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Abstract: Seismic source location specifies the spatial and temporal coordinates of seismic sources and
lays the foundation for advanced seismic monitoring at all scales. In this work, we firstly introduce
the principles of diffraction stacking (DS) and cross-correlation stacking (CCS) for seismic location.
The DS method utilizes the travel time from the source to receivers, while the CCS method considers
the differential travel time from pairwise receivers to the source. Then, applications with three field
datasets ranging from small-scale microseismicity to regional-scale induced seismicity are presented
to investigate the feasibility, imaging resolution, and location reliability of the two stacking operators.
Both of the two methods can focus the source energy by stacking the waveforms of the selected
events. Multiscale examples demonstrate that the imaging resolution is not only determined by the
inherent property of the stacking operator but also highly dependent on the acquisition geometry.
By comparing to location results from other methods, we show that the location bias is consistent
with the scale size, as well as the frequency contents of the seismograms and grid spacing values.

Keywords: seismic location; microseismic events; waveform stacking; hydraulic fracturing;
induced seismicity

1. Introduction

Seismicity can occur naturally in seismogenic areas or be induced by industrial operations,
ranging from laboratory acoustic emission events to large-scale global earthquakes. Under controlled
conditions, laboratory and small-scale experiments can reveal the mechanism of fracture initiation
and propagation, quantify the changes of reservoir permeability, and evaluate the stiffness of natural
fractures or faults [1,2]. At the exploration scale, passive seismic monitoring has been used to delineate
fracture propagation, monitor reservoir deformation and fluid migration, and assess seismic risks
associated with many subsurface operations, such as underground coal mining, hydraulic stimulation
of unconventional oil and gas reservoirs, geothermal exploitation, and carbon dioxide injection and
geological storage [3–9]. A complete and accurate earthquake catalogue is an important basis for
subsequent data processing and even directly determines the reliability of seismic monitoring and
earthquake prediction at the regional or global scale [10]. Seismic source locations are key information
of earthquakes and play an important role in characterizing the geometries of multiscale fractures/faults,
evaluating seismic activities, and inverting the source mechanism and in situ stress state. For instance,
the spatial and temporal distribution of seismic events can help reveal the mechanism and propagation
of rock fractures at the laboratory/small scale, as well as provide important information for the
assessment of tectonic and volcanic seismicity at local and regional scales. Seismic location as a typical
inverse problem, covering geophysical, seismological, acoustic, and engineering applications at
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multiple scales, has experienced significant methodological and application progress during the past
century [11–15].

With the development of modern seismic instrumentation for dense acquisition and induced (micro)
seismicity monitoring technology, new challenges and opportunities have emerged for noise-resistant,
automatic, and real-time seismic location methods. Specifically, a new category of waveform-based
location methods (e.g., waveform stacking methods and time reverse imaging) has emerged as
a counterpart of conventional travel time-based inversion [13,16–18]. Waveform-based methods locate
the seismic source by combing the travel time, amplitude, and phase information of seismic waveforms
or wavefields to reconstruct and focus the source energy into an image profile [13]. There are three
important advantages for waveform-based seismic location methods. First, they are noise-resistant,
since multichannel waveforms are involved, and the coherence is enhanced to detect and locate more
events. Second, the methods are basically automatic and data-driven, which enables a more efficient
location process and avoids potential subjective interference, such as phase picking. Third, the source
locations are resolved as images instead of simple dots, offering more insights into source processes
and surrounding structures. Stacking-based methods are the most mature and successful methods
considering their wide applications across scales. The basic principle of stacking-based location
methods is reconstructing and focusing the radiated seismic energy from the source with a certain
stacking operator, for example, the diffraction stacking (DS) operator [19–21] or the cross-correlation
stacking (CCS) operator [22–24]. The origin of stacking-based seismic location methods can be traced
back to the 1990s. Kiselevitch et al. (1991) proposed to utilize the maxima of the semblance over
space, time, and channels to detect and locate microseismic events, and named the method “seismic
emission tomography” [25]. Later on, passive seismic emission tomography was developed to locate
microseismic events using recorded waveforms from surface arrays [26]. These methods share the
same principle with DS in reflection seismology, that is, stacking the waveforms of individual receivers
with the corresponding one-way travel time moveout to enhance the diffracted/scattered seismic energy.
CCS is another well-established stacking-based method for source location. CCS exploits correlation
waveforms corresponding to differential travel times at pairwise receivers from common events.

