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Abstract: Ultra-short-term load demand forecasting is significant to the rapid response and real-time
dispatching of the power demand side. Considering too many random factors that affect the load,
this paper combines convolution, long short-term memory (LSTM), and gated recurrent unit (GRU)
algorithms to propose an ultra-short-term load forecasting model based on deep learning. Firstly,
more than 100,000 pieces of historical load and meteorological data from Beijing in the three years
from 2016 to 2018 were collected, and the meteorological data were divided into 18 types considering
the actual meteorological characteristics of Beijing. Secondly, after the standardized processing of the
time-series samples, the convolution filter was used to extract the features of the high-order samples
to reduce the number of training parameters. On this basis, the LSTM layer and GRU layer were used
for modeling based on time series. A dropout layer was introduced after each layer to reduce the risk
of overfitting. Finally, load prediction results were output as a dense layer. In the model training
process, the mean square error (MSE) was used as the objective optimization function to train the
deep learning model and find the optimal super parameter. In addition, based on the average training
time, training error, and prediction error, this paper verifies the effectiveness and practicability of the
load prediction model proposed under the deep learning structure in this paper by comparing it with
four other models including GRU, LSTM, Conv-GRU, and Conv-LSTM.
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1. Introduction

At present, the power system reform in China is underway, and the spot market in pilot provinces
such as Guangdong and Zhejiang will be implemented [1]. Since the electricity spot market has the
characteristics of complex trading varieties, high trading frequency, and fluctuating price, the forecasting
level of ultra-short-term load is significant. It can help power market members make trading decisions
in the energy market, capacity market, auxiliary service market, and demand-side response market [2].
Additionally, ultra-short-term load forecasting is beneficial to arrange the operation mode of a power
network and the maintenance plan of a unit reasonably, and can improve the economic and social
benefits of a power system.

Load forecasting methods are divided into two categories: Classical statistical forecasting
technologies and intelligent forecasting technologies. Classical load forecasting methods mainly include
exponential sliding average [3], linear regression [4], auto-regressive integrated moving average [5,6],
the dynamic regression method [7], and generalized auto-regressive conditional heteroskedastic
approach [8]. The prediction model based on statistics has a relatively simple structure and a clear
prediction principle, but its prediction accuracy is low, and it is often only applicable to the case with a
small amount of data. Based on the machine learning theory, the intelligent forecasting model can fit
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the nonlinear relationship between complex variables, thus improving the prediction effect. Common
intelligent prediction methods include support vector machine technology [9], neural network [10,11],
random forest [12], etc. However, these methods have strict requirements on the selection of features,
requiring an experienced person to manually select the input features. In addition, these methods
require high stability of sample data and take a long time to preprocess. At the same time, the existing
shallow intelligent forecasting technologies mentioned above are not suitable for scenarios with a
large amount of data. As the data dimension and training depth increase, it is easy to fall into local
optimality and overfitting; thus, the stability of prediction cannot be guaranteed. In recent years, with
the development of artificial intelligence technology, a large amount of data has been accumulated in
the power system, making it possible and necessary to apply intelligent methods such as deep learning
for prediction [13] and continuous developing [14–16]. In order to improving the accuracy of deep
learning network models, some studies usually choose to increase the complexity of models. However,
as the number of training parameters increase, the model training time will also increase significantly.
As a result, how to build a high-quality deep learning network model has become a research focus.

The main contribution of this paper is to propose an ultra-short-term load forecasting model, in
which convolution, long short-term memory (LSTM), and gated recurrent unit (GRU) deep learning
algorithms are integrated to predict the next load every 15 min. The convolution layer is mainly used
to capture the characteristics of the data space. LSTM and GRU are used to mine the characteristics
of the time dimension of the data. The combination of them can improve the feature mining ability
of the model. By inputting the time point, temperature, weather condition, and historical 15-min
load, after processing by the deep learning network, finally there is the output of a 15-min load
curve for three consecutive days in the future. At the same time, this article has found the most
suitable hyperparameters for the proposed deep learning framework through repeated debugging
of the hyperparameters. The load forecasting model based on deep learning technology proposed
in this paper can better process a large amount of historical data and extract key information. In the
forecasting process, the nonlinear relationship between load and other data series can be well fitted.
At the same time, through comparison with other models, the results show that the model proposed in
this paper shows good overall performance in terms of accuracy and training time. As a consequence,
this model can reflect the fluctuations of ultra-short-term load in the future properly.

