Potential of Straw for Energy Purposes in Poland—Forecasts Based on Trend and Causal Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview
2.2. Methodology and Material Sources for Estimation of Straw Surplus
- —surplus of straw for alternative use (energy production);
- —production of straw from basic cereals (including mixtures), rapeseed and corn;
- —straw demand for bedding;
- —straw demand for fodder;
- —straw demand for ploughing (organic fertilizer).
- —straw demand for bedding;
- —straw demand for fodder;
- —population of individual species and utility groups;
- —straw demand norm for bedding by species and utility groups [56];
- —straw demand norm for fodder by species and utility groups [56].
- —balance of organic matter ();
- —area of plant groups which increase the content of organic matter (ha);
- —area of plant groups which decrease the content of organic matter (ha);
- —organic matter reproduction coefficient of given plant group (t·ha−1);
- —organic matter degradation coefficient of given plant group (t·ha−1);
- —livestock population by species and age groups (number of heads);
- —manure production norms by species and age groups (t·year−1).
- —straw demand for ploughing (organic fertilizer);
- —balance of organic matter.
2.3. The Applied Statistical Methods
- y = a0 + a1t2;
- y = a0 + a1t3;
- y = a0 + a1t + a2t2;
- y = a0 + a1t + a2t3;
- y = a0 + a1t2 + a2t3;
- y = a0 + a1t + a2t2 + a3t3.
- Y1—harvest of straw from basic cereals with mixtures (thousands of tons);
- Y2—harvest of straw from rapeseed (thousands of tons);
- Y3—harvest of straw from corn (thousands of tons);
- Y4—Y1 + Y2 Y3;
- Y5—surplus of straw (thousands of tons);
- X11—sown area of basic cereals with mixtures (thousands of ha);
- X21—sown area of rapeseed (thousands of ha);
- X31—sown area of grain corn (thousands of ha);
- X12—straw yield from cereals with mixtures (t·ha−1);
- X22—straw yield from rapeseed (t·ha−1);
- X32—straw yield from corn (t·ha−1);
- X412—straw consumption for fodder and bedding (thousands of tons);
- X43—straw consumption for ploughing (organic fertilizer) (thousands of tons).
3. Results
3.1. Statistical Characteristics of Variables
3.2. Trend Models for Straw Surplus (Y5) in Poland in the Years 1999–2019
3.3. Cause-Effect Models of Surplus Straw (Y5) in Poland in the Years 1999–2019
3.4. Straw Surplus Forecasts
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Buyx, A.; Tait, J. Biofuels: Ethics and policy-making. Biofuels Bioprod. Biorefin. 2011, 5, 631–639. [Google Scholar] [CrossRef]
- Thompson, P.B. The agricultural ethics of biofuels: The food vs. fuel debate. Agriculture 2012, 2, 339–358. [Google Scholar] [CrossRef] [Green Version]
- Gomiero, T.; Paoletti, M.; Pimentel, D. Biofuels: Efficiency, ethics, and limits to human appropriation of ecosystem services. J. Agric. Environ. Ethics 2009, 23, 403–434. [Google Scholar] [CrossRef]
- Mohr, A.; Raman, S. Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels. Energy Policy 2013, 63, 114–122. [Google Scholar] [CrossRef]
- Huang, J.; Yang, J.; Msangi, S.; Rozelle, S.; Weersink, A. Global biofuel production and poverty in China. Appl. Energy 2012, 98, 246–255. [Google Scholar] [CrossRef]
- Timilsina, G.; Shrestha, A. An overview of global markets and policies. In The Impacts of Biofuels on the Economy, Environment and Poverty; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2014; pp. 1–14. [Google Scholar]
- Gomiero, T. Are biofuels an effective and viable energy strategy for industrialized societies? A reasoned overview of potentials and limits. Sustainability 2015, 7, 8491–8521. [Google Scholar] [CrossRef] [Green Version]
- Mol, A.P. Environmental authorities and biofuel controversies. Environ. Politics 2010, 19, 61–79. [Google Scholar] [CrossRef]
- Selbmann, K.; Pforte, L. Evaluation of Ecological Criteria of Biofuel Certification in Germany. Sustainability 2016, 8, 936. [Google Scholar] [CrossRef] [Green Version]
- Lane, J. Letter Sent to Dutch Cabinet by 178 Dutch Scientists Urges End to Food-Based Biofuels. Available online: http://www.biofuelsdigest.com/bdigest/2017/12/04/letter-sent-to-dutch-cabinet-by-178-dutch-scientists-urges-end-to-food-based-biofuels/ (accessed on 23 February 2020).
- Cao, Y.; Pawlowski, L. Effect of Biofuels on Environment and Sustainable Development. Ecol. Chem. Eng. S 2013, 20, 799–804. [Google Scholar] [CrossRef] [Green Version]
- Copa Cogeca. Phasing Out First Generation Biofuels: What is at Stake? Available online: http://copa-cogeca.eu/Download.ashx?ID=1590445 (accessed on 2 February 2020).
- Falck-Zepeda, J.; Msangi, S.; Sulser, T.; Zambrano, P.; Falconi, C. Biofuels and Rural Economic Development in Latin America and the Caribbean; Cooperation Programme FAO/Inter-American Development Bank Latin America and the Caribbean Service Investment Centre Division: Washington, DC, USA, 2010; Available online: https://publications.iadb.org/publications/english/document/Biofuels-and-Rural-Economic-Development-in-Latin-America-and-the-Caribbean.pdf (accessed on 13 February 2020).
