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Abstract: In this research article, the authors have discussed the simulation, analysis,
and characterization of calcium-doped zinc oxide (Ca-doped-ZnO) nanostructures for advanced
generation solar cells. A comparative study has been performed to envisage the effect of Ca-doped
ZnO nanoparticles (NP), seeded Ca-doped ZnO nanorods (NR), and unseeded Ca-doped ZnO NR
as photoanodes in dye-sensitized solar cells. Simulations were performed in MATLAB fuzzy logic
controller to study the effect of various structures on the overall solar cell efficiency. The simulation
results show an error of less than 1% in between the simulated and calculated values. This work shows
that the diameter of the seeded Ca-doped ZnO NR is greater than that of the unseeded Ca-doped ZnO
NR. The incorporation of Ca in the ZnO nanostructure is confirmed using XRD graphs and an EDX
spectrum. The optical band gap of the seeded substrate is 3.18 eV, which is higher compared to those
of unseeded Ca-doped ZnO NR and Ca-doped ZnO NP, which are 3.16 eV and 3.13 ev, respectively.
The increase in optical band gap results in the improvement of the overall solar cell efficiency of
the seeded Ca-doped ZnO NR to 1.55%. The incorporation of a seed layer with Ca-doped ZnO NR
increases the fill factor and the overall efficiency of dye-sensitized solar cells (DSSC).

Keywords: DSSC; chemical bath deposition; Ca-doped ZnO; nanorods

1. Introduction

Due to prevailing energy requirements, the necessity of a clean energy technology is substantial.
The use of photovoltaic (PV) solar cells is considered as one of the most suitable ways for the
generation of clean energy technology [1]. Mostly, PV solar cells are found in three major types
including high-efficiency silicon solar cell, thin film solar cell, and advanced generation solar cell.
Among advanced generation solar cells, dye-sensitized solar cells (DSSC) are an emerging type of
advanced generation solar cells. They are considered as an alternate to silicon solar cells due to
their easy and low-cost fabrication [2]. DSSC comprises of a mesoporous dye-loaded photoanode,
electrolyte, and a counter electrode. The photogeneration of an electron hole pair is carried out by the
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dye. The dye molecules attached to the mesoporous photoanode absorb the photon to create an excited
electronic state. Furthermore, the injection of the electrons takes place from the dye molecule to the
conduction band of the semi-conductor photoanode, keeping the dye in its oxidizing state, as shown in
Figure 1. At electrolyte, the redox reaction takes place that reduces the dye back to its neutral state [3].
The semi-conductor photoanode transfers the electron to the counter electrode or cathode via the
external circuit [4]. The cathode moves the electron to the electrolyte. At the electrode, the reduction
reaction takes place, and electrolyte restores to its neutral state by accepting electrons from the external
circuit [5].
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Figure 1. Working of a typical dye-sensitized solar cell.

Initially, bulk semi-conductor materials were used as photoanode. However, these materials show
photocorrosion when exposed to sunlight, which highly affects the stability of the cell. To diminish
these concerns, wide band-gap nanostructured semi-conductors/metal oxides are used. These newly
employed structures show resistance toward photocorrosion. Furthermore, these materials manifest
spectacular optical and electrical properties. Multiple metal oxide-based nanostructures including
nanoparticles, nanospheres, nanorods, and nanofibers are used for the semi-conductor anode in
DSSC. Metal oxides mainly comprise titanium dioxide (TiO2) [6–8], tin oxide (SnO2) [9], zinc oxide
(ZnO) [10,11], Niobium pentaoxide (Nb2O3) [12], and composite-based metal oxides. Among various
metal oxide nanostructures, nanoparticles provide a better surface area to volume ratio. However,
due to grain boundaries, the hindering of electron transfer happens in nanoparticles. In this
case, nanorods-based structures provide continuous charge transfer, which makes them suitable
for DSSC [13].