The rest of this paper is organized as follows: Review of applied research on deep learning
is shown in Section 2. Then Section 3 introduces the theory involved in the deep learning model.
Section 4 introduces the data samples, experimental environments, and the methods for preprocessing
the experimental data. Section 5 presents the structure of deep learning model, as well as model
super-parameter adjustment and evaluation indicators. Comparison results of different models are
demonstrated in Section 6. Finally, Section 7 provides a conclusion and brief discussion and summarizes
the whole paper.

2. Literature Review

According to the time scale of forecast, the time span of electric load forecasting can be divided
into medium- and long-term load forecasting, short-term load forecasting, and ultra-short-term load
forecasting. Among them, ultra-short-term load forecasting refers to load forecasting within one hour,
while short-term load forecasting refers to daily load forecasting and weekly load forecasting. The
main research content of this paper is based on the unit of 15 min in the future, so this paper is a
framework of ultra-short-term load demand forecasting based on deep learning.

With the development of computer science and technology, deep learning has gradually penetrated
into all fields, and the ability of a neural network to extract data features has been significantly improved.
The current ultra-short-term load method based on deep learning involves the LSTM [17,18], GRU [19],
recurrent neural network (RNN), and other methods.

However, most of the methods used in the literature are based on the traditional feedforward
neural network (FNN), which cannot completely solve the defects that the traditional neural network
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cannot process, i.e., the related information between sequences. Some studies combine unsupervised
training with supervised training for hierarchical feature learning [20]. Hierarchical self-coding is
used to learn layer by layer for the mining deep feature [21]. In addition, the convolutional neural
network (CNN) has achieved good results in image recognition [22], communication signals [23],
and natural language processing [24]. Transforming artificially set feature extraction into automatic
generation feature extraction is the biggest advantage of CNN, which also has great prospects for the
ultra-short-term load forecast. On the other hand, deep belief neural networks [25,26] and RNN [27,28]
have achieved good results in wind speed prediction, photovoltaic power prediction, short-term load,
and ultra-short-term load forecast. However, most of the current methods adopted in the literature
are based on the traditional feedforward neural network (FNN), which does not completely solve the
defect that traditional neural networks cannot process, i.e., the inter-sequence-related information.

In theory, RNN can capture long-distance dependence, but in practice, RNN face two challenges:
Gradient explosion and vanishing gradient; so it is difficult for traditional RNN to learn long-term
dependencies, while LSTM and GRU solve this problem perfectly. The LSTM network [29] is a type of
improved recurrent neural network with the hidden unit replaced by a gated memory cell. LSTM can
realize deep memory learning of important information in historical data through state cells and three
special gate structures, avoiding the gradient explosion or gradient disappearing that may be caused
by general RNNs in the back propagation. As a result, LSTM performs excellently when processing
and predicting time series-related data. At present, LSTM networks have been widely used in robot
control, text recognition [30], speech recognition [31], protein homology detection, and other fields. In
terms of forecast, LSTM has also gradually attracted the attention of scholars [32,33].

Although LSTM has a strong ability to solve long-term dependencies, the parameters of the
LSTM network are four times that of the traditional RNN [34], making the model too redundant. In
2014, another gating model, GRU, was proposed, which was applied to language translation for the
first time [35], and achieved long-term memory effects with fewer parameters. In recent years, GRU
has been gradually applied by scholars in the forecast of traffic flow [36] and energy consumption
forecasts [37]. The advantages of LSTM and GRU compared to other models in the direction of load
prediction have been fully verified in the literature [38,39].

Therefore, this paper takes the advantages of convolution, LSTM, and GRU in processing time
series data and introduces convolution to avoid overfitting. By experimenting with the load data
from the user side of a city in Northern China, the feasibility of the deep neural network framework
is verified.

3. Theoretical Description of the Proposed Model

The deep learning structure proposed in this paper mainly contains two parts: The functions
of convolution are feature extraction and training parameter reduction to overcome the overfitting
problem; LSTM and GRU are introduced to extract features across time steps. Convolution, LSTM, and
GRU are three kinds of neural networks with different architectures. This section will introduce more
details about these three neural networks.