- USDA Foreign Agricultural Service; Global Agricultural Information Network. EU Biofuels Annual 2017; GAIN Report No. NL7015. Available online: https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Biofuels%20Annual_The%20Hague_EU-28_6-19-2017.pdf (accessed on 2 February 2020).
- Stattman, S.L.; Gupta, A.; Partzsch, L.; Oosterveer, P. Toward sustainable biofuels in the European Union? Lessons from a decade of hybrid biofuel governance. Sustainability 2018, 10, 4111. [Google Scholar] [CrossRef] [Green Version]
- Searle, S.Y.; Malins, C.J. Waste and residue availability for advanced biofuel production in EU Member States. Biomass Bioenergy 2016, 89, 2–10. [Google Scholar] [CrossRef]
- Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC, 2009. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009L0028&from=EN (accessed on 13 February 2020).
- Laborde, D. Assessing the Land Use Change Consequences of European Biofuel Policies; IFPRI (International Food Policy Research Institute): Washington, DC, USA, 2011; Available online: http://ebrary.ifpri.org/utils/getfile/collection/p15738coll5/id/197/filename/198.pdf (accessed on 2 February 2020).
- Marelli, L.; Ramos, F.; Hiederer, R.; Koeble, R. Estimate of GHG Emissions from Global Land Use Change Scenarios; Joint Research Centre (JRC), Publications Office of the European Union: Brussels, Belgium, 2011. [Google Scholar] [CrossRef]
- Fritsche, U.R.; Wiegmann, K. Indirect Land Use Change and Biofuels. Öko-Institut: Brussels, Belgium, 2011. Available online: https://www.europarl.europa.eu/document/activities/cont/201203/20120301ATT39667/20120301ATT39667EN.pdf (accessed on 14 February 2020).
- Directive (EU) 2015/1513 of the European Parliament and of the Council of 9 September 2015 Amending Directive 98/70/EC Relating to the Quality of Petrol and Diesel Fuels and Amending Directive 2009/28/EC on the Promotion of the Use of Energy from Renewable Sources, 2015. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015L1513&from=EN (accessed on 14 February 2020).
- Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources (Recast), 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L2001&from=EN (accessed on 14 February 2020).
- Bacovsky, D.; Ludwiczek, N.; Ognissanto, M.; Wörgetter, M. Status of Advanced Biofuels Demonstration Facilities in 2012, A Report to IEA Bioenergy Task 39, T39-P1b, 2013. Available online: http://task39.sites.olt.ubc.ca/files/2013/12/2013_Bacovsky_Status-of-Advanced-Biofuels-Demonstration-Facilities-in-2012.pdf (accessed on 13 February 2020).
- IRENA (International Renewable Energy Agency). Innovation Outlook: Advanced Liquid Biofuels; IRENA: Abu Dhabi, UAE, 2016; Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2016/IRENA_Innovation_Outlook_Advanced_Liquid_Biofuels_2016.pdf (accessed on 12 February 2020).
- Sun, R.-C. Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2010; ISBN 9780444561893. [Google Scholar]
- Sarkar, N.; Ghosh, S.K.; Bannerjee, S.; Aikat, K. Bioethanol production from agricultural wastes: An overview. Renew. Energy 2012, 37, 19–27. [Google Scholar] [CrossRef]
- Hammond, G.P.; Mansell, R.V. A comparative thermodynamic evaluation of bioethanol processing from wheat straw. Appl. Energy 2018, 224, 136–146. [Google Scholar] [CrossRef]
- Chen, H.; Qiu, W. Key technologies for bioethanol production from lignocellulose. Biotechnol. Adv. 2010, 28, 556–562. [Google Scholar] [CrossRef]
- Bacovsky, D. Advanced biofuels are just around the corner. In Proceedings of the Advanced Biofuels Conference, Gothenburg, Sweden, 19 May 2017; Available online: https://bioenergyinternational.com/app/uploads/2017/05/Bacovsky_Dina_ABC17.pdf (accessed on 5 February 2020).
- Kerstetter, J.; Lyons, J. Wheat Straw for Ethanol Production in Washington: A Resource, Technical, and Economic Assessment; Washington State University Cooperative Extension Energy Program: Olympia, WA, USA, 2001; Available online: http://pacificbiomass.org/documents/WA_AsssessmentWheatStrawToEthanol_rev.pdf (accessed on 10 June 2020).