Among various metal oxide materials, ZnO is considered as an advanced and efficient material
due to its wider band gap, low cost, and easy fabrication. ZnO shows excellent piezo and pyro electric
properties. It has vast applications as an energy harvester, solar cell, in electronic devices, and in the
biomedical field [14–16]. ZnO is considered as an excellent material that can be converted into various
nanostructures including nanoparticles, nanorods, nanowires, nanotubes, and nanoflowers with a
large surface area to volume ratio [17,18]. Nanoparticles-based structures provide a large surface
area to volume ratio; however, due to grain defects, these types of nanostructures do not provide
efficient output. Among other nanostructures, ZnO nanorods-based structures are considered as an
efficient structure that can be deployed in advanced generation solar cells mainly due to continuous
charge transfer. These nanorods can be fabricated using various methods including hydrothermal
synthesis [19], electrochemical synthesis [20], chemical vapor deposition [21], pulsed laser ablation,
physical vapor deposition [22], and chemical bath deposition [23]. Among these methods, chemical
bath deposition is considered as an efficient and easy method for the smooth thin film fabrication
of nanorods. The process parameters can easily be controlled using the chemical bath deposition
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process, which make it an excellent method for the fabrication of nanorods. The doping of ZnO
with a second group including magnesium, calcium, beryllium, and strontium elements has been
considered as an effective technique to varying the structural, optical, and electrical properties of
ZnO [24–26]. Majeed Gul [27] et al. reported the band-gap tuning of ZnO nanorods by the addition of
Mg from 3.18 eV to 3.32 eV. Similarly, with strontium doping, the band gap can be reduced, and the
solar cell efficiency of the DSSC can be enhanced. Similarly, calcium and beryllium can be used to
enhance the particle size and optical properties of ZnO nanostructures. Various simulation tools
are used for the parametric estimation and power conversion efficiency comparison of the prepared
nanostructures including ANSYS, COMSOL, ABAQUS, and MATLAB fuzzy logic controller [28–30].
Among other methods, fuzzy logic controller is considered as an efficient and easy technique that is
close to human thinking. It is considered as an efficient method to interpret the output values based on
real-life conditions.

In this work, a comparative study has been performed to study the overall solar cell efficiency of
Ca-doped ZnO nanoparticles deposited using spin-coating and Ca-doped ZnO nanorods fabricated
using chemical bath deposition. The parametric estimation is conducted on the basis of the fuzzy
logic tool. The effect of the seed layer of ZnO has also been studied to see its effect on the total solar
cell efficiency.

2. Fuzzy Analysis

Fuzzy analysis of the Ca-doped ZnO nanoparticles (NP) and seeded and unseeded Ca-doped ZnO
nanorods (NR)-based photoanodes have been performed using the MAMDAMI model. The fuzzy
inference system (FIS) diagrams of the three samples are shown in Figure 2. Figure 2a shows the input
of the first fuzzy analysis. The Ca-doped ZnO NP size and annealing temperature are taken as input.
The effects of the two inputs are studied on the band gap and power conversion efficiency of the solar
cell. Similarly, the effect of the diameter of the Ca-doped ZnO NR and annealing temperature are
studied on the band gap and power conversion efficiency for seeded and unseeded substrates.Energies 2020, 13, x FOR PEER REVIEW 4 of 15 
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The ranges and membership functions are assigned to the respective inputs and outputs. The range
for the input annealing temperature in all the three models is 400–500 ◦C. For Ca-doped ZnO
nanoparticles, the range is 120–140 nm. For unseeded Ca-doped ZnO nanorods and seeded Ca-doped
ZnO nanorods, the range for the input is 100–200 nm. The range for band gap was 3.1 to 3.2 eV, and for
power conversion efficiency, the range is 1% to 2%. Then, rules for the memberships functions are
added to the fuzzy simulations. The numbers of rules is based on the number of input. Figure 3
shows the 3D graphs for the respective Ca-doped ZnO nanostructure-based photoanodes. Figure 3a,b
shows the effect of Ca-doped ZnO nanoparticles and annealing temperature on band gap and power
conversion efficiency. Figure 3c,d shows the effect of unseeded Ca-doped ZnO nanorods and annealing
temperature on band gap and power conversion efficiency. Figure 3e,f shows the effect of seeded
Ca-doped ZnO nanorods and annealing temperature on band gap and power conversion efficiency.
The increase in particle size and the nanorods diameter directly decreases the band gap. The effect
predominantly appears due to the quantum confinement effect.Energies 2020, 13, x FOR PEER REVIEW 5 of 15 
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Figure 3. 3D graphs of band gap and power conversion efficiency and its effect on (a,b) Annealing
temperature and Ca-doped ZnO NP; (c,d) Annealing temperature and unseeded Ca-doped ZnO NR;
(e,f) Annealing temperature and seeded Ca-doped ZnO NR.

The simulation results are shown using the rule viewer. The annealing temperature is set at 500 ◦C
as used in the experiment. Figure 4 shows the crisp input values and the corresponding output values
based on the rules.
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Figure 4. Rule Viewer: (a) Ca-doped ZnO NP; (b) Unseeded Ca-doped ZnO NR; (c) Seeded Ca-doped
ZnO NR.