3.1. Convolution

Convolution is an operation dedicated to processing data with a similar grid structure, working
with three important characteristics: Sparse interactions, parameter sharing, and equivariant
representations [40,41]. These three advantages make it possible to effectively reduce the complexity of
the network and the number of training parameters.

As shown in Figure 1, the neurons are connected to a local area in the input layer, and each neuron
calculates the inner product of its own area connected to the input layer and its own weight. Finally,
the convolutional layer calculates the output of all neurons. The pooled layer is usually placed behind
the convolutional layer and pools the output of the convolution layer.
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Figure 1. Schematic diagram of the convolution structure.

Different dimensions of convolution filters are used to process different types of data.
One-dimensional convolution is often used in sequence models, such as natural language processing;
two-dimensional convolution is applied in the field of computer vision and image processing; and
three-dimensional convolution is suitable for the medical and video-processing field. The deep learning
model framework constructed in this paper uses one-dimensional convolution to process time series
data related to electrical load.

3.2. Long Short-Term Memory

The LSTM neural network is a special recurrent neural network (RNN), which introduces a
weighted connection with memory and feedback functions. Compared with the feedforward neural
network, LSTM can avoid gradient explosion and gradient disappearance, so LSTM can achieve
continuous learning for longer time series [42]. The LSTM hidden layer structure is shown in Figure 2.
The core of the LSTM is to store the information of the cell state and three different functional gate
structures [43], input gate, forget gate, and output gate, and memory cells of the same shape as the
hidden state.
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The LSTM uses two gates to control the content of the unit state C; one is the forgetting gate,
which determines how much unit state is retained to the current moment Ct-1. The other is the input
gate, which determines how many inputs Xt of the network are saved to the unit state at the current
moment. LSTM uses the output gate to control Ht value the unit state has compared to the current
output value of Ct.

Input gate:
It = σ(XtWxi + Ht−1Whi + bi) (1)
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Forgotten door:
Ft = σ

(
XtWx f + Ht−1Wh f + b f

)
(2)

Output layer:
Ot = σ(XtWxo + Ht−1Who + bo) (3)

Calculation of candidate memory cells:

c̃t = tanh(XtWxc + Ht−1Whc + bc) (4)

Calculation of memory cells:
ct = Ft·ct−1 + it ·̃ct (5)

The calculation of the hidden state:

Ht = Ot·tanh(ct) (6)

where Wxi, Wxf, Wxo and Whi, Whf, Who are the weight parameters, bi, bf, bo are the deviation
parameters, Ht−1 is the output value of the network layer at the previous moment, Xt is the current
time input value, and It, Ft, Ot are the gate structures that control whether the memory unit needs to be
updated, whether it needs to be set to 0, and whether it needs to be reflected in the activation vector.

3.3. Gate Recurrent Unit

GRU is another kind of recurrent neural network (RNN). GRU and LSTM are similar in actual
performance in many cases. GRU is also proposed to solve problems such as gradients in long-term
memory and back propagation. Compared with LSTM, GRU can achieve considerable results, and it is
easier to train, which can greatly improve training efficiency [44]. Therefore, GRU tends to be used
more in many cases.

As shown in Figure 3, the structure of the GRU input and output is similar to that of a
traditional RNN.

Energies 2020, 11, x FOR PEER REVIEW  5 of 16 

 

𝐹𝑡 = 𝜎(𝑋𝑡𝑊𝑥𝑓 +  𝐻𝑡−1𝑊ℎ𝑓 + 𝑏𝑓) (2) 

Output layer: 

𝑂𝑡 = 𝜎(𝑋𝑡𝑊𝑥𝑜 + 𝐻𝑡−1𝑊ℎ𝑜 + 𝑏𝑜) (3) 

Calculation of candidate memory cells: 

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑋𝑡𝑊𝑥𝑐 +  𝐻𝑡−1𝑊ℎ𝑐 + 𝑏𝑐) (4) 

Calculation of memory cells: 

𝑐𝑡 = 𝐹𝑡 ∙ 𝑐𝑡−1 + 𝑖𝑡 ∙ �̃�𝑡 (5) 

The calculation of the hidden state: 

𝐻𝑡 = 𝑂𝑡 ∙ 𝑡𝑎𝑛ℎ(𝑐𝑡) (6) 

where Wxi, Wxf, Wxo and Whi, Whf, Who are the weight parameters, bi, bf, bo are the deviation parameters, 

Ht−1 is the output value of the network layer at the previous moment, Xt is the current time input 

value, and It，Ft，Ot  are the gate structures that control whether the memory unit needs to be 

updated, whether it needs to be set to 0, and whether it needs to be reflected in the activation vector. 