Stacking-based methods have been applied to field data at multiple scales, including experimental
microseismic/acoustic emission events, mining-induced seismicity, hydraulic-fracturing-induced
seismicity, volcanic–tectonic seismicity, and regular earthquakes [27–32]. However, more systematic
benchmarking studies of these approaches across scales are still needed. Specifically, the imaging
resolution characteristics and location reliability resulting from different frequency contents at
different scales need to be studied further. Different from the comprehensive literature review
of the methodological and application progress of waveform-based methods in Li et al. (2020) [13],
the presented work is a case study and is the first attempt at investigating the performance of two
specific stacking-based methods with common field datasets across scales. We aim to investigate the
feasibility and reliability of the methods through mutually comparing the imaging results and validating
the location results with reference locations, which can provide guidance for further evaluations and
improvements of the methods.

2. Methodology

Stacking-based methods have been widely used to detect and locate seismic events at different
scales. These methods usually consider primary phases only; thus, they can also be called partial
waveform stacking [33]. This category mainly includes the diffraction stacking (DS) and cross-correlation
stacking (CCS) methods. Figure 1 shows a sketch of the principles for the two methods. The generalized
equation of stacking-based seismic location methods is summarized in the following Equation (1) [13]:

S(x, t0) =
∑

N

CF(t)·M(t) (1)
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where S(x, t0) is the imaging value, x denotes the source coordinates, t0 denotes the origin time, and in
the waveform data, N is the total number of receivers, CF(t) is the characteristic function (CF), t denotes
the time sample, and M is the imaging or migration operators.
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Equations (2) and (3) are the formulae of the DS and CCS methods [30]:

SDS(x, t0) =
N∑

i=1

CFi(t)δ[t− (t0 + ti,x)] (2)

SCCS(x) =
N∑

i = 1;
j = i + 1

Ci j(t)δ
[
t−

(
ti,x − t j,x

)]
(3)

where SDS(x, t0) and SCCS(x) are the stacking values of the DS and CCS methods, CFi(t) is the CF of the
waveform from receiver i, Ci j(t) is the cross-correlation waveforms of the CFs from the pair of receivers
i and j, and δ[t− (t0 + ti,x)] and δ

[
t−

(
ti,x − t j,x

)]
are the imaging operators for the DS and CCS methods,

where δ is the Dirac delta function and ti,x is the theoretical travel time from receiver i to the source x.
As shown in the imaging operators, DS and CCS utilize different travel time information and involve
different imaging patterns, which resemble spherical surface intersection and hyperboloid intersection
in the 3D scenario, respectively [30]. Consequently, the DS method generally exhibits a higher vertical
imaging resolution than CCS for surface monitoring. The basic workflow of stacking-based methods
includes signal pre-processing (e.g., band-pass filtering and CF calculation), model discretization, travel
time table generation, waveform stacking, source location picking, and post-processing (e.g., enhancing
the imaging resolution using a probability density distribution or Gaussian filtering).

As indicated in the above equations, DS searches both the spatial location and the origin time,
while CCS decouples the origin time by making use of the cross-correlograms of the waveforms from
pairwise receivers. Elimination of the origin time makes the traditional 4D source imaging problem
a 3D problem for seismic location in a 3D scenario and alleviates the inherent origin time-depth
trade-off in seismic source location [27,34]. Generally, the origin time is a minor parameter and can be
calculated posteriorly by subtracting the theoretical travel time from the observed arrival time with
respect to the same event. In this application study, we estimate the performance of stacking-based
methods by only evaluating the reliability of spatial source parameters. There are numerous CFs being
studied and utilized, including waveform envelope, semblance, kurtosis, and short-term average to
long-term average ratio (STA/LTA) [28,32,34–38]. The STA/LTA is used in this study, and different
lengths of short- and long-term windows are adopted for waveforms recorded at different scales
(see Table 1 for more details). The above stacking-based location function can be naturally treated as
a global optimization problem, in which the spatial and temporal coordinates corresponding to the
maximum imaging value, max

{
SDS(x, t0)

}
or max

{
SCCS(x)

}
, are generally selected as the inverted source

location [39]. When multicomponent data are available, one can consider incorporating information
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of both compressional (P-) and shear (S-) waves to enhance the constraints. However, the complex
seismic phases (e.g., uneven distributions of S-wave energy due to complex source mechanisms and
the acquisition geometry) and unreliable multiple velocities can potentially deteriorate the location
results by introducing additional interference instead of constructive constraints [30]. Therefore, one
should be careful with multiple phases, and the waveform stacking of a single phase (i.e., P-wave) is
considered here.

