The Influence of Weather Conditions on the Optimal Setting of Photovoltaic Thermal Hybrid Solar Collectors—A Case Study
Abstract
:1. Introduction
2. Materials and Methods
- Long-term meteorological data for the analyzed location;
- Operating parameters of a photovoltaic thermal (PVT) hybrid solar collector; and
- A mathematical model developed for data simulation.
2.1. Location and Meteorological Data
2.2. Photovoltaic Thermal Hybrid Solar Collectors
2.3. Mathematical Model
2.3.1. Apparent Movement of the Sun across the Sky
2.3.2. Solar Radiation Properties
2.3.3. Performance Parameters of PVT Collectors
2.4. Simulations
- One day
- One year
- The analyzed period of 30 years
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Absorber surface area (m2) | |
Linear heat loss coefficient (W (m2 °C)−1) | |
Quadratic heat loss coefficient (W (m °C)−2) | |
Unit vector perpendicular to the absorber surface | |
Unit vector in the direction of the Sun | |
Solar energy converted into electrical energy (Jm−2) | |
Solar energy converted into thermal energy (Jm−2) | |
Solar energy converted into electrical and thermal energy (Jm−2) | |
Solar irradiance received by the absorber (Wm−2) | |
Diffuse solar irradiance (Wm−2) | |
Solar flux density (Wm−2) | |
Insolation (h−1) | |
Power output of the PV module (W) | |
Power output of the thermal module (W) | |
Power output of a PVT hybrid solar collector (W) | |
Time (s) | |
Azimuth and elevation angles of a PVT collector (°) | |
Solar azimuth and elevation angles (°) | |
Temperature coefficient of a PV module based on STC standard (°C−1) | |
Solar incidence angle (°) | |
Maximum thermal efficiency (-) | |
PV module efficiency (-) | |
PV module efficiency based on STC standard (-) | |
Thermal module efficiency (-) | |
Ambient temperature (°C) | |
Operating temperature of a PVT collector (°C) | |
NOCT | Nominal Operating Cell Temperature |
STC | Standard Test Conditions |
PVT | Photovoltaic thermal hybrid solar collectors |
References
- Eurostat. Available online: https://ec.europa.eu/eurostat/web/sdi/affordable-and-clean-energy (accessed on 2 February 2019).
- Ruszel, M. The role of energy resources in electricity production in the EU up to 2050. Polityka Energetyczna Energy Policy J. 2017, 20, 5–15. [Google Scholar]
- Paska, J.; Sałek, M.; Surma, T. Current status and perspectives of renewable energy sources in Poland. Renew. Sustain. Energy Rev. 2009, 13, 142–154. [Google Scholar] [CrossRef]
- Global Climate and Energy Project. An Assessment of Solar Energy Conversion Technologies and Research Opportunities. Global Climate and Energy Project; Stanford University: Stanford, CA, USA, 2006; Available online: http://gcep.stanford.edu (accessed on 2 February 2019).
- Central Statistical Office. Energy from Renewable Sources in 2016; Central Statistical Office: Warsaw, Poland, 2017; ISSN 1898–4347.