3.3. Gate Recurrent Unit 

GRU is another kind of recurrent neural network (RNN). GRU and LSTM are similar in actual 

performance in many cases. GRU is also proposed to solve problems such as gradients in long-term 

memory and back propagation. Compared with LSTM, GRU can achieve considerable results, and it 

is easier to train, which can greatly improve training efficiency [44]. Therefore, GRU tends to be used 

more in many cases. 

As shown in Figure 3, the structure of the GRU input and output is similar to that of a traditional 

RNN. 

GRU

Yt

Ht-1

Xt

Ht

 

Figure 3. Gate recurrent unit (GRU) input and output structure. 

The GRU uses the update gate and the reset gate to update and reset the information. As shown 

in Equations (1) and (2), the structure is similar to that of the LSTM gate. 

The input of the GRU hidden layer: 

aj
t = f (∑ wij

I

i=1

 𝐻𝑡−1 + ∑ wif

H

h=1

 bh
t−1) (7) 

The output of the GRU hidden layer: 

Figure 3. Gate recurrent unit (GRU) input and output structure.

The GRU uses the update gate and the reset gate to update and reset the information. As shown
in Equations (1) and (2), the structure is similar to that of the LSTM gate.

The input of the GRU hidden layer:

at
j = f

 I∑
i=1

wij Ht−1 +
H∑

h=1

wif bt−1
h

 (7)
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The output of the GRU hidden layer:

zt
j = f

 I∑
i=1

wiz at
j +

H∑
h=1

wio bt−1
f

 (8)

Calculation of memory cells:

c̃t = tanh(XtWxc + Ht−1Whc + bc) (9)

The calculation of the hidden state:

Ht = zt
j ·tanh(̃ct) (10)

where wij wif, wiz and wio, Wxc, Whc are the weight parameters, bt−1
h , bt−1

f , bc are the deviation
parameters, Ht−1 is the output value of the network layer at the previous moment, Xt is the current
time input value, and at

j , zt
j are the gate structures that control whether the memory unit needs to be

updated, whether it needs to be set to 0, and whether it needs to be reflected in the activation vector.
Compared with LSTM, the GRU has one less “gating” inside, and the parameters are less than

LSTM, but it can also achieve the same function as LSTM. As a result, GRU is more practical sometimes.
Therefore, the ability to learn the time series of GRU is greatly superior [45].

4. Data Description

This paper collected three-year load data from Beijing from 2016 to 2018 (sampling interval is
15 min with a total of 105,163 points of data) and meteorological data (including temperature and
weather condition descriptions) as experimental samples. Among them, the temperature data in
every 15 min is generated from the highest and lowest temperature data in the day according to the
arithmetic relationship. The network training was carried out under the TensorFlow deep learning
framework [46], and the Adam optimization algorithm [47] was used to solve the problem. The
computer used in the experiment was configured with a 2.2 GHz Intel Core i7 processor and 16 GB
1600 MHz DDR3 memory.

4.1. Feature Engineering

Traditional machine learning methods such as SVM, shallow neural networks, etc., rely on the
experience of the relevant staff to manually construct features when building models, while deep
neural networks are an end-to-end training that automatically extracts sample data features and can
greatly improve work efficiency. This paper combines deep convolution, LSTM, and GRU to simplify
the construction of sample features. Because the deep neural network can capture general periodicity
of features, this paper therefore no longer selects forecast day types (workdays or weekends) as input
features. The high precision of the experimental results indicates that the combination of convolution,
LSTM, and GRU has fully extracted the features in the sample data.

According to the collected raw data, the input and output of the model constructed in this paper
are shown in Table 1.
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Table 1. Input and output.