Table 1. Basic parameters of the field datasets for stacking-based location.

Parameters Small Scale Exploration Scale Regional Scale

Receiver channel 32 × 3 15 × 3 approx. 1800 × 1

Number of events 186 200 2

Sampling rate 1 MHz 200 Hz 500 Hz

Target volume 30 m × 35 m× 20 m 5 km × 5 km× 5 km 35.2 km × 45.2 km × 8 km

Velocity model homogeneous isotropic homogeneous isotropic layered isotropic

Grid spacing 1 m 50 m 400 m

Band-pass filter 1–50 kHz 5–30 Hz /

Length of
short-/long-term window 80/160 25/50 25/50

3. Multiscale Field Data Examples

In this section, we investigate and compare the performance of the two stacking operators based
on three field datasets associated with induced seismicity at different scales. Table 1 lists the basic
parameters for the seismic source location of these examples. More detailed descriptions of the datasets
and the associated projects can be found in the following subsections and related references.

3.1. The Small-Scale Example

Small-scale hydraulic fracturing experiments can build a bridge between experimental study
and field operations, improve the understanding of the role of reservoir stimulation, and enhance the
applicability of results from laboratory experiments. An in situ stimulation and circulation experiment
at the Grimsel Test Site (GTS) was conducted in 2017 [40,41]. A series of small volumes of water (up to
1 m3) were injected into pre-existing faults to induce rock fracturing, which was accompanied by
abundant microseismic events. A 32-channel acquisition system was used to record microseismic
signals with a 1 MHz sampling rate. Here we tested the two stacking operators on field microseismic
events recorded during fracturing tests in SBH-3. The homogeneous model with a P-wave velocity of
5150 m/s and band-pass filtered (1–50 kHz) waveforms from vertical components were used to locate
these events. The raw waveforms of two sample events and the imaging results are shown in Figure 2.
The two-dimensional (2D) imaging results are three orthogonal slices intersecting at the location of the
maximum imaging value.
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Figure 2. Waveforms and imaging results of two sample events. (a,b) Raw waveforms of the vertical
components of two sample events; (c,d) 2D slices from the DS method for the events shown in (a,b);
(e,f) corresponding results from the CCS method. White reversed triangles denote sensors, and white
circles denote the reference locations.
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Although the source energy of most events is well focused, the imaging resolutions of the two
waveform stacking methods for many events are low and show obvious band-like artifacts in the east
direction due to the irregular and limited coverage of the sensors. The white reversed triangles in
Figures 2–4 denote the sensor locations, which mainly cover the north and depth directions and overlap
in the east direction. Resultantly, the source energy is focused well in the depth–north profile, but there
are strong artifacts along the east direction, indicating large uncertainty of the locations (Figure 2f) and
leading to large horizontal bias of the location results when compared with those by joint hypocenter
determination in a previous study [41] (Figure 3a,c and Figure 4a,c). Table 2 lists the detailed location
biases of these examples. The sensor network here resembles a joint surface and downhole monitoring
array, which provides good constraints for the depth and yields an average depth bias smaller than
2 m (see Figures 3b and 4b). Other factors contributing to the location uncertainty include the lack of
sensor calibration and the simplified homogeneous and isotropic velocity model, which involve arrival
time and travel time errors.
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Table 2. Average location biases of the two stacking-based methods at multiple scales.