- Zhang, C.; Xie, G.; Li, S.; Ge, L.; He, T. The productive potentials of sweet sorghum ethanol in China. Appl. Energy 2010, 87, 2360–2368. [Google Scholar] [CrossRef]
- Sultana, A.; Kumar, A. Optimal siting and size of bioenergy facilities using geographic information system. Appl. Energy 2012, 94, 192–201. [Google Scholar] [CrossRef]
- Viana, H.; Cohen, W.B.; Lopes, D.; Aranha, J.T.M. Assessment of forest biomass for use as energy. GIS-based analysis of geographical availability and locations of wood-fired power plants in Portugal. Appl. Energy 2010, 87, 2551–2560. [Google Scholar] [CrossRef]
- Ekman, A.; Wallberg, O.; Joelsson, E.; Börjesson, P. Possibilities for sustainable biorefineries based on agricultural residues—A case study of potential straw-based ethanol production in Sweden. Appl. Energy 2013, 102, 299–308. [Google Scholar] [CrossRef]
- Gauder, M.; Graeff-Hönninger, S.; Claupein, W. Identifying the regional straw potential for energetic use on the basis of statistical information. Biomass Bioenergy 2011, 35, 1646–1654. [Google Scholar] [CrossRef]
- Weiser, C.; Zeller, V.; Reinicke, F.; Wagner, B.; Majer, S.; Vetter, A.; Thraen, D. Integrated assessment of sustainable cereal straw potential and different straw-based energy applications in Germany. Appl. Energy 2014, 114, 749–762. [Google Scholar] [CrossRef]
- Chen, X. Economic potential of biomass supply from crop residues in China. Appl. Energy 2016, 166, 141–149. [Google Scholar] [CrossRef]
- Monforti, F.; Bódis, K.; Scarlat, N.; Dallemand, J.-F. The possible contribution of agricultural crop residues to renewable energy targets in Europe: A spatially explicit study. Renew. Sustain. Energy Rev. 2013, 19, 666–677. [Google Scholar] [CrossRef]
- Kaparaju, P.; Serrano, M.; Thomsen, A.B.; Kongjan, P.; Angelidaki, I. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour. Technol. 2009, 100, 2562–2568. [Google Scholar] [CrossRef] [PubMed]
- Belal, E.B. Bioethanol production from rice straw residues. Braz. J. Microbiol. 2013, 44, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Novy, V.; Longus, K.; Nidetzky, B. From wheat straw to bioethanol: Integrative analysis of a separate hydrolysis and co-fermentation process with implemented enzyme production. Biotechnol. Biofuels 2015, 8, 46. [Google Scholar] [CrossRef] [Green Version]
- Passoth, V.; Sandgren, M. Biofuel production from straw hydrolysates: Current achievements and perspectives. Appl. Microbiol. Biotechnol. 2019, 103, 5105–5116. [Google Scholar] [CrossRef] [Green Version]
- Lantz, M.; Prade, T.; Ahlgren, S.; Björnsson, L. Biogas and ethanol from wheat grain or straw: Is there a trade-off between climate impact, avoidance of iLUC and production cost? Energies 2018, 11, 2633. [Google Scholar] [CrossRef] [Green Version]
- Kretschmer, B.; Allen, B.; Hart, K. Mobilising Cereal Straw in the EU to Feed Advanced Biofuel Production; IEEP (Institute for European Environmental Policy): Brussels, Belgium, 2012; Available online: https://ieep.eu/uploads/articles/attachments/7027de1e-dc4d-43e8-8126-16402efe66ed/IEEP_Agricultural_residues_for_advanced_biofuels_May_2012.pdf?v=63664509775 (accessed on 13 February 2020).
- Gradziuk, P.; Jendrzejewski, B. Wyzwania dla Sektora Biopaliw w Kontekście Polityki Klimatyczno-energetycznej Unii Europejskiej. Roczniki Naukowe Stowarzyszenia Ekonomistów Rolnictwa i Agrobiznesu 2017, 12, 58–65. [Google Scholar] [CrossRef]
- Edwards, R.A.H.; Šúri, M.; Huld, T.A.; Dallemand, J.F. GIS-Based Assessment of Cereal Straw Energy Resource in the European Union. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi:10.1.1.550.9051&rep=rep1&type=pdf (accessed on 10 February 2020).
- Baum, R.B.R.; Wajszczuk, K.W.K.; Pepliński, B.P.B.; Wawrzynowicz, J.W.J. Potential for agricultural biomass production for energy purposes in Poland: A review. Contemp. Econ. 2013, 7, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Rozakis, S.; Kremmydas, D.; Pudełko, R.; Borzecka-Walker, M.; Faber, A. Straw potential for energy purposes in Poland and optimal allocation to major co-firing power plants. Biomass Bioenergy 2013, 58, 275–285. [Google Scholar] [CrossRef]
- Gradziuk, P. The potential of straw for energy purposes in Poland. Barometr Regionalny 2014, 12, 15–22. [Google Scholar]
- Gradziuk, P. The Economic Importance and Possibilities of Using Straw for Energy Purposes in Poland (org. Gospodarcze Znaczenie i Możliwości Wykorzystania Słomy na Cele Energetyczne w Polsce); IUNG-PIB (Instytut Uprawy Nawożenia i Gleboznawstwa Państwowy Instytut Badawczy): Puławy, Poland, 2015; ISBN 978-83-7562-190-7.
- Zbytek, Z.; Dach, J.; Pawłowski, T.; Smurzyńska, A.; Czekała, W.; Janczak, D. Energy and economic potential of maize straw used for biofuels production. MATEC Web Conf. 2016, 60, 4008. [Google Scholar] [CrossRef] [Green Version]
- Ziętara, W.; Zieliński, M. Straw as alternative energy source or organic matter in the soil. Probl. Agric. Econ. 2018, 355, 28–40. [Google Scholar] [CrossRef]
- Marks-Bielska, R.; Bielski, S.; Novikova, A.; Romaneckas, K. Straw stocks as a source of renewable energy. A case study of a district in Poland. Sustainability 2019, 11, 4714. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Agriculture and Rural Development of Poland; Ministry of Environment of Poland. Kodeks Dobrej Praktyki Rolniczej, Warsaw, Poland, 2004, ss. 98. Available online: http://iung.pl/dpr_eng/publikacje/kodeks_dobrej_praktyki_rolniczej.pdf (accessed on 13 February 2020).