- Huang, B.J.; Lin, T.H.; Hung, W.C.; Sun, F.S. Performance evaluation of solar photovoltaic/thermal systems. Sol. Energy 2001, 70, 443–448. [Google Scholar] [CrossRef]
- Zondag, H.A. Flat-plate PV-Thermal collectors and systems: A review. Renew. Sustain. Energy Rev. 2008, 12, 891–959. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, A.; Othman, M.Y.; Ruslan, M.H.; Mat, S.; Sopian, K. Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors. Renew. Sustain. Energy Rev. 2011, 15, 352–365. [Google Scholar] [CrossRef]
- AL-Khaffajy, M.; Mossad, R. Optimization of the heat exchanger in a flat plate indirect heating integrated collector storage solar water heating system. Renew. Energy 2013, 57, 413–421. [Google Scholar] [CrossRef] [Green Version]
- Facci, A.L.; Krastev, V.K.; Falcucci, G.; Ubertini, S. Smart integration of photovoltaic production, heat pump and thermal energy storage in residential applications. Sol. Energy 2019, 192, 133–143. [Google Scholar] [CrossRef]
- Teo, H.G.; Lee, P.S.; Hawlader, M.N.A. An active cooling system for photovoltaic modules. Appl. Energy 2012, 90, 309–315. [Google Scholar] [CrossRef]
- Nahar, A.; Hasanuzzaman, M.; Rahim, N.A.; Parvin, S. Numerical investigation on the effect of different parameters in enhancing heat transfer performance of photovoltaic thermal systems. Renew. Energy 2019, 132, 284–295. [Google Scholar] [CrossRef]
- Bigaila, E.; Rounisa, E.; Luka, P.; Athienitisa, A. A study of a BIPV/T Collector prototype for Building Façade Applications. Energy Procedia 2015, 78, 1931–1936. [Google Scholar] [CrossRef] [Green Version]
- Bake, M.; Shukla, A.; Liu, S.; Agrawal, A. A systematic review on parametric dependencies of transpired solar collector performance. Int. J. Energy Res. 2019, 43, 86–112. [Google Scholar] [CrossRef] [Green Version]
- Croitoru, A.M. Photovoltaic/thermal combi-panels: A review. In Proceedings of the 8th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 23–25 May 2013; pp. 1–8. [Google Scholar] [CrossRef]
- Fouad, M.M.; Shihata, L.A.; Morgan, E.I. An integrated review of factors influencing the performance of photovoltaic panels. Renew. Sustain. Energy Rev. 2017, 80, 1499–1511. [Google Scholar] [CrossRef]
- Shafieian, A.; Khiadani, M.; Nosrati, A. A review of latest developments, progress, and applications of heat pipe solar collectors. Renew. Sustain. Energy Rev. 2018, 95, 273–304. [Google Scholar] [CrossRef]
- Mozumder, M.S.; Mourad, A.H.I.; Pervez, H.; Surkatti, R. Recent developments in multifunctional coatings for solar panel applications: A review. Sol. Energy Mater. Sol. Cells 2019, 189, 75–102. [Google Scholar] [CrossRef]
- Evdokimov, V.M. Optical characteristics and thermodynamics of solar thermophotoconverters with selective radiation collectors and converters. Appl. Sol. Energy (Engl. Transl.) 2006, 42, 1–10. [Google Scholar]
- Shuai, Y.; Xia, X.L.; Tan, H.P. Numerical study of radiation characteristics in a dish solar collector system. J. Sol. Energy Eng. 2008, 130, 0210011–0210018. [Google Scholar] [CrossRef]
- He, Q.B. Experimental Investigation on Radiation Characteristic of Nanofluids for Direct Absorption Solar Collectors. Adv. Mater. Res. 2014, 881–883, 1095–1100. [Google Scholar] [CrossRef]
- Leśny, J.; Panfil, M.; Urbaniak, M. Influence of irradiance and irradiation on characteristic parameters for a solar air collector prototype. Sol. Energy 2018, 164, 224–230. [Google Scholar] [CrossRef]