Dimension of Input Feature Description Dimension of Output Output

1 time (t) is a time point for
every 15 min

1 From (t) to (t + 3) load
2 From (t- time-window)

to (t–1) temperature

3
From (t- time-window)

to (t–1) weather
condition

4 From (t- time-window)
to (t–1) load

A large amount of literatures has only selected temperature as a factor of load for meteorological
factors, and has not considered the weather conditions. However, in actual situations, the impact
of this condition on the load during the day is very significant. Especially in areas such as Beijing,
when extreme weather such as haze occurs, it will have a great impact on the load. It is not sensible to
consider the impact on the load from the temperature alone. Therefore, the characteristics of historical
weather conditions (such as fog, clouds, etc.) are also considered. There are 18 types, and the text is
digitized by using the category features. The information is mapped into a vector, and the conversion
result is as shown in Table 2.

Table 2. Weather condition characteristics conversion table.

Weather
Condition

Mapping
Results

Weather
Condition

Mapping
Results

Weather
Condition

Mapping
Results

Overcast 0 Sand blowing 6 Heavy rain 12
Fog 1 Heavy snow 7 Floating dust 13

Medium-to-heavy
rain 2 Sunny 8 Rainstorm 14

Light rain 3 Drizzle 9 Small-to-medium
rain 15

Haze 4 Sleet and snow 10 Thunderstorms 16
Little Snow 5 Cloudy 11 Shower 17

4.2. Data Preprocessing

In the data preprocessing stage, in order to eliminate the influence of different physical dimensions,
the original data needs to be standardized. This paper uses the Z-score method to standardize all
sample data. The formula is as follows:

x̂(i) =
x(i) − xmean

xstandard deviation
(11)

For modeling and calculation, the basic unit of measure is the same, the neural network is trained
(probabilistic calculation) and predicted by the statistical probability of the sample in the event, and the
value of the Sigmoid function is between 0 and 1. The output of the last node is the same. Where x̂(i)
represents the normalized data value, and the mean and standard deviation of the original samples,
respectively, where weather condition assignment refers to the mapping results of Table 2. The first
five rows of the data preprocessing result are shown in Table 3.
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Table 3. Data display in the first 5 rows of the pre-processed data table.

Time Weather Condition Temperature Load

2016-01-01 00:00:00 1.738101 −1.394100 −0.207188
2016-01-01 00:15:00 1.738101 −1.410131 −0.316169
2016-01-01 00:30:00 1.738101 −1.426163 −0.402202
2016-01-01 00:45:00 1.738101 −1.458227 −0.502655

5. Deep Learning Model

5.1. Deep Learning Network Prediction Framework

The deep learning framework constructed in this paper consists of two convolutional layers, one
LSTM layer and one GRU layer.

As the Figure 4 shows, firstly, the historical meteorological data and the load data are pre-processed
and combined, and then the overall time series is sampled. Then, the convolution filter is used to extract
higher-order sample features and reduce the number of training parameters. The Relu function [21]
is used as the activation function. Next, the LSTM layer or GRU layer is used for time series-based
modeling, and the dropout layer is introduced after each layer to reduce the risk of overfitting. Finally,
the load prediction result is output by a dense layer.Energies 2020, 11, x FOR PEER REVIEW  8 of 16 
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The overall construction process of this deep learning model is as follows:
Step 1: Data preprocessing.
The input characteristics of a single moment is 4 (see in Table 1) with a total of 105,163 training

samples. Time step and batch size are adjustable hyperparameters, so the input data is stored in a
3-dimensional tensor (batch size * Time step * 4).

Step 2: Model training.
Eighty percent of the sample data is set as the training set, 20% of the sample data is set as the test

set, then the processed training set data is input into the deep learning model for training. Then model
outputs the next four consecutive 15 min, which is one hour of load forecast.
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Step 3: Adjust the model hyperparameters.
Continue to optimize the model and compare the accuracy using different hyperparameters models.

5.2. Hyperparameters of Deep Learning Model

In order to obtain the optimal structure of the above deep learning model, this paper uses the
vertical comparison method to adjust the parameters of the number of hidden layer nodes, time step,
and batch size of the improved RNN. When analyzing the influence of one of the parameters on
the prediction result, the remaining parameters are fixed. The parameters selected throughout the
experimental process are shown in the following Table 4:

Table 4. Hyperparameters of deep learning model.