- Chojnicki, Z.; Czyż, T. Nowa Organizacja Terytorialna Polski i Układ Regionalny. Czas. Geogr. 2000, 71, 261–277. Available online: http://igsegp.amu.edu.pl/wp-content/uploads/2018/05/Chojnicki_Czy%C5%BC_2000a.pdf (accessed on 16 February 2020).
- Mazurkiewicz, J.; Marczuk, A.; Pochwatka, P.; Kujawa, S. Maize straw as a valuable energetic material for biogas plant feeding. Materials 2019, 12, 3848. [Google Scholar] [CrossRef] [Green Version]
- Harasim, A. Straw Management; Institute of Soil Science and Plant Cultivation—National Research Institute (IUNG-PIB): Puławy, Poland, 2011; ISBN 978-83-7562091-7.
- Ljung, G.G.E.P. Box, On a Measure of Lack of Fit in Time Series Models. Biometrika 1978, 65, 297–303. [Google Scholar] [CrossRef]
- Spiegel, M.R.; Stephens, L.J. Schaum’s Outline of Statistics, 4th ed.; McGraw-Hill: New York, NY, USA, 2008. [Google Scholar] [CrossRef]
- Smil, V. Crop residues: Agriculture’s largest harvest. Bioscience 1999, 49, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Staniforth, A. Cereal Straw; Clarendon Press: Oxford, UK, 1979. [Google Scholar]
- Kafadar, K.; Sheskin, D.J. Handbook of parametric and nonparametric statistical procedures. Am. Stat. 1997, 51, 374. [Google Scholar] [CrossRef]
- Jaggia, S.; Kelly, A. Business Statistics. Communicating with Numbers, 3rd ed.; McGraw-Hill Education: New York, NY, USA, 2019; p. 443. [Google Scholar]
- Granger, C.W.J. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 1969, 37, 424. [Google Scholar] [CrossRef]
- Bisgaard, S.; Kulahci, M. Time Series Analysis and Forecasting by Example; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; pp. 83–400. [Google Scholar]
- European Environment Agency. Estimating the Environmentally Compatible Bioenergy Potential from Agriculture; EEA Technical Report No. 12/2007. Office for Official Publications of the European Communities: Luxembourg, 2007. Available online: https://www.eea.europa.eu/publications/technical_report_2007_12 (accessed on 6 May 2020).
- Kołodziej, B.; Matyka, M. Odnawialne źródła Energii. Rolnicze Surowce Energe—Tyczne; Państwowe Wydawnictwo Rolnicze i Leśne: Poznań, Poland, 2012. [Google Scholar]
- Energy Law. Act of 10 kwietnia 1997 r. (Dz. U. z 1997 r. Nr 54, poz. 348). Available online: http://prawo.sejm.gov.pl/isap.nsf/download.xsp/WDU19970540348/U/D19970348Lj.pdf (accessed on 6 May 2020).
- Energy Policy of Poland until 2040 (Project); Ministerstwo klimatu: Warsaw, Poland, 2019. Available online: https://www.gov.pl/attachment/376a6254-2b6d-4406-a3a5-a0435d18be0f (accessed on 6 May 2020).
- Renewable Energy Sources Act. Available online: http://prawo.sejm.gov.pl/isap.nsf/download.xsp/WDU20150000478/U/D20150478Lj.pdf (accessed on 6 May 2020).
- Elbersen, B.; Startisky, I.; Hengeveld, G.; Schelhaas, M.; Naeff, H.; Böttcher, H. Biomass role in achieving the Climate Change & Renewables EU policy targets. Demand and Supply dynamics under the perspective of stakeholders. In Atlas of EU Biomass Potentials; ALTERRA: Copenhagen, Denmark, 2012; Available online: https://ec.europa.eu/energy/intelligent/projects/sites/iee-projects/files/projects/documents/biomass_futures_atlas_of_technical_and_economic_biomass_potential_en.pdf (accessed on 16 August 2020).
- Skøtt, T. Straw to Energy—Status, Technologies and Innovation in Denmark 2011; Network for Biomass (INBIOM): Copenhagen, Denmark, 2011; Available online: file:///C:/Users/Dell/Downloads/halmpjeceuk_2011_web.pdf (accessed on 16 August 2020).