The simulation results from the rule viewer are compared with the theoretical values using the
MAMDANI model formula,

MAMDANI Model = [ Σ (Mi × Si)/Mi] × 100

where Mi is the membership function value and Si is the singleton value. Table 1 shows the comparison
and error between the simulated and calculated theoretical value.



Energies 2020, 13, 4863 6 of 14

Table 1. Comparison between simulated and calculated values.

Simulated Value Calculated Value Error

Band Gap (eV) PCE (%) Band Gap (eV) PCE (%) Band Gap (eV) PCE (%)

Ca-doped ZnO NP 3.15 1.21 3.13 1.22 0.7 0.9

Unseeded Ca-doped ZnO NR 3.15 1.34 3.15 1.35 0 0.8

Seeded Ca-doped ZnO NR 3.19 1.5 3.2 1.51 0.4 0.7

The table shows the accuracy of the simulated and calculated value with an error less than 1%
between the values.

3. Materials and Methods

Zinc acetate di-hydrate, methoxyethanol, hexamethylenetetramine, and calcium acetate have been
used to carry out the experimental work. Indium tin oxide glass was used as a substrate. N3 Ruthenium
has been used as a dye for DSSC fabrication. 2-Propanol and deionized (DI) water were used as solvent
for the synthesis of photoanode. The spin-coating method was used to fabricate the ZnO nanoparticles
layer, while ZnO nanorods were fabricated using the chemical bath deposition method [31,32].

Photoanode Preparation

The 2 cm × 2 cm ITO glass was pre-cleaned using DI water, acetone, and ethanol. The glass was
initially cleaned with soap and furthermore sonicated in ethanol, DI water, and acetone for 20 min.
For ZnO nanoparticle-based photoanodes, 20 mM solution of zinc acetate dehydrate was prepared
in 2-propanol with 2% doping of Ca. The solution was stirred at 45 ◦C for 2 h. Then, 2–3 drops
of methoxyethanol were added to get a transparent solution. The prepared solution was aged for
24 h before being spin-coated on the ITO glass. The solution was added dropwise on the substrate,
which was furthermore spun at a rate of 2500 rpm for 20 s Then, the substrate was heated at 90 ◦C for
the complete evaporation of the solvent. The process was repeated 10 times to get a clear thin film of
ZnO nanoparticles. Then, the substrate was subjected to annealing at 500 ◦C for 2 h to get a thin film of
ZnO nanoparticles.

For the preparation of ZnO nanorods, 2 substrates were fabricated. One of the substrates is
directly subjected to the growth of ZnO nanorods, and the other substrate is first seeded. For seeding,
the substrate is subjected to the above stated spin-coating process without the addition of Ca doping.
For nanorods growth, 20 mM zinc acetate di-hydrate and hexamethylenetetramine solution was made
in DI water with 2% calcium doping. The solution was added to the double-wall beaker of the chemical
bath deposition (CBD) setup. The seeded and unseeded substrate was inserted in the beaker using
a Teflon holder. The CBD temperature was set at 90 ◦C with continuous stirring at 400 rpm for 4 h.
Then, the substrate was washed with DI water and annealed at 500 ◦C with a 5 ◦C rise per minute.
The Ca-doped ZnO nanoparticles and nanorods-based samples prepared are shown in Table 2.

Table 2. Samples prepared for Ca-doped ZnO NP and NR.

Sample Name ZnO Seeding Layer Ca-Doped ZnO NP Ca-Doped ZnO NR

Z1 X
√

X

Z2 X X
√

Z3
√

X
√

For device fabrication, the prepared photoanodes of Ca-doped ZnO NP, seeded NR, and unseeded
NR are dipped in dye solution. The anodes are dipped for 2 h in N3 ruthenium dye solution for
better absorption of dye molecules. Gold is used as a counter electrode, while the substrate was
ITO-coated. The anode and electrode are clipped together, and redox electrolyte is inserted. Three sets
of each samples are produced, and the results are calculated on the basis of the average of the results.
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The prepared photoanodes are characterized using scanning electron microscopy (SEM) and energy
dispersive X-ray spectroscopy (EDX) to study their morphology and chemical composition. Similarly,
UV-Vis spectrophotometry is used to analyze the optical properties of the prepared photoanode. For IV
measurements including open circuit voltage and short circuit current, a solar simulator is used with
light intensity similar to sunlight. The DSSCs photovoltaic parameters including open-circuit voltage
(Voc), the short-circuit current density (Jsc), the fill factor (FF), and the photoconversion efficiency
were studied through the I-V measurements. The I-V measurements were conducted using a source
measure unit (Keithley 2400) and a solar simulator (Keithlink) under a power intensity of 750 W/m2.