Type of Hyperparameter Experimental Scene Setting

Number of first layer convolution filters 8
Kernel size in Conv Layer 1 4 × 4

Max pooling size 4 × 4
Number of second layer convolution filters 16

Kernel size in Conv Layer 2 3 × 3
LSTM or GRU layer 1; hidden layer unit {20, 50, 80}
LSTM or GRU layer 2; hidden layer unit {20, 50, 80}

Objective function MSE
Dropout rate 0.2

Time step {48, 96, 192}
Batch size {32, 64}

Epoch 5
Adam code parameter settings α = 0.001, β1 = 0.9,β2 = 0.999

In this paper, mean square error (MSE) is used for error evaluation. The expressions are as follows:

δMSE =
1
n

n∑
i=1

(yi − ŷi)
2 (12)

MSE is a convenient method to measure the “average error “. MSE can evaluate the degree of
change of the data. The smaller the value of the MSE, the better the accuracy of the prediction model
to describe the experimental data. Where yi represents the actual load value, ŷi represents the load
forecast value, and n represents the number of load forecast points. The value of n in this deep learning
model is 4.

According to Figure 5, the epoch of the training process is 5, and each training basically converges
in the second epoch model. According to the trend in the figure, it can be seen that the overall error of
the model is decreasing, and the error is already in the acceptable range.
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The final experimental scene has a tendency to fit, so the model training is stopped, and the
optimal model parameters are obtained as shown in Table 5.

Table 5. List of optimal parameters.

Type of Hyperparameter Optimal Experimental Scene Setting

LSTM or GRU layer 1; hidden layer unit 50
LSTM or GRU layer 2; hidden layer unit 50

Time step 288
Batch size 32

5.3. Evaluation Index

In order to test the prediction effect of the model, it is necessary to select the appropriate evaluation
criteria. This paper uses the coefficient of determination to evaluate, denoted by R2, and the expression
is as follows:

R2 =

∑n
i=1(ŷi − yi)

2∑n
i=1(y− yi)

2 (13)

R2 is generally the best measure of linear regression, usually indicating the quality of the model.
R2 ranges between 0 and 1; the closer to 1, the better. yi represents the actual load value, ŷi represents
the load forecast value, yi represents the actual load average, and n represents the number of load
forecast points. The closer R2 is to 1, the higher the goodness of fit is.

6. Results

In order to verify the superiority of the proposed model, this section describes the model training
process in detail. The model proposed in this paper is compared with the other four deep learning
models, and the details of models are as follows, in which model 5 is the abbreviation of the model
proposed in this paper:

Model 1 (GRU): The preprocessed data is input to the GRU layer directly, without using a
convolution filter layer. GRU layer hidden layer unit is 50;

Model 2 (LSTM): The preprocessed data is input to the LSTM layer directly, without using a
convolutional layer for filtering. LSTM layer hidden layer unit is 50;

Model 3 (Conv-LSTM): The preprocessed data is input to the convolutional layer firstly for
filtering, and then two LSTM layers are used for prediction. Kernel size in Conv Layer is 4 × 4. LSTM
layer hidden layer unit is 50;
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Model 4 (Conv-GRU): The preprocessed data is input to the convolutional layer firstly for filtering,
and then two GRU layers are used for prediction. Kernel size in Conv Layer is 4 × 4. GRU layer hidden
layer unit is 50;

Model 5 (Conv-GRU-LSTM): The preprocessed data is input to the convolutional layer firstly for
filtering, and then a GRU layer and an LSTM layer are used for prediction. Kernel size in Conv Layer
is 4 × 4. GRU and LSTM layer hidden layer unit is 50.

6.1. Training Process Analysis

In order to reflect the superiority of the proposed deep learning framework, the other two deep
learning model without convolutional layer are introduced to compare with three models constructed
in the framework. The five models are all trained using the optimal parameters obtained in Table 5, and
the epoch was set to 20. Training time and accuracy of the five models are demonstrated as follows.