- Hauff, J. Renewable Energy in Poland; Report to the World Bank: Warsaw, Poland, 1996; pp. 8–16. [Google Scholar]
Variables | Mean | Median | Minimum | Maximum | Standard Deviation (st.dev) | Prospensity | Kurtosis | p-Value |
---|---|---|---|---|---|---|---|---|
Y1 | 25,069.6 | 24,855.7 | 20,449.5 | 29,194.5 | 2613.1 | −0.196 | 2.013 | 0.231 |
Y2 | 1926.9 | 2105.8 | 793.0 | 3276.0 | 684.9 | −0.070 | 2.142 | 0.480 |
Y3 | 2550.6 | 1994.2 | 599.4 | 4468.0 | 1221.0 | 0.238 | 1.675 | 0.026 |
Y4 | 29,546.9 | 30,002.0 | 22,885.6 | 35,847.0 | 3285.0 | −0.426 | 3.042 | 0.506 |
Y5 | 12,512.1 | 13,727.9 | 3520.9 | 20,563.7 | 4287.2 | −0.456 | 2.855 | 0.374 |
X11 | 7590.2 | 7769.7 | 6699.0 | 8599.9 | 656.4 | 0.059 | 1.586 | 0.125 |
X21 | 721.8 | 796.8 | 426.3 | 952.0 | 192.1 | −0.375 | 1.608 | 0.082 |
X31 | 414.5 | 339.3 | 104.2 | 678.0 | 181.5 | 0.139 | 1.738 | 0.031 |
X12 | 3.3 | 3.4 | 2.4 | 4.2 | 0.4 | −0.171 | 3.272 | 0.605 |
X22 | 2.6 | 2.6 | 1.9 | 3.4 | 0.4 | 0.013 | 2.758 | 0.355 |
X32 | 6.1 | 6.1 | 4.2 | 7.3 | 0.8 | −0.404 | 3.127 | 0.119 |
X412 | 13,592.1 | 13,409.8 | 12,026.1 | 16,560.7 | 1213.7 | 0.556 | 2.774 | 0.703 |
X43 | 2780.2 | 2884.8 | 1823.6 | 3463.1 | 510.9 | −0.495 | 2.120 | 0.406 |
Specification | X11 | X21 | X31 | X12 | X22 | X32 | X412 | X43 | Y1 | Y2 | Y3 | Y4 | Y5 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dolnośląskie | median | 461.0 | 110.3 | 69.9 | 4.6 | 2.7 | 6.6 | 280.5 | 902.9 | 2148.3 | 271.5 | 449.4 | 2878.4 | 1591.8 |
mean | 455.8 | 101.0 | 71.0 | 4.7 | 2.6 | 6.5 | 299.1 | 903.2 | 2136.3 | 272.7 | 460.2 | 2869.2 | 1426.0 | |
st.dev | 31.4 | 28.7 | 17.9 | 0.7 | 0.4 | 0.8 | 72.8 | 60.3 | 309.7 | 94.9 | 128.0 | 384.2 | 597.2 | |
Kujawsko-pomorskie | median | 599.2 | 83.5 | 33.5 | 3.2 | 2.7 | 5.7 | 1151.6 | 0.0 | 1853.1 | 210.1 | 179.4 | 2341.6 | 1190.0 |
mean | 594.5 | 82.3 | 46.9 | 3.1 | 2.8 | 5.8 | 1128.5 | 50.4 | 1852.8 | 227.7 | 280.3 | 2360.8 | 1181.9 | |
st.dev | 54.7 | 28.1 | 30.9 | 0.5 | 0.9 | 0.8 | 79.9 | 73.3 | 210.4 | 99.4 | 197.2 | 372.7 | 389.9 | |
Lubelskie | median | 803.6 | 43.1 | 18.8 | 3.4 | 2.4 | 5.7 | 898.3 | 544.9 | 2782.1 | 96.9 | 104.0 | 2986.5 | 1426.7 |
mean | 811.7 | 48.0 | 22.3 | 3.5 | 2.5 | 5.8 | 973.2 | 493.2 | 2833.9 | 123.6 | 132.4 | 3089.9 | 1474.8 | |
st.dev | 60.7 | 30.1 | 11.4 | 0.6 | 0.4 | 0.8 | 223.5 | 180.3 | 527.0 | 90.3 | 77.9 | 580.0 | 720.5 | |
Lubuskie | median | 207.3 | 27.7 | 15.3 | 3.4 | 2.4 | 5.6 | 172.3 | 195.7 | 714.1 | 68.0 | 88.6 | 832.8 | 431.7 |
mean | 197.2 | 26.8 | 15.6 | 3.4 | 2.4 | 5.6 | 173.8 | 204.7 | 678.9 | 69.9 | 88.5 | 837.4 | 437.8 | |
st.dev | 24.9 | 8.9 | 4.5 | 0.9 | 0.6 | 1.3 | 19.6 | 60.5 | 143.2 | 31.8 | 34.9 | 177.8 | 197.3 | |
Łódzkie | median | 598.5 | 16.0 | 11.8 | 2.9 | 2.3 | 5.7 | 1095.5 | 0.0 | 1630.9 | 37.4 | 71.8 | 1825.5 | 812.1 |
mean | 598.7 | 14.6 | 16.5 | 2.8 | 2.4 | 5.7 | 1082.8 | 7.2 | 1697.1 | 36.8 | 93.9 | 1827.8 | 745.1 | |
st.dev | 34.8 | 7.2 | 10.8 | 0.3 | 0.6 | 1.1 | 91.3 | 27.0 | 212.6 | 21.4 | 64.9 | 237.6 | 290.1 | |
Małopolskie | median | 241.7 | 4.5 | 13.4 | 3.5 | 2.8 | 6.2 | 528.6 | 0.0 | 866.5 | 12.5 | 81.9 | 938.9 | 404.8 |