- Skoplaki, E.; Palyvos, J.A. On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Sol. Energy 2009, 83, 614–624. [Google Scholar] [CrossRef]
- Mani, M.; Pillai, R. Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations. Renew. Sustain. Energy Rev. 2010, 14, 3124–3131. [Google Scholar] [CrossRef]
- Mekhilef, S.; Saidur, R.; Kamalisarvestani, M. Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renew. Sustain. Energy Rev. 2012, 16, 2920–2925. [Google Scholar] [CrossRef]
- Kasu, M.; Abdu, J.; Hara, S.; Choi, S.; Chiba, Y.; Masuda, A. Temperature dependence measurements and performance analyses of high-efficiency interdigitated back-contact, passivated emitter and rear cell, and silicon heterojunction photovoltaic modules. Jpn. J. Appl. Phys. 2018, 57, 08RG18. [Google Scholar] [CrossRef]
- Kurpaska, S.; Knaga, J.; Latała, H.; Sikora, J.; Tomczyk, W. Efficiency of solar radiation conversion in photovoltaic panels. BIO Web Conf. 2018, 10, 02014. [Google Scholar] [CrossRef]
- Hosseini, S.A.; Kermani, A.M.; Arabhosseini, A. Experimental study of the dew formation effect on the performance of photovoltaic modules. Renew. Energy 2019, 130, 352–359. [Google Scholar] [CrossRef]
- Bari, S. Optimum slope angle and orientation of solar collectors for different periods of possible utilization. Energy Convers. Manag. 2000, 41, 855–860. [Google Scholar] [CrossRef]
- Ghosh, H.R.; Bhowmik, N.C.; Hussain, M. Determining seasonal optimum tilt angles, solar radiations on variously oriented, single and double axis tracking surfaces at Dhaka. Renew. Energy 2010, 35, 292–1297. [Google Scholar] [CrossRef]
- Bakirci, K. Correlations for Optimum Tilt Angles of Solar Collectors: A Case Study in Erzurum, Turkey. Energy Sources Part A 2012, 34, 983–993. [Google Scholar] [CrossRef]
- Calabrò, E. The Disagreement between Anisotropic-Isotropic Diffuse Solar Radiation Models as a Function of Solar Declination: Computing the Optimum Tilt Angle of Solar Panels in the Area of Southern-Italy. Smart Grid Renew. Energy 2012, 3, 253–259. [Google Scholar] [CrossRef]
- Chen, X.M.; Li, Y.; Zhao, Z.G.; Ma, T.; Wang, R.Z. General method to obtain recommended tilt and azimuth angles for photovoltaic systems worldwide. Sol. Energy 2018, 172, 46–57. [Google Scholar] [CrossRef]
- Danandeh, M.A.; Mousavi, S.M. Solar irradiance estimation models and optimum tilt angle approaches: A comparative study. Renew. Sustain. Energy Rev. 2018, 92, 319–330. [Google Scholar] [CrossRef]
- Yakup, M.A.M.; Malik, A.Q. Optimum tilt angle and orientation for solar collector in Brunei Darussalam. Renew. Energy 2001, 24, 223–234. [Google Scholar] [CrossRef]
- Shariah, A.; Al-Akhras, M.A.; Al-Omari, I.A. Optimizing the tilt angle of solar collectors. Renew. Energy 2002, 26, 587–598. [Google Scholar] [CrossRef]
- Gunerhan, H.; Hepbasli, A. Determination of the optimum tilt angle of solar collectors for building applications. Build. Environ. 2007, 42, 779–783. [Google Scholar] [CrossRef]
- Ferdaus, R.A.; Mohammed, M.A.; Rahman, S.; Salehin, S.; Mannan, M.A. Energy Efficient Hybrid Dual Axis Solar Tracking System. J. Renew. Energy 2014. [Google Scholar] [CrossRef]
- Hafez, A.Z.; Yousef, A.M.; Soliman, A.; Ismail, I.M. A comprehensive review for solar tracking systems design in Photovoltaic cell, module, panel, array, and systems applications. In Proceedings of the IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), Waikoloa Village, HI, USA, 10–15 June 2018; pp. 1188–1193. [Google Scholar] [CrossRef]
