Conversion of Residential Heating Systems from Fossil Fuels to Biofuels: A Cross-Cultural Analysis †
Abstract
:1. Introduction
2. The Renewable Sector in Numbers. The Case of the United States, the United Kingdom and the Republic of South Africa
2.1. United States of America
2.2. United Kingdom
2.3. South Africa
3. Review of the Literature and Hypotheses
3.1. Attitude towards Renewable Energy-Based Heating Systems and Intention to Convert to Biofuel-Based Systems
3.2. Influence of Pro-Environmental Behaviour on Attitude and Intention
3.3. Influence of Technology Perceived Attributes on Attitude and Intention
3.4. Moderating Role of National Culture
4. Methodology
4.1. Rationale for Country Selection
4.2. Sample and Data Collection
4.3. Variable Measurement Scales
4.4. Data Analysis Techniques Used
5. Data Analysis and Discussion
5.1. Basic Descriptive Analysis
5.2. Reliability and Validity of the Measurement Scales
5.3. Measurement Model and Analysis of Factorial Invariance
5.4. Results of the Cross-Cultural Analysis
6. Conclusions, Implications, Limitations and Future Lines of Research
Author Contributions
Funding
Conflicts of Interest
Appendix A
Variable | Items | Communalities | Factor Loadings | |
---|---|---|---|---|
Attitude towards renewable energy-based heating systems KMO = 0.699 BTS = 0.00 Cronbach’s alpha = 0.798 Total variance = 57.229% | ATT1 | using them goes with my lifestyle, therefore, it´s consistent with the way I think I should live my life | 0.490 | 0.700 |
ATT3 | using them would be consistent with my own personal values | 0.711 | 0.843 | |
ATT4 | using them fits the way I see the world | 0.526 | 0.725 |
Appendix B
Variable | Items | Communalities | Factor Loadings | |
---|---|---|---|---|
Technology Perceived attributes KMO = 0.849 BTS = 0.00 Cronbach’s alpha = 0.839 Total variance = 46.828% | TIM | Time perceived | 0.544 | 0.737 |
IAQ | Indoor air quality | 0.435 | 0.659 | |
EFF | Efficiency | 0.516 | 0.719 | |
EUE | Effort required to use the equipment | 0.496 | 0.704 | |
FSS | Fuel supply security (price and availability) | 0.458 | 0677 | |
FUR | Functional reliability | 0.361 | 0.601 |
Appendix C
Variable | Factors | Items | Communalities | Factor Loadings | |
---|---|---|---|---|---|
Pro-environmental behavior (PB) | NEP A KMO = 0.686 BTS = 0.00 Cronbach’s alpha = 0.772 Total variance = 53.83% | NEP3 | If things continue on their present course, we will soon experience a major ecological catastrophe | 0.399 | 0.742 |
NEP2 | Humans are severely abusing the environment | 0.433 | 0.813 | ||
NEP10 | The balance of nature is very delicate and easily disturbed | 0.307 | 0.635 | ||
NEP B KMO = 0.669 BTS = 0.00 Cronbach’s alpha = 0.752 Total variance = 51.95% | NEP7 | The balance of nature is strong enough to cope with and recover from environmental impacts | 0.547 | 0.739 | |
NEP8 | The so-called “ecological crisis” facing mankind has been greatly exaggerated | 0.673 | 0.820 | ||
NEP6 | Humans were meant to rule over the rest of nature | 0.339 | 0.582 |
References
- Alaswad, A.; Dassisti, M.; Prescott, T.; Olabi, A.G. Technologies and developments of third generation biofuel production. Renew. Sustain. Energy Rev. 2015, 51, 1446–1460. [Google Scholar] [CrossRef]
- Dellink, R.; Hwang, H.; Lanzi, E.; Chateau, J. International TRADE Consequences of Climate Change; OECD: Paris, France, 2017; pp. 1–71. [Google Scholar] [CrossRef]
- Capellán-Pérez, I.; Mediavilla, M.; de Castro, C.; Carpintero, Ó.; Miguel, L.J. Fossil fuel depletion and socio-economic scenarios: An integrated approach. Energy 2014, 77, 641–666. [Google Scholar] [CrossRef]
- White, W.; Lunnan, A.; Nybakk, E.; Kulisic, B. The role of governments in renewable energy: The importance of policy consistency. Biomass Bioenergy 2013, 57, 97–105. [Google Scholar] [CrossRef]
- Franceschinis, C.; Thiene, M.; Scarpa, R.; Rose, J.; Moretto, M.; Cavalli, R. Adoption of renewable heating systems: An empirical test of the diffusion of innovation theory. Energy 2017, 125, 313–326. [Google Scholar] [CrossRef] [Green Version]
- IRENA. Global Bioenergy: Supply and Demand Projections; The International Renewable Energy Agency REmap 2030: Abu Dhabi, UAE, 2014; pp. 1–79. [Google Scholar]