mean | 227.5 | 5.2 | 15.9 | 3.8 | 2.7 | 6.2 | 584.4 | 13.1 | 855.4 | 15.0 | 102.4 | 972.8 | 375.3 | |
st.dev | 32.5 | 3.2 | 6.6 | 0.5 | 0.5 | 0.8 | 202.5 | 24.6 | 190.2 | 9.9 | 51.6 | 161.5 | 204.5 | |
Mazowieckie | median | 973.8 | 33.2 | 26.8 | 3.0 | 2.4 | 5.8 | 2187.8 | 0.0 | 2714.9 | 77.2 | 170.2 | 3028.0 | 897.1 |
mean | 950.7 | 30.7 | 34.5 | 2.9 | 2.4 | 5.7 | 2176.6 | 0.0 | 2764.7 | 75.7 | 196.9 | 3037.2 | 860.6 | |
st.dev | 99.7 | 13.8 | 21.9 | 0.3 | 0.5 | 0.6 | 115.4 | 0.0 | 358.9 | 37.3 | 125.3 | 322.0 | 309.9 | |
Opolskie | median | 297.7 | 71.2 | 46.2 | 3.6 | 2.9 | 6.7 | 342.9 | 315.5 | 1063.7 | 213.2 | 283.8 | 1682.7 | 950.2 |
mean | 294.7 | 65.7 | 44.1 | 4.2 | 2.9 | 6.8 | 339.5 | 314.5 | 1207.6 | 196.7 | 301.0 | 1705.4 | 955.2 | |
st.dev | 16.2 | 15.6 | 8.5 | 1.1 | 0.6 | 1.3 | 55.2 | 85.6 | 301.7 | 62.8 | 86.9 | 348.7 | 482.6 | |
Podkarpackie | median | 244.1 | 16.2 | 12.6 | 2.9 | 2.2 | 5.8 | 370.9 | 136.5 | 629.0 | 33.2 | 69.4 | 831.2 | 307.3 |
mean | 239.8 | 15.2 | 16.6 | 2.9 | 2.2 | 6.1 | 396.4 | 147.3 | 680.7 | 35.4 | 106.6 | 822.7 | 268.7 | |
st.dev | 38.9 | 7.0 | 8.1 | 0.4 | 0.3 | 1.0 | 195.1 | 98.1 | 137.5 | 18.8 | 66.1 | 111.5 | 144.1 | |
Podlaskie | median | 491.6 | 5.1 | 4.8 | 2.5 | 2.6 | 5.0 | 1640.0 | 0.0 | 1149.2 | 14.8 | 26.3 | 1198.7 | -437.4 |
mean | 473.1 | 6.9 | 9.9 | 2.4 | 2.5 | 5.2 | 1613.7 | 0.0 | 1138.9 | 19.4 | 55.5 | 1213.8 | -399.9 | |
st.dev | 53.2 | 5.3 | 9.0 | 0.4 | 0.6 | 1.1 | 127.2 | 0.0 | 177.6 | 16.4 | 54.4 | 171.0 | 186.2 | |
Pomorskie | median | 401.5 | 54.6 | 5.0 | 3.0 | 2.6 | 5.0 | 532.9 | 97.5 | 1241.2 | 156.7 | 23.1 | 1397.8 | 749.9 |
mean | 404.6 | 56.7 | 5.6 | 3.2 | 2.6 | 5.0 | 549.0 | 100.5 | 1267.0 | 153.7 | 29.3 | 1449.9 | 785.0 | |
st.dev | 24.4 | 17.0 | 3.4 | 0.6 | 0.5 | 1.1 | 50.1 | 39.6 | 195.4 | 65.9 | 21.8 | 256.8 | 281.6 | |
Śląskie | median | 201.6 | 18.2 | 14.9 | 4.1 | 2.6 | 6.7 | 302.2 | 39.6 | 807.4 | 48.4 | 102.9 | 967.9 | 621.5 |
mean | 200.7 | 16.9 | 15.3 | 3.9 | 2.6 | 6.7 | 321.1 | 34.8 | 792.5 | 44.4 | 103.0 | 939.8 | 583.0 | |
st.dev | 13.5 | 4.7 | 4.1 | 0.5 | 0.4 | 0.9 | 59.7 | 32.9 | 92.8 | 14.6 | 31.8 | 118.6 | 135.8 | |
Świętokrzyskie | median | 268.1 | 6.3 | 3.3 | 2.8 | 2.3 | 5.2 | 408.6 | 11.6 | 707.1 | 15.6 | 15.1 | 742.6 | 296.9 |
mean | 258.1 | 6.3 | 3.6 | 2.7 | 2.3 | 5.2 | 430.6 | 27.2 | 711.1 | 14.8 | 19.2 | 745.2 | 285.2 | |
st.dev | 31.9 | 3.2 | 2.0 | 0.3 | 0.4 | 0.7 | 118.5 | 29.4 | 111.4 | 7.7 | 11.8 | 106.9 | 108.1 | |
Warmińsko-mazurskie | median | 427.1 | 58.2 | 7.0 | 3.4 | 2.2 | 5.2 | 890.4 | 0.0 | 1447.0 | 131.8 | 38.9 | 1640.4 | 746.5 |
mean | 422.0 | 59.4 | 8.3 | 3.5 | 2.2 | 5.2 | 892.0 | 0.0 | 1472.8 | 139.9 | 44.1 | 1656.8 | 764.8 | |
st.dev | 53.8 | 10.8 | 4.2 | 0.7 | 0.4 | 0.8 | 43.7 | 0.0 | 208.9 | 46.5 | 24.5 | 244.5 | 249.6 | |
Wielkopolskie | median | 1054.0 | 98.9 | 56.2 | 3.0 | 2.7 | 5.9 | 2328.9 | 0.0 | 2981.2 | 243.4 | 325.0 | 3752.8 | 1359.8 |
mean | 1016.2 | 94.8 | 80.2 | 3.1 | 2.7 | 6.0 | 2336.5 | 0.0 | 3165.3 | 259.7 | 493.4 | 3918.3 | 1581.9 | |
st.dev | 75.3 | 24.2 | 50.1 | 0.7 | 0.6 | 1.1 | 92.2 | 0.0 | 734.8 | 91.9 | 335.4 | 855.6 | 861.6 | |
Zachodnio-pomorskie | median | 462.2 | 98.3 | 6.8 | 4.2 | 2.5 | 5.2 | 260.2 | 487.5 | 1765.5 | 240.9 | 37.5 | 2020.9 | 1279.2 |