- Tang, R.; Wu, T. Optimal tilt-angles for solar collectors used in China. Appl. Energy 2004, 79, 239–248. [Google Scholar] [CrossRef]
- Moghadam, H.; Tabrizi, F.F.; Sharak, A.Z. Optimization of solar flat collector inclination. Desalination 2014, 265, 107–111. [Google Scholar] [CrossRef]
- Stanciu, C.; Stanciu, D. Optimum tilt angle for flat plate collectors all over the World—A declination dependence formula and comparisons of three solar radiation models. Energy Convers. Manag. 2014, 8, 133–143. [Google Scholar] [CrossRef]
- Ayodele, T.R.; Ogunjuyigbe, A.S.O. Prediction of monthly average global solar radiation based on statistical distribution of clearness index. Energy 2015, 90, 1733–1742. [Google Scholar] [CrossRef]
- De Souza, K. Decomposition and transposition model-matching technique in the absence of plane-of-array measurements and the evaluation of tilted solar collectors and their harvested solar resource. J. Renew. Sustain. Energy 2019, 11, 013701. [Google Scholar] [CrossRef]
- Hartner, M.; Ortner, A.; Hiesl, A.; Haas, R. East to west—The optimal tilt angle and orientation of photovoltaic panels from an electricity system perspective. Appl. Energy 2015, 160, 94–107. [Google Scholar] [CrossRef]
- Myhan, R.; Bieranowski, J.; Szwejkowski, Z.; Sitnik, E. The effect of local meteorological conditions on the optimal tilt angle of a solar energy collector—A case study in Poland. J. Sol. Energy Eng. 2017, 139, 1469–1473. [Google Scholar] [CrossRef]
- Norris, J.R.; Wild, M. Trends in aerosol radiative effects over Europe inferred from observed cloud cover, solar “dimming” and solar “brightening”. J. Geophys Res. Atmos. 2007, 112, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Wild, M.; Trüssel, B.; Ohmura, A.; Long, C.N.; König-Langlo, G.; Dutton, E.G.; Tsvetkov, A. Global dimming and brightening: An update beyond 2000. J. Geophys Res. Atmos. 2009, 114, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Kleniewska, M.; Chojnicki, B. Long-term total solar radiation variability in Warsaw within the period 1964-2013. Acta Geogr. Lodz. 2016, 104, 67–74. [Google Scholar]
- Blazejczyk, K. Climate and bioclimate of Poland. In Natural and Human Environment of Poland. A Geographical Overview; Degórski, M., Ed.; Inst. of Geography and Spatial Organization of Polish Academy of Sciences, Polish Geographical Society: Warsaw, Poland, 2006; pp. 31–48. ISBN 83-87954-68-3. [Google Scholar]
- Niedźwiedź, T. Meteorological Dictionary; Polish Institute of Meteorology and Water Management of Polish Geophysical Society: Warsaw, Poland, 2003; p. 347. (In Polish) [Google Scholar]
- Świątek, M. Charakterystyka wiatru przypowierzchniowego sprzyjającego najwyższym sumom opadów atmosferycznych na polskim wybrzeżu Bałtyku. Bad. Fizjogr. Pol. Zach. Ser. 2014, 65, 245–259. (In Polish) [Google Scholar]
- Strzyżewski, T.; Uscka-Kowalkowska, J.; Przybylak, R.; Kejna, M.; Araźny, A.; Maszewski, R. The diversity of wind speed and directions in Toruń (central Poland) in 2012. Sci. Rev. Eng. Environ. Sci. 2015, 67, 79–89. [Google Scholar]
- Chow, T.T. A review on photovoltaic/thermal hybrid solar technology. Appl. Energy 2010, 87, 365–379. [Google Scholar] [CrossRef]