4. Results and Discussion

The scanning electron microscopy of the Ca-doped ZnO nanoparticles is shown in Figure 5.
The figure confirms the formation of nanoparticles, which are agglomerated together to form a large
cluster. The average nanoparticles size was estimated during SEM, which is in a range of 120–140 nm.
The particles are joined together to form a cluster. The particles have a hexagonal geometry.
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Figure 5. ZnO nanoparticles photoanode prepared using spin coating with magnification: (a) 5 µm
and (b) 2 µm.



Energies 2020, 13, 4863 8 of 14

Figure 6 shows the nanorods on seeded and unseeded substrates. The images show the formation
of nanorods on the ITO substrate. Figure 3a shows the unseeded nanorods-based photoanodes.
The rods are uneven with a variable diameter and length ranging from 100 to 200 nm. The nanorods are
not the same dimensions. The shape of the rods is similar to hexagonal geometry. However, the seeded
substrate with Ca-doped ZnO nanorods shows highly ordered, symmetric and hexagonal-shaped
vertical nanorods. The seed layer provides better nanorods sticking and growth, which results in a
highly smooth and ordered nanostructural growth. The diameter of the Ca-doped ZnO nanorods
deposited on the seeded substrate is in the range of 160–250 nm with a length of 0.5–1.5 µm. The rods
are highly dense and symmetric.

Energies 2020, 13, x FOR PEER REVIEW 9 of 15 

 

Figure 5. ZnO nanoparticles photoanode prepared using spin coating with magnification: (a) 5 µm 

and (b) 2 µm. 

Figure 6 shows the nanorods on seeded and unseeded substrates. The images show the 

formation of nanorods on the ITO substrate. Figure 3a shows the unseeded nanorods‐based 

photoanodes. The rods are uneven with a variable diameter and length ranging from 100 to 200 nm. 

The nanorods are not the same dimensions. The shape of the rods is similar to hexagonal geometry. 

However, the seeded substrate with Ca‐doped ZnO nanorods shows highly ordered, symmetric and 

hexagonal‐shaped vertical nanorods. The seed layer provides better nanorods sticking and growth, 

which results in a highly smooth and ordered nanostructural growth. The diameter of the Ca‐doped 

ZnO nanorods deposited on the seeded substrate is in the range of 160–250 nm with a length of 0.5–

1.5 µm. The rods are highly dense and symmetric. 

 

 

Figure 6. (a) Ca-doped ZnO nanorods on unseeded substrate; (b) Ca-doped ZnO nanorods on
seeded substrate.

EDX analysis was also performed to study the chemical composition of the prepared photoanodes.
Figure 7 shows the presence of calcium, zinc, and oxygen in the prepared seeded Ca-doped ZnO
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nanorods-based photoanodes. The presence of these three chemicals shows the purity of the prepared
photoanodes without the incorporation of any impurities. The EDX graphs show the proper doping of
calcium in the ZnO nanostructure.
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Table 3 shows the atomic percentage of the above stated elements. The table shows that the Ca
elements are completely incorporated in the ZnO nanostructure. The prepared anodes are pure and
contain no impurity.

Table 3. Atomic percentage of Zn, O, and Ca present in the prepared photoanodes.

Detail Atomic %

Elements Zinc Oxygen Calcium

Ca-doped ZnO nanoparticles 45.32 2.59 52.09

Unseeded Ca-doped ZnO nanorods 48.9 2.3 48.8

Seeded Ca-doped ZnO nanorods 46.55 1.99 51.46

The XRD graph for the Ca-doped ZnO nanoparticles photoanodes is shown in Figure 8. The graph
shows the presence of zinc oxide and calcium. The low-intensity peaks at 2θ = 29.51, 43.3, and 45.51
indicate the presence of calcium in the prepared Ca-doped ZnO nanoparticle photoanodes. The major
peaks at 2θ = 31.7, 34.5, 47.58, 54.59, and 69.88 show the peak of ZnO with a wurtizle hexagonal
structure of ZnO. The high-intensity peak of ZnO shows that the photoanode is commonly composed
of ZnO. However, the small intensity peaks of calcium confirm the incorporation of Ca in the ZnO
nanostructure and the formation of Ca-doped ZnO nanoparticles.