Location Bias Small Scale Exploration Scale Regional Scale

DS

E-direction (m) 5.056 94.85 729.5
N-direction (m) 1.854 163.64 182.5
Z-direction (m) 1.689 172.68 1675.5

Overall (m) 6.156 281.59 1909.4

CCS

E-direction (m) 6.513 72.20 156.5
N-direction (m) 1.268 165.51 560.5
Z-direction (m) 1.799 122.11 1675.5

Overall (m) 7.154 236.10 1782.8

3.2. The Exploration-Scale Example

Seismicity related to underground mining has been observed since the beginning of the 20th
century [42]. Seismic activities are closely related to the safety of mining operations, and rock bursts
are often the main cause of mining accidents [43,44]. Passive seismic/microseismic monitoring can
effectively detect and evaluate the seismic activity surrounding underground mines and provide early
warning of potential geological risks [3]. From June 2006 to July 2007, a temporary network (HAMNET)
was set up to monitor mining-induced seismicity in the Ruhr area, Germany [45]. The network
consisted of 15 three-component surface stations, covering an area of about 3 km × 2 km. The depth of
the longwall was about 1 km. We selected 200 events from the dataset to test the two stacking operators,
and only P-waves in the vertical components were used in the location process [30]. The sampling
time was 5 ms and the raw waveforms were preprocessed by a band-pass filter (5–30 Hz). We set the
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target location volume as 5 km × 5 km× 5 km with grid spacing of 50 m. The imaging and location
results are shown in Figures 5 and 6.
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Figure 5. Imaging results of a sample event. (a) 2D slices from the DS method; (b) corresponding results
of the CCS method. White reversed triangles denote sensors, and white circles denote the reference
locations. The reference point (east, north) = (0, 0) corresponds to east = 411,117 and north = 5,721,611
in the Universal Transverse Mercator (UTM) coordinate system.
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Figure 6. Location results of selected events. (a) Comparison between reference locations and results of
the DS method; (b) comparison between reference locations and results of the CCS method. Red dots
are the reference locations, and blue circles are results from stacking-based methods.

As shown in Figure 5, the horizontal resolutions of the imaging results for both methods are
good due to the good horizontal coverage of the 15 surface stations. As mentioned before, the vertical
imaging resolution of DS is higher than that of CCS in the case of surface monitoring. Figure 6 shows
that the overall distributions of the selected microseismic events determined by the two methods are in
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good agreement with that of travel time inversion, and the CCS method has better event clustering
and smaller location bias (see Table 2) than the DS method. Please note that the imaging resolution
addresses the quality of the imaging profile and the location uncertainty describes the stability of the
location results. The two parameters are not necessarily consistent, though they are closely related to
each other. In this case, the CCS method produces more reliable and clustered location results, though
it has lower imaging resolution.

3.3. The Regional-Scale Example

Induced seismicity monitoring is of great significance to both industrial production and public
safety. During the past decade, several large-magnitude earthquakes related to hydraulic fracturing
in unconventional reservoirs have been reported in the United States, United Kingdom, Canada,
and China [7,9,46]. In particular, the number of seismic events observed in Oklahoma, the United
States has increased significantly since 2008. Besides this, seismic activity related to the development
of Mississippi limestone reservoirs in central and northern Oklahoma and southern Kansas has been
occurring. In 2016, more than 1800 vertical component nodal seismometers, named the LArge-n
Seismic Survey in Oklahoma (LASSO) array, were deployed in Grant County, Oklahoma, to study
induced seismicity associated with production of the Mississippi limestone play [47]. The LASSO
array covered an area of 25 km × 32 km. The sampling rate was 500 Hz and the grid spacing was set to
400 m (referring to the location error in the catalogue). We selected two events from the catalogue
(event no. 23196, local magnitude (ML) 3 and event no. 23897, ML 1.5) and used a layered isotropic
velocity model to image the sources [48]. The layout of the LASSO array and partial waveforms of the
two sample events are shown in Figure 7. There were 1825 and 445 effective traces for event 23,196 (ML
= 3) and event 23,897 (ML = 1.5), respectively. Our tests showed that waveforms from much fewer
traces can focus the source energy. Figure 8 shows the imaging results using 10-times fewer traces.Energies 2020, 13, x FOR PEER REVIEW 9 of 14 
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Figure 7. The LArge-n Seismic Survey in Oklahoma (LASSO) array (a) and raw waveforms of the two
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The horizontal imaging resolutions of the two methods are very high, while the vertical resolutions
are much lower. The inverted depths from the two methods are quite consistent. The location bias
between the stacking-based methods and the catalogue is within 2 km (see Table 2), most of which
comes from uncertainty of the depth, and is acceptable considering the large scale of the monitoring
array and the target volume. Although most seismic events were recorded by more than 100 or even
1000 seismometers in the LASSO array, the imaging results in Figure 8c,d indicate that several dozens
of traces are sufficient to focus the source energy of these induced earthquakes, as long as a good
spatial coverage of the selected traces can be ensured.

