Unsteady Flow Field Characterization of Effusion Cooling Systems with Swirling Main Flow: Comparison Between Cylindrical and Shaped Holes
Abstract
:1. Introduction
2. Experimental Facility
3. Instrumentation and Measurement Technique
4. Main Flow Results
Swirling Flow Characterization
5. Effusion Flow Results
5.1. Average Flow Field Analysis
5.2. Jets Oscillations
5.3. Flow Structures Investigation
5.3.1. Kelvin Helmholtz Instability
5.3.2. Counter Rotating Vortex Pair
5.4. Root Mean Square Values
6. Conclusions and Perspectives for Future Work
- -
- deviation of the jets trajectories,
- -
- mutual interaction between jets of consecutive rows despite the staggered configuration,
- -
- shift and torsion of CRVP structures
- -
- jet oscillations and intermittent interaction with the main flow
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Feeding pressure drop | ||
Blowing Ratio | ||
Effusion hole diameter | [m] | |
External swirler diameter | [m] | |
f | frequency | [Hz] |
I | Momentum Flux Ratio | |
Axial pitch of effusion pattern | [m] | |
Percentual value of the Pitch distance | ||
s | Scaled lateral pitch of effusion pattern | |
Root Mean Square | [m/s] | |
t | time | [s] |
w | Vorticity | [1/s] |
V | Velocity magnitude | [m/s] |
Velocity Ratio | ||
3D Spatial coordinates | [m] | |
3.5% | 3.5% nominal pressure drop | |
41 | Referred to Plane 41 | |
eff | effusion system | |
PIV | PIV measurements | |
ref | Reference value | |
FoV | Field of View | |
PIV | Particle Image Velocimetry | |
RQL | Rich-Quench-Lean | |
TRPIV | Time-Resolved Particle Image Velocimetry |
References
- Colban, W.; Thole, K.A.; Haendler, M. A comparison of cylindrical and fan-shaped film-cooling holes on a vane endwall at low and high freestream turbulence levels. J. Turbomach. 2008, 130. [Google Scholar] [CrossRef] [Green Version]
- Gustafsson, K.M.B. Experimental Studies of Effusion Cooling; Chalmers University of technology, Department of Thermo and Fluid Dynamics: Gothenburg, Sweden, 2001. [Google Scholar]
- Thole, K.; Gritsch, M.; Schulz, A.; Wittig, S. Flowfield Measurements for Film-Cooling Holes With Expanded Exits. ASME J. Turbomach. 1998, 120, 327–336. [Google Scholar] [CrossRef]
- Scrittore, J.J.; Thole, K.A.; Burd, S.W. Investigation of Velocity Profiles for Effusion Cooling of a Combustor Liner. ASME J. Turbomach. 2006, 129, 518–526. [Google Scholar] [CrossRef]
- Fernandes, P.; Hodges, J.; Fernandez, E.; Kapat, J.S. Flow Statistics and Visualization of Multi-Row Film Cooling Boundary Layers Emanating From Cylindrical and Diffuser Shaped Holes. J. Turbomach. 2018, 14, 06105. [Google Scholar] [CrossRef]
- Wurm, B.; Schulz, A.; Bauer, H.; Gerendas, M. Impact of Swirl Flow on the Cooling Performance of an Effusion Cooled Combustor Liner. ASME J. Eng. Gas. Turb. Power 2012, 134, 121503. [Google Scholar] [CrossRef]
- Andreini, A.; Becchi, R.; Facchini, B.; Mazzei, L.; Picchi, A.; Turrini, F. Adiabatic Effectiveness and Flow Field Measurements in a Realistic Effusion Cooled Lean Burn Combustor. ASME J. Eng. Gas. Turb. Power 2015, 138, 031506. [Google Scholar] [CrossRef]
- Fric, T.F.; Roshko, A. Vortical Structure in the Wake of a Transverse Jet. J. Fluid Mech. 1994, 279, 1–47. [Google Scholar] [CrossRef] [Green Version]
- Eberly, M.K.; Thole, K.A. Time-Resolved Film-Cooling Flows at High and Low Density Ratios. ASME J. Turbomach. 2013, 136, 061003. [Google Scholar] [CrossRef]
- Abram, C.; Schreivogel, P.; Fond, B.; Straubald, M.; Pfitzner, M.; Beyrau, F. Investigation of Film Cooling Flows using Thermographic Particle Image Velocimetry at a 6 kHz Repetition Rate. In Proceedings of the 18th International Symposium on the application of Laser and Imaging Techniques to Fluid Mechanics, Lisabon, Portugal, 4–7 July 2016. [Google Scholar]
- Straubald, M.; Schmid, K.; Hagen, M.; Pfitzner, M. Experimental and Numerical Investigation of Turbulent Mixing in Film Cooling Applications. In Proceedings of the Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, Charlotte, NC, USA, 26–30 June 2017. [Google Scholar]