mean | 444.9 | 91.3 | 8.3 | 4.2 | 2.5 | 5.4 | 295.1 | 484.2 | 1814.6 | 241.4 | 43.8 | 2099.8 | 1186.7 | |
st.dev | 59.5 | 16.4 | 8.0 | 0.8 | 0.5 | 0.8 | 68.8 | 163.1 | 347.3 | 81.8 | 38.2 | 370.6 | 402.7 | |
Poland | median | 7769.7 | 796.8 | 339.3 | 3.4 | 2.6 | 6.1 | 13,409.8 | 2884.8 | 24,855.7 | 2105.8 | 1994.2 | 30,002.0 | 13,727.9 |
mean | 7590.2 | 721.8 | 414.5 | 3.3 | 2.6 | 6.1 | 13,592.1 | 2780.2 | 25,069.6 | 1926.9 | 2550.6 | 29,546.9 | 12,512.1 | |
st.dev | 656.4 | 192.1 | 181.5 | 0.4 | 0.4 | 0.8 | 1213.7 | 510.9 | 2613.1 | 684.9 | 1221.0 | 3285.0 | 4287.2 |
Specification | Constant | t | p | t2 | p | t3 | p | R2 * |
---|---|---|---|---|---|---|---|---|
Dolnośląskie | 661.25 | 69.52 | <0.001 | 0.497 | ||||
Kujawsko-pomorskie | 704.30 | 43.42 | <0.001 | 0.450 | ||||
Lubelskie | 609.39 | 78.68 | <0.001 | 0.430 | ||||
Lubuskie | 261.01 | 16.07 | 0.019 | 0.216 | ||||
Łódzkie | 394.12 | 31.90 | <0.001 | 0.437 | ||||
Małopolskie | 175.37 | 18.18 | 0.010 | 0.267 | ||||
Mazowieckie ** | ||||||||
Opolskie | 376.66 | 52.59 | <0.001 | 0.429 | ||||
Podkarpackie | 111.07 | 14.33 | 0.003 | 0.348 | ||||
Podlaskie | −303.10 | −0.04 | 0.005 | 0.314 | ||||
Pomorskie | 536.89 | 1.57 | <0.001 | 0.597 | ||||
Śląskie | 425.38 | 14.33 | 0.001 | 0.399 | ||||
Świętokrzyskie | 168.10 | 10.64 | 0.003 | 0.340 | ||||
Warmińsko-mazurskie | 514.02 | 22.80 | 0.007 | 0.285 | ||||
Wielkopolskie *** | 2071.98 | −584.47 | 0.048 | 79.49 | 0.013 | −2.60 | 0.008 | 0.385 |
Zachodniopomorskie ** | ||||||||
Poland | 7357.54 | 468.60 | <0.001 | 0.432 |
Specification | Constant | X11 | p | X21 | p | X31 | p | X12 | p | X32 | p | X412 | p | X43 | p | R2 * |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dolnośląskie | −2726.68 | 10.9 | <0.001 | 3.8 | 0.050 | 415.7 | <0.001 | 127.2 | 0.009 | 0.948 | ||||||
Kujawsko-pomorskie | −1163.80 | 2.2 | 0.049 | 687.7 | <0.001 | 0.902 | ||||||||||
Lubelskie | −1907.86 | 759.8 | <0.001 | 1.5 | 0.005 | 0.809 | ||||||||||
Lubuskie | −429.93 | 4.7 | 0.009 | 162.0 | <0.001 | 32.4 | 0.007 | 0.933 | ||||||||
Łódzkie | −27.49 | 655.8 | <0.001 | −1.0 | 0.001 | 0.899 | ||||||||||
Małopolskie | −307.20 | 277.5 | <0.001 | −0.6 | <0.001 | 0.952 | ||||||||||
Mazowieckie | −3758.03 | 3.1 | <0.001 | 10.1 | <0.001 | 898.5 | <0.001 | 97.8 | 0.002 | −0.8 | <0.001 | 0.959 | ||||
Opolskie | 532.44 | 7.6 | 0.025 | 206.2 | <0.001 | 83.2 | 0.015 | −2.7 | 0.008 | −1.9 | 0.004 | 0.901 | ||||
Podkarpackie | −310.32 | 250.3 | <0.001 | −0.4 | <0.001 | 0.802 | ||||||||||
Podlaskie | −423.40 | 1.1 | 0.016 | 408.6 | <0.001 | −0.9 | <0.001 | 0.869 | ||||||||
Pomorskie | −560.03 | 3.6 | 0.015 | 359.6 | <0.001 | 0.949 | ||||||||||
Śląskie | −426.17 | 8.8 | 0.001 | 181.2 | <0.001 | 23.8 | 0.031 | 0.941 | ||||||||
Świętokrzyskie | −313.83 | 277.8 | <0.001 | −0.4 | <0.001 | 0.893 | ||||||||||
Warmińsko-mazurskie | −313.96 | 311.5 | <0.001 | 0.842 | ||||||||||||
Wielkopolskie *** | 3351.16 | 9.9 | 0.029 | 924.1 | <0.001 | −2.40 | 0.019 | 0.809 | ||||||||
Zachodniopomorskie | −237.701 | 416.8 | <0.001 | −1.0 | 0.022 | 0.916 | ||||||||||
Poland | −18,335.00 | 5.5 | 0.004 | 8111.9 | <0.001 | 0.940 |