- Chow, T.T.; Tiwari, G.N.; Menezo, C. Hybrid Solar: A Review on Photovoltaic and Thermal Power Integration. Int. J. Photoenergy 2012. [Google Scholar] [CrossRef] [Green Version]
- Noro, M.; Lazzarin, R.; Bagarella, G. Advancements in hybrid photovoltaic-thermal systems: Performance evaluations and applications. Energy Procedia 2016, 101, 496–503. [Google Scholar] [CrossRef]
- Diwania, S.; Agrawal, S.; Siddiqui, A.S.; Singh, S. Photovoltaic–thermal (PV/T) technology: A comprehensive review on applications and its advancement. Int. J. Energy Environ. Eng. 2020, 11, 33–54. [Google Scholar] [CrossRef] [Green Version]
- Matuska, T. Performance and economic analysis of hybrid PVT collectors in solar DHW system. Energy Procedia 2014, 48, 150–156. [Google Scholar] [CrossRef] [Green Version]
- Zenhäusern, D.; Bamberger, E.; Baggenstos, A. PVT Wrap-Up Energy Systems with Photovoltaic-Thermal Solar Collectors. Final Report, 31 March 2017; Swiss Federal Office of Energy: Bern, Switzerland, 2017. [Google Scholar]
- Abdullah, A.L.; Misha, S.; Tamaldin, N.; Rosli, M.A.M.; Sachit, F.A. Photovoltaic Thermal /Solar (PVT) Collector (PVT) System Based on Fluid Absorber Design: A Review. J. Adv. Res. Fluid Mech. Therm. Sci. 2018, 48, 196–208. [Google Scholar]
- The Solar Keymark Database. Available online: http://www.solarkeymark.dk/CollectorCertificates (accessed on 2 February 2019).
- Hofmann, P.; Dupeyrat, P.; Kramer, K.S.; Hermann, M.; Stryi-Hipp, G. Measurements and Benchmark of PVT—Collectors According to EN 12975 and Development of a Standardized Measurement Procedure. In Proceedings of the EuroSun 2010 Conference, Graz, Austria, 28 September–1 October 2010. [Google Scholar] [CrossRef]
- Cooper, P.I. The absorption of radiation in solar stills. Sol. Energy 1969, 12, 333–346. [Google Scholar] [CrossRef]
- Lamm, L.O. A new analytic expression for the equation of time. Sol. Energy 1981, 26, 465. [Google Scholar] [CrossRef]
- Pascoe, D.J.B. Comments on Solar position programs: Refraction, sidereal time and Sunset/Sunrise. Sol. Energy 1985, 34, 205–206. [Google Scholar] [CrossRef]
- Blanco-Muriel, M.; Alarcón-Padilla, D.C.; López-Moratalla, T.; Lara-Coira, M. Computing the solar vector. Sol. Energy 2001, 70, 431–441. [Google Scholar] [CrossRef]
- Grena, R. An algorithm for the computation of the solar position. Sol. Energy 2008, 82, 462–470. [Google Scholar] [CrossRef]
- Blanc, P.; Wald, L. The SG2 algorithm for a fast and accurate computation of the position of the Sun for multi-decadal time period. Sol. Energy 2012, 86, 3072–3083. [Google Scholar] [CrossRef] [Green Version]
- Keller, C.; Hall, J.K. Using a digital terrain model to calculate visual sunrise and sunset times. Comput. Geosci. 2000, 26, 991–1000. [Google Scholar] [CrossRef]
- Grena, R. Five new algorithms for the computation of sun position from 2010 to 2110. Sol. Energy 2012, 86, 1323–1337. [Google Scholar] [CrossRef]
- Demain, C.; Journée, M.; Bertrand, C. Evaluation of different models to estimate the global solar radiation on inclined surfaces. Renew. Energy 2013, 50, 710–721. [Google Scholar] [CrossRef]
- Bakirci, K. Models for the estimation of diffuse solar radiation for typical cities in Turkey. Energy 2015, 82, 827–838. [Google Scholar] [CrossRef]
- Frydrychowicz-Jastrzębska, G.; Bugała, A. Modeling the Distribution of Solar Radiation on a Two-Axis Tracking Plane for Photovoltaic Conversion. Energies 2015, 8, 1025–1041. [Google Scholar] [CrossRef]
