolny Z, Przybylek P, Lopatkiewicz R, Marcinkowska A, Druzynski L, Boczar T, Tomczewski A. Effect of Moisture on the Thermal Conductivity of Cellulose and Aramid Paper Impregnated with Various Dielectric Liquids. Energies. 2020; 13(17):4433. https://doi.org/10.3390/en13174433
Chicago/Turabian StyleDombek, Grzegorz, Zbigniew Nadolny, Piotr Przybylek, Radoslaw Lopatkiewicz, Agnieszka Marcinkowska, Lukasz Druzynski, Tomasz Boczar, and Andrzej Tomczewski. 2020. "Effect of Moisture on the Thermal Conductivity of Cellulose and Aramid Paper Impregnated with Various Dielectric Liquids" Energies 13, no. 17: 4433. https://doi.org/10.3390/en13174433
APA StyleDombek, G., Nadolny, Z., Przybylek, P., Lopatkiewicz, R., Marcinkowska, A., Druzynski, L., Boczar, T., & Tomczewski, A. (2020). Effect of Moisture on the Thermal Conductivity of Cellulose and Aramid Paper Impregnated with Various Dielectric Liquids. Energies, 13(17), 4433. https://doi.org/10.3390/en13174433