- Lenzi, T.; Palanti, L.; Picchi, A.; Bacci, T.; Mazzei, L.; Andreini, A.; Facchini, B. Time-Resolved Flow Field Analysis of Effusion Cooling System With Representative Swirling Main Flow. J. Turbomach. 2020, 142, 061008. [Google Scholar] [CrossRef]
- Schroeder, R.; Thole, K. Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole. In Proceedings of the Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, Düsseldorf, Germany, 16–20 June 2014. [Google Scholar]
- Andreini, A.; Cocchi, L.; Facchini, B.; Mazzei, L.; Picchi, A. Experimental and numerical investigation on the role of holes arrangement on the heat transfer in impingement/effusion cooling schemes. Int. J. Heat Mass Transf. 2018, 127, 645–659. [Google Scholar] [CrossRef]
- Nathan, R.; Zhong, R.; Buzzard, W.; Sweeney, B.; Tinker, N.; Ligrani, P.; Hollingsworth, K.; Liberatore, F.; Patel, R.; Ho, S.; et al. Effects of Double Wall Cooling Configuration and Conditions on Performance of Full-Coverage Effusion Cooling. ASME J. Turbomach. 2017, 139, 051009. [Google Scholar]
- Kahler, C.; Sammler, B.; Kompenhas, J. Generation and control of tracer particles for optical flow investigations in air. Exp. Fluids 2002, 33, 736–742. [Google Scholar] [CrossRef]
- Raffel, M.; Willert, C.E.; Kompenhans, J. Particle Image Velocimetry—A Pratical Guide; Springer: New York, NY, USA, 1997. [Google Scholar]
- Westerweel, J.; Scarano, F. Universal outlier detection for PIV data. Exp. Fluids 2005, 39, 1096–1100. [Google Scholar] [CrossRef]
- Charonko, J.; Vlachos, P. Estimation of uncertainty bounds for individual particle image velocimetry measurements from cross-correlation peak ratio. Meas. Sci. Technol. 2013, 24, 065301. [Google Scholar] [CrossRef]
- Azzi, A.; Jubran, B.; Theodoridis, G.S. Film Cooling Predictions of Simple and Compound Angle Injection from One and Two Staggered Rows. Numer. Heat Transf. Appl. 2001, 40, 273–294. [Google Scholar] [CrossRef]
- Kampe, T.; Völker, S.; Sämel, T.; Heneka, C.; Ladisch, H.; Schulz, A.; Bauer, H. Experimental and Numerical Investigation of Flow Field and Downstream Surface Temperatures of Cylindrical and Diffuser Shaped Film Cooling Holes. In Proceedings of the Turbo Expo: Power for Land, Sea, and Air, Orlando, FL, USA, 6–10 June 2011. [Google Scholar]
- Schroeder, R.; Thole, K. Thermal Field Measurements for a Shaped Hole at Low and High Freestream Turbulence Intensity. J. Turbomach. 2016, 139, 021012. [Google Scholar] [CrossRef]
- Straußwald, M.; Sander, T.; Bakhtiari, A.; Pfitzner, M. High-Speed Velocity Measurements of Film Cooling Applications at High-Turbulence Main Flow Conditions. In Proceedings of the Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, Oslo, Norway, 11–15 June 2018. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lenzi, T.; Picchi, A.; Bacci, T.; Andreini, A.; Facchini, B. Unsteady Flow Field Characterization of Effusion Cooling Systems with Swirling Main Flow: Comparison Between Cylindrical and Shaped Holes. Energies 2020, 13, 4993. https://doi.org/10.3390/en13194993
Lenzi T, Picchi A, Bacci T, Andreini A, Facchini B. Unsteady Flow Field Characterization of Effusion Cooling Systems with Swirling Main Flow: Comparison Between Cylindrical and Shaped Holes. Energies. 2020; 13(19):4993. https://doi.org/10.3390/en13194993
Chicago/Turabian StyleLenzi, Tommaso, Alessio Picchi, Tommaso Bacci, Antonio Andreini, and Bruno Facchini. 2020. "Unsteady Flow Field Characterization of Effusion Cooling Systems with Swirling Main Flow: Comparison Between Cylindrical and Shaped Holes" Energies 13, no. 19: 4993. https://doi.org/10.3390/en13194993
APA StyleLenzi, T., Picchi, A., Bacci, T., Andreini, A., & Facchini, B. (2020). Unsteady Flow Field Characterization of Effusion Cooling Systems with Swirling Main Flow: Comparison Between Cylindrical and Shaped Holes. Energies, 13(19), 4993. https://doi.org/10.3390/en13194993