Figure 9 shows the XRD graph of unseeded and seeded Ca-doped ZnO nanorods using chemical
bath deposition. The peaks of ZnO and Ca are in accordance with the Ca-doped ZnO nanoparticles.
The intensity of the most dominant diffraction peaks of ZnO (002), (101), and (102) shows an increase
in seeded substrate. This effect is due to the formation of more aligned and symmetric nanorods.
The incorporation of Ca in the ZnO wurtizle hexagonal structure can also be confirmed using the
XRD graph.
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The UV-Vis spectroscopy results show the maximum absorbance based on the absorbance onset on
a specific wavelength. Using this absorbance onset value, the band gap of the sample can be calculated
using the Tauc plot. Figure 10 shows the UV-Vis spectroscopy results of the as-prepared Ca-doped
ZnO nanoparticles, as well as the seeded and unseeded Ca-doped ZnO nanorods. The spectra consist
of three portions. The first part is a slope indicating an absorption edge. The second part is a plateau
region where absorption seems constant or shows a gradual change with increasing wavelength.
The third part is the second absorption edge. The wavelengths of each sample are obtained by the
tangential fitting of the linear portion of the spectrum, which is called the cut-off wavelength, and this
gives the onset wavelength of light that is absorbed. The band gap of the prepared films are calculated
using the Tauc plot by using αhv = A(hv−Eg)n, where A is the absorption co-efficient. Using the Tauc
plot of the prepared Ca-doped ZnO NP, seeded Ca-doped ZnO NR, and unseeded Ca-doped ZnO
NR, the band gap of the Ca-doped ZnO NP is equal to 3.13 eV, the unseeded Ca-doped ZnO NR is
3.15 eV, and the seeded Ca-doped ZnO NR is 3.18 eV. The increase in band gap can be attributed to the
increase in the nanorods diameter. Furthermore, the increase in the band gap of the photoanode of
DSSC will increase the open circuit voltage, which will result in the enhancement of the overall solar
cell efficiency. Similarly, there is a decrease in the band gap of the prepared Ca-doped ZnO nanorods
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from the already reported band-gap value of ZnO nanorods. This effect is mainly due to the addition
of a highly conductive second group element—i.e., Ca in a ZnO lattice.
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The effect of using seeded and unseeded NR as a photoanode on the overall performance of
the DSSC is also studied. The open circuit voltage, short circuit current, and fill factor are estimated
using a solar simulator. The overall efficiency of the cell is calculated using the above quantities and
Equation (1),

ŋ =
Voc Isc FF

Pin
(1)

where Pin is the input power. Figure 11 shows the short circuit current density for the respective open
circuit voltage.
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Table 4 shows the open circuit voltage, short circuit current, fill factor, and efficiency of the
prepared Ca-doped ZnO NP and Ca-doped ZnO NR when used as a photoanode in DSSC.



Energies 2020, 13, 4863 12 of 14

Table 4. Comparison of photovoltaic parameters for the prepared photoanodes.

Sample Voc (V) Jsc (mAcm−2) Fill Factor Efficiency η (%)

Ca-doped ZnO NP 0.63 5.3 0.36 1.20

Unseeded Ca-doped ZnO NR 0.65 5.4 0.39 1.36

Seeded Ca-doped ZnO NR 0.67 5.5 0.42 1.55

The solar cell efficiency of the cell is the highest for seeded Ca-doped ZnO NR. The efficiency
of 1.55% of seeded Ca-doped ZnO NR is mainly due to less series resistance. A thin layer of ZnO
deposited before the Ca-doped ZnO NR provide enhanced charge transform due to the even growth of
nanorods. The small efficiency of Ca-doped ZnO NP is mainly due to the higher grain boundaries
effect in nanoparticles, which results in a small charge transfer. Small Voc can be attributed to large
amount of electron–hole pair recombination.

5. Conclusions

In this work, a comparative study has been performed to envisage the structural and optical
properties of Ca-doped ZnO NP with seeded and unseeded Ca-doped ZnO NR. Simulation has been
performed in fuzzy logic controller. The simulation depicts that based on the rules, the simulated
and calculated values show an error of less than 1%. The incorporation of Ca in ZnO nanocrystal
is confirmed using XRD and EDX spectrum. A SEM image shows the formation of nanoparticles
and nanorods in the prepared photoanodes. The band gap as well as the diameter of the seeded
Ca-doped ZnO NR is greater than that of unseeded Ca-doped ZnO NR. The photovoltaic parameters
of the prepared photoanodes were also studied for dye-sensitized solar cells. The results depict that
the seeded Ca-doped ZnO NR shows the highest solar cell power conversion efficiency of 1.55%.
The increase can be attributed to the decrease in series resistance due to the more aligned nanostructure.
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