3.4. Comparison of the Results Across Scales

Compared with the DS method, the CCS method makes use of more waveform redundancy
and includes more constraints for the source imaging process, which is beneficial for enhancing the
signals and suppressing the artifacts. However, CCS also introduces more potential noise energy
and interference information, which naturally reduces the imaging resolution (see Figures 2, 5 and 8).
The results also demonstrate that the imaging resolution is highly dependent on the acquisition
geometry. For the small-scale example, the sensors surround the stimulation site and ensure a relatively
good imaging resolution for both the horizontal and depth directions (Figure 2c–e), though partial
events have a large horizontal bias due to the limited coverage of sensors in the east direction (Figure 2f).
For the exploration-scale example, the horizontal coverage of the network is two-times the target depth,
which can produce reliable depth locations (Figure 6) [49]. For the regional-scale example, the vertical
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imaging resolutions of the two sample events are poor, due to the events being located near the margin
of the array (Figures 7 and 8).

Table 2 shows the average location bias for the three examples, which was calculated by dividing
the total absolute bias between the location results of stacking-based methods and the reference
locations by the number of selected events. Figure 9 shows histograms of the overall location biases
for all selected events in the small-scale and exploration-scale examples. The comparison of the
results across the scales clearly shows that the location bias is consistent with the scale size, which
naturally results from the different frequency contents of the seismic waveforms and grid spacing
values (see Table 1) at different scales.Energies 2020, 13, x FOR PEER REVIEW 11 of 14 
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4. Discussion and Conclusions

In this work, we investigated the feasibility and potential of stacking-based methods using
production-induced seismicity at different scales. The examples revealed the characteristics of the
imaging resolution for the two stacking operators and demonstrated their feasibility in locating seismic
events at multiple scales. A comparison of the location results across the scales indicated that the
imaging resolution is highly dependent on the acquisition geometry, and the location bias is closely
related with the scale. Although the reference locations determined by other methods or from the
catalogue may not be reliable, the comparison can still indicate several potential factors that are
responsible for the accuracy and reliability of the methods—that is, the layout of the monitoring
network, the reliability of the velocity model, and the quality of the waveforms. The methods are
noise-resistant and automatic, which means that weak events with low signal-to-noise ratio can be
located and no phase picking procedure is needed.

So far, field applications of stacking-based methods have mainly focused on the exploration
scale—e.g., for hydraulic fracturing monitoring with large and dense arrays in unconventional oil
and gas reservoirs [27,34]. More recently, these methods have been naturally adapted to analyze
low-frequency seismic events at larger scales [28,50], where a large depth uncertainty exists. There
are also emerging applications for seismic events with comparably high-frequency content at smaller
scales—e.g., rock burst and acoustic emission, where the issues of location uncertainty and velocity
reliability are matters of considerable concern [32,51]. The events tested in this study have relatively
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high signal-to-noise ratio, and waveforms recorded with dozens of receivers can recover the source
energy quite well. Further work will consider weaker seismic events associated with hydraulic
fracturing in unconventional and geothermal reservoirs and foreshock/aftershock activity potentially
preceding/following tectonic earthquakes. It is worth noting that stacking-based methods are more
resistant to white noise, and one should use an advanced filtering technique to address the influence of
correlated noise from, for example, vicinity to hydraulic fracturing wells [51]. For events with small
magnitudes and/or low signal-to-noise ratios, wavefield reconstruction and enhancement may be
required to ensure a reliable source location when using waveform stacking techniques, especially
when partial traces are noisy or disabled. Another challenge for stacking-based location methods is the
relatively high computation cost due to waveform storage and transmission, especially for real-time
applications with large monitoring arrays. High-performance computing facilities [52,53] and advanced
inversion algorithms [35,39] are promising solutions for improving the computational efficiency.