Specification | 2025 | 2030 | ||||
---|---|---|---|---|---|---|
Lower Endpoint | Forecast | Upper Endpoint | Lower Endpoint | Forecast | Upper Endpoint | |
Dolnośląskie | 1497 | 2538 | 3580 | 1757 | 2886 | 4015 |
Kujawsko-pomorskie | 1166 | 1877 | 2587 | 1323 | 2094 | 2864 |
Lubelskie | 1397 | 2734 | 4071 | 1679 | 3127 | 4576 |
Lubuskie | 266 | 695 | 1124 | 310 | 775 | 1241 |
Łódzkie | 720 | 1256 | 1791 | 835 | 1415 | 1995 |
Małopolskie | 236 | 666 | 1097 | 290 | 757 | 1223 |
Mazowieckie | lower = 719 | mean = 860 | upper = 1001 | |||
Opolskie | 900 | 1797 | 2694 | 1088 | 2060 | 3031 |
Podkarpackie | 212 | 498 | 784 | 259 | 570 | 880 |
Podlaskie | −1594 | −1053 | −511 | −2376 | −1551 | −726 |
Pomorskie | 1172 | 1684 | 2197 | 1506 | 2149 | 2791 |
Śląskie | 553 | 812 | 1071 | 603 | 884 | 1165 |
Świętokrzyskie | 240 | 455 | 671 | 275 | 509 | 743 |
Warmińsko-mazurskie | 611 | 1130 | 1648 | 681 | 1244 | 1806 |
Wielkopolskie | lower = 1189 | mean = 1581 | upper = 1974 | |||
Zachodniopomorskie | lower = 1003 | mean = 1186 | upper = 1370 | |||
Poland | 12,062 | 20,010 | 27,958 | 13,740 | 22,353 | 30,965 |
Specification | 2025 | 2030 | ||||
---|---|---|---|---|---|---|
Lower Endpoint | Forecast | Upper Endpoint | Lower Endpoint | Forecast | Upper Endpoint | |
Dolnośląskie | 1454 | 1759 | 2065 | 1575 | 1890 | 2205 |
Kujawsko-pomorskie | 1400 | 1678 | 1956 | 1518 | 1804 | 2090 |
Lubelskie | 1311 | 2103 | 2895 | 1433 | 2297 | 3162 |
Lubuskie | 283 | 397 | 511 | 272 | 388 | 504 |
Łódzkie | 665 | 871 | 1076 | 920 | 1133 | 1346 |
Małopolskie | 519 | 624 | 729 | 612 | 724 | 837 |
Mazowieckie | 797 | 965 | 1134 | 802 | 983 | 1165 |
Opolskie | 986 | 1388 | 1790 | 1094 | 1550 | 2006 |
Podkarpackie | 203 | 345 | 486 | 158 | 296 | 435 |
Podlaskie | −864 | −703 | −542 | −963 | −793 | −623 |
Pomorskie | 1306 | 1462 | 1617 | 1471 | 1637 | 1802 |
Śląskie | 581 | 665 | 750 | 603 | 698 | 794 |
Świętokrzyskie | 294 | 378 | 462 | 325 | 417 | 508 |
Warmińsko-mazurskie | 987 | 1218 | 1449 | 1148 | 1396 | 1644 |
Wielkopolskie | 685 | 1500 | 2316 | 708 | 1522 | 2336 |
Zachodniopomorskie | 1043 | 1316 | 1589 | 1079 | 1375 | 1672 |
Poland | 11,467 | 13,887 | 16,307 | 11,798 | 14,337 | 16,875 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gradziuk, P.; Gradziuk, B.; Trocewicz, A.; Jendrzejewski, B. Potential of Straw for Energy Purposes in Poland—Forecasts Based on Trend and Causal Models. Energies 2020, 13, 5054. https://doi.org/10.3390/en13195054
Gradziuk P, Gradziuk B, Trocewicz A, Jendrzejewski B. Potential of Straw for Energy Purposes in Poland—Forecasts Based on Trend and Causal Models. Energies. 2020; 13(19):5054. https://doi.org/10.3390/en13195054
Chicago/Turabian StyleGradziuk, Piotr, Barbara Gradziuk, Anna Trocewicz, and Błażej Jendrzejewski. 2020. "Potential of Straw for Energy Purposes in Poland—Forecasts Based on Trend and Causal Models" Energies 13, no. 19: 5054. https://doi.org/10.3390/en13195054
APA StyleGradziuk, P., Gradziuk, B., Trocewicz, A., & Jendrzejewski, B. (2020). Potential of Straw for Energy Purposes in Poland—Forecasts Based on Trend and Causal Models. Energies, 13(19), 5054. https://doi.org/10.3390/en13195054