- Bayrakçı, H.C.; Demircan, C.; Keçebaş, A. The development of empirical models for estimating global solar radiation on horizontal surface: A case study. Renew. Sustain. Energy Rev. 2018, 81, 2771–2782. [Google Scholar] [CrossRef]
- Liu, X.; Mei, X.; Li, Y.; Wang, Q.; Jensen, J.R.; Zhang, Y.; Porter, J.P. Evaluation of temperature-based global solar radiation models in China. Agric. For. Meteorol. 2009, 149, 1433–1446. [Google Scholar] [CrossRef]
- Liu, B.Y.H.; Jordan, R.C. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Sol. Energy 1960, 4, 1–19. [Google Scholar] [CrossRef]
- Pluta, Z. Podstawy Teoretyczne Fototermicznej Konwersji Energii Słonecznej; Warsaw University of Technology Publishing House: Warsaw, Poland, 2013; ISBN 978-83-7814-177-8. (In Polish) [Google Scholar]
- Matuszko, D. Wpływ Zachmurzenia Na Usłonecznienie I Całkowite Promieniowanie Słoneczne; Jagiellonian University Press: Cracow, Poland, 2009; ISBN 978-83-233-2762-2. (In Polish) [Google Scholar]
- Żmudzka, E. The cloudiness in Poland and circulation epochs. Przegl. Geofiz. 2004, 49, 25–42. [Google Scholar]
- Yandri, E. The effect of Joule heating to thermal performance of hybrid PVT collector during electricity generation. Renew. Energy 2017, 111, 344–352. [Google Scholar] [CrossRef]
- Akhsassi, M.; El Fathi, A.; Erraissi, N.; Aarich, N.; Bennouna, A.; Raoufi, M.; Outzourhit, A. Experimental investigation and modeling of the thermal behavior of a solar PV module. Sol. Energy Mater. Sol. Cells 2018, 180, 271–279. [Google Scholar] [CrossRef]
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes, 4th ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Sawicka-Chudy, P.; Sibiński, M.; Cholewa, M.; Klein, M.; Znajdek, K.; Cenian, A. Tests and theoretical analysis of a PVT hybrid collector operating under various insolation conditions. Acta Innov. 2018, 26, 62–74. [Google Scholar] [CrossRef]
- Matuszczyk, P.; Popławski, T.; Flasza, J. Wpływ natężenia promieniowania słonecznego i temperatury modułu na wybrane parametry i moc znamionową paneli fotowoltaicznych. Przegl. Elektrotech. 2015, 91, 159–162. (In Polish) [Google Scholar] [CrossRef]
- Photovoltaic Geographical Information System (PVGIS). Available online: http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php (accessed on 2 February 2019).
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myhan, R.; Szturo, K.; Panfil, M.; Szwejkowski, Z. The Influence of Weather Conditions on the Optimal Setting of Photovoltaic Thermal Hybrid Solar Collectors—A Case Study. Energies 2020, 13, 4612. https://doi.org/10.3390/en13184612
Myhan R, Szturo K, Panfil M, Szwejkowski Z. The Influence of Weather Conditions on the Optimal Setting of Photovoltaic Thermal Hybrid Solar Collectors—A Case Study. Energies. 2020; 13(18):4612. https://doi.org/10.3390/en13184612
Chicago/Turabian StyleMyhan, Ryszard, Karolina Szturo, Monika Panfil, and Zbigniew Szwejkowski. 2020. "The Influence of Weather Conditions on the Optimal Setting of Photovoltaic Thermal Hybrid Solar Collectors—A Case Study" Energies 13, no. 18: 4612. https://doi.org/10.3390/en13184612
APA StyleMyhan, R., Szturo, K., Panfil, M., & Szwejkowski, Z. (2020). The Influence of Weather Conditions on the Optimal Setting of Photovoltaic Thermal Hybrid Solar Collectors—A Case Study. Energies, 13(18), 4612. https://doi.org/10.3390/en13184612