The current study is intended to be a starter for more in-depth and comprehensive investigations
of stacking-based methods across scales, and the conclusions from this study still remain at a relatively
qualitative level. Specifically, the stacking operators should be studied in a more systematic manner
by adjusting the characteristic functions and pre-filtering techniques of the waveforms, acquisition
geometries/channels, and velocity models. Although there have been several attempts at comparing
the performance of different characteristic functions [17,18], field applications at multiple scales are
more data- and problem-dependent. Meanwhile, novel and potential stacking operators producing
better seismic energy focusing are also worth investigating. Further benchmarking studies are required
to improve the applicability of stacking-based methods and build a suitable workflow for seismic
location at multiple scales.
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13. Li, L.; Tan, J.; Schwarz, B.; Staněk, F.; Poiata, N.; Shi, P.; Diekmann, L.; Eisner, L.; Gajewski, D. Recent
advances and challenges of waveform-based seismic location methods at multiple scales. Rev. Geophys. 2020,
58, e2019RG000667. [CrossRef]

14. Dong, L.; Hu, Q.; Tong, X.; Liu, Y. Velocity-Free MS/AE Source Location Method for Three-Dimensional
Hole-Containing Structures. Engineering 2020, in press. [CrossRef]

15. Peng, P.; Jiang, Y.; Wang, L.; He, Z. Microseismic Event Location by Considering the Influence of the Empty
Area in an Excavated Tunnel. Sensors 2020, 20, 574. [CrossRef]

16. Cesca, S.; Grigoli, F. Chapter two-full waveform seismological advances for microseismic monitoring.
Adv. Geophys. 2015, 56, 169–228.

17. Trojanowski, J.; Eisner, L. Comparison of migration-based location and detection methods for microseismic
events. Geophys. Prospect. 2017, 65, 47–63. [CrossRef]

18. Beskardes, G.D.; Hole, J.A.; Wang, K.; Michaelides, M.; Wu, Q.; Chapman, M.C.; Davenport, K.K.;
Brown, L.D.; Quiros, D.A. A comparison of earthquake backprojection imaging methods for dense local
arrays. Geophys. J. Int. 2018, 212, 1986–2002. [CrossRef]

19. Kao, H.; Shan, S.J. The source-scanning algorithm: Mapping the distribution of seismic sources in time and
space. Geophys. J. Int. 2004, 157, 589–594. [CrossRef]

20. Baker, T.; Granat, R.; Clayton, R.W. Real-time earthquake location using Kirchhoff reconstruction. Bull. Seismol.
Soc. Am. 2005, 95, 699–707. [CrossRef]

21. Gajewski, D.; Anikiev, D.; Kashtan, B.; Tessmer, E. Localization of seismic events by diffraction stacking.
In Proceedings of the SEG Technical Program Expanded Abstracts, San Antonio, TX, USA, 23–28 September
2007; Society of Exploration Geophysicists: Tulsa, OK, USA, 2007; pp. 1287–1291.

22. Schuster, G.T.; Yu, J.; Sheng, J. Interferometric/daylight seismic imaging. Geophys. J. Int. 2004, 157, 838–852.
[CrossRef]

23. Xiao, X.; Luo, Y.; Fu, Q.; Jervis, M.; Dasgupta, S.; Kelamis, P. Locate microseismicity by seismic interferometry.
In Proceedings of the Second EAGE Passive Seismic Workshop-Exploration and Monitoring Applications,
Limassol, Cyprus, 22–25 March 2009; The European Association of Geoscientists and Engineers: Houten,
The Netherlands, 2009; p. A22.

24. Li, L.; Chen, H.; Wang, X.-M. Weighted-elastic-wave interferometric imaging of microseismic source location.
Appl. Geophy. 2015, 12, 221–234. [CrossRef]

25. Kiselevitch, V.L.; Nikolaev, A.V.; Troitskiy, P.A.; Shubik, B.M. Emission tomography: Main ideas, results,
and prospects. In Proceedings of the SEG Technical Program Expanded Abstracts, Houston, TX, USA,
10–14 September 1991; Society of Exploration Geophysicists: Tulsa, OK, USA, 1991; p. 1602.

26. Duncan, P.M. Is there a future for passive seismic? First Break 2005, 23, 111–115.
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