According to Figure 6, it can be seen whether the introduction of convolution has a great training
time for deep neural networks in terms of training time, which is positively related to the number of
parameters that need to be trained. Conv-GRU had the shortest training time in the five models, LSTM
had the longest training time, LSTM training time was almost five times that of Conv-LSTM, and GRU
training time was more than three times that of Conv-GRU.Energies 2020, 11, x FOR PEER REVIEW  11 of 16 
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According to Figure 7, as the training deepens, both the LSTM and GRU models have a tendency
to overfit, which may be due to the complexity of the training parameters, while the Conv-LSTM,
Conv-GRU, and Conv-GRU-LSTM become more and more stable. This is because the deep learning
framework proposed in this paper can greatly reduce the parameters that need to be trained while
ensuring the accuracy of prediction, and ultimately reducing the cost of model training time.
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6.2. Forecast Results Display

In order to further verify the superiority of the deep learning framework of this paper, the five
models are used to predict the 288 consecutive point loads in the last three days in 2018. The prediction
results, error, and R2 are shown in Figures 8 and 9 and Table 6. The expression of error is as follows:

Error = (predicted value− real value)/real value (14)
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Table 6. Coefficient of determination.

Model R2

GRU 0.9404
LSTM 0.8735

Conv-LSTM 0.9705
Conv-GRU 0.9191

Conv-GRU-LSTM 0.9636

As Figure 8 shows, the five deep learning models generally have splendid prediction accuracy
and strong stability, proving the feasibility of applying the deep learning method to ultra-short-term
load forecast. Through the calculation of R2 value, the results of the five deep learning models were
all greater than 0.9. Conv-LSTM had the best goodness of fit, and Conv-GRU-LSTM had the second
goodness of fit, which further proves the superiority of the deep learning framework proposed in
this paper.

According to the experimental results, although the Conv-LSTM model had the highest coefficient
of determination (0.9705), judging from the model training time in Figure 6, the training time
of the Conv-GRU-LSTM model was much lower than that of the Conv-LSTM model. Therefore,
comprehensively considering, the Conv-GRU-LSTM model was more practical. Especially when
dealing with a large amount of sample data, the superiority of the model proposed in this paper is
even more significant.

7. Conclusions and Discussion

7.1. Conclusions

With the acceleration of the power market reform process, the importance of ultra-short-term
load forecasting for grid companies and emerging purchase and sale companies is becoming more
apparent. At the same time, affected by many uncertain factors, the future load changes present
uncertainty. In comparison with the traditional point forecasting method, the deep learning framework
can actively mine the hidden information in historical data, which is conducive to the decision-making
and execution of electricity purchase and sale strategies of each power trading subject, and further
promotes the economics of electricity market trading.

When using large-scale data for load forecasting, the conventional prediction method always leads
to an excessively complicated model and an excessive computational cost in the training process. In this
paper, convolution was combined with LSTM and GRU to construct Conv-GRU-LSTM ultra-short-term
load forecast models. The main research conclusions are as follows:

(1) With the use of power system big data, this paper collected more than 100,000 historical load
data, making full use of the advantages of deep learning neural network to automatically extract
features, simplifying the input features and reducing the process of manual construction features.
The coefficient of determination of the Conv-GRU-LSTM model is 0.9639, which is very close to 1.
Considering the comprehensive training time, the final experimental results show that the learning
framework combining convolution with LSTM and GRU has excellent ability of feature mining.

(2) The model proposed in this paper is compared with the other four models including GRU,
LSTM, Conv-GRU, and Conv-LSTM. The results show that the Conv-GRU-LSTM model proposed in
this paper presents comprehensive advantages in training time and prediction accuracy.

(3) This paper aims at the short-term load forecasting in the next few minutes. The input sample
has a three-year time span, so the forecasting results will not be affected by seasonal changes. Therefore,
the model in this paper can be applied to short-term load forecasting in all periods of the year.
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7.2. Discussion

Although the deep learning proposed in this paper can be well applied to forecast ultra-short-term
load, there is still room for improvement in this paper. Further research can be carried out in the
following two aspects:

(1) The model hyperparameters can be further adjusted, such as hidden layers and number of
nodes. Meanwhile, the prediction model of this paper can also be generalized to photovoltaic power
generation prediction and wind power prediction through hyperparameter adjusting;

(2) The deep learning framework constructed in this paper can be combined with multi-task
learning as well. With reference to migration learning, and the coupling relationship of different energy
sources in the integrated energy system, this model can also be introduced to improve the accuracy of
multi-load prediction.
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