- OECD. Sustainable Development: Linking Economy, Society, Environment; OECD Insights: Paris, France, 2008; pp. 1–7. ISBN 9789264055742. [Google Scholar]
- Kühtz, S. Adoption of sustainable development schemes and behaviours in Italy. Int. J. Sustain. High. Educ. 2007, 8, 155–169. [Google Scholar] [CrossRef]
- Luthra, S.; Govindan, K.; Kannan, D.; Mangla, S.K.; Garg, C.P. An integrated framework for sustainable supplier selection and evaluation in supply chains. J. Clean. Prod. 2017, 140, 1686–1698. [Google Scholar] [CrossRef]
- Sanner, B.; Angelino, L.; De Gregorio, M.; Février, N.; Haslinger, W.; Kujbus, A.; Landolina, S.; Sparber, W.; Stryi-Hipp, G.; van Helden, W.; et al. Strategic Research and Innovation Agenda for Renewable Heating & Cooling; Publications Office of the European Union: Luxembourg; Brussels, Belgium, 2013; p. 116. ISBN 9789279306570. [Google Scholar]
- Nigam, P.S.; Singh, A. Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci. 2011, 37, 52–68. [Google Scholar] [CrossRef]
- OECD/IEA. Technology Roadmap: Delivering Sustainable Bioenergy; OECD Insights: Paris, France, 2017; pp. 1–93. [Google Scholar]
- Jansson, J.; Marell, A.; Nordlund, A. Green consumer behavior: Determinants of curtailment and eco-innovation adoption. J. Consum. Mark. 2010, 27, 358–370. [Google Scholar] [CrossRef] [Green Version]
- Sopha, B.M.; Klockner, C.A.; Hertwich, E.G. Adopters and non-adopters of wood pellet heating in Norwegian households. Biomass Bioenergy 2011, 35, 652–662. [Google Scholar] [CrossRef]
- Park, E.; Ohm, J.Y. Factors influencing the public intention to use renewable energy technologies in South Korea: Effects of the fukushima nuclear accident. Energy Policy 2014, 65, 198–211. [Google Scholar] [CrossRef]
- Frederiks, E.R.; Stenner, K.; Hobman, E.V. The socio-demographic and psychological predictors of residential energy consumption: A comprehensive review. Energies 2015, 8, 573–609. [Google Scholar] [CrossRef] [Green Version]
- Dietz, T.; Gardner, G.T.; Gilligan, J.; Stern, P.C.; Vandenbergh, M.P. Household actions can provide a behavioral wedge to rapidly reduce US carbon emissions. Proc. Natl. Acad. Sci. USA 2009, 106, 18452–18456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jablonski, S.; Pantaleo, A.; Bauen, A.; Pearson, P.; Panoutsou, C.; Slade, R. The potential demand for bioenergy in residential heating applications (bio-heat) in the UK based on a market segment analysis. Biomass Bioenergy 2008, 32, 635–653. [Google Scholar] [CrossRef]
- Oreg, S.; Katz-Gerro, T. Predicting proenvironmental behavior cross-nationally: Values, the theory of planned behavior, and value-belief-norm theory. Environ. Behav. 2006, 38, 462–483. [Google Scholar] [CrossRef]
- Wilhite, H.; Nakagami, H.; Masuda, T.; Yamaga, Y.; Haneda, H. A cross-cultural analysis of household energy use behaviour in Japan and Norway. Energy Policy 1996, 24, 795–803. [Google Scholar] [CrossRef]
- Sanabria-Torres, E.; Parra-Penagos, C. Caracterización del comprador sogamoseño en súper e hipermercados. Estud. Gerenc. 2013, 29, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Rogers, E. Diffusion of Innovations; The Free Press: New York, NY, USA, 2003; pp. 1–551. [Google Scholar]
- Jager, W.; Janssen, M.A.; Viek, C. Experimentation with household dynamics: The consumat approach. Int. J. Sustain. Dev. 2001, 4, 90–100. [Google Scholar] [CrossRef]
- Hubert, M.K.P. A current overview of consumer neuroscience. J. Consum. Behav. 2008, 6, 272–292. [Google Scholar] [CrossRef]
- Reimann, M.; Zaichkowsky, J.; Neuhaus, C.; Bender, T.; Weber, B. Aesthetic package design: A behavioral, neural, and psychological investigation. J. Consum. Psychol. 2010, 20, 431–441. [Google Scholar] [CrossRef]
- Jian, W.; Michael, S.M. Validity, Reliability, and Applicability of Psychophysiological Techniques in Marketing Research. Psychol. Mark. 2008, 25, 197–232. [Google Scholar] [CrossRef]
- National Environmental Policy Act. United States; 1969; pp. 1–30. Available online: https://www.epa.gov/nepa.
- EPA. 2019 Year in Review; EPA: Washington, DC, USA, 2019; pp. 1–66. [Google Scholar]
- EIA. Total Energy Production; U.S. Energy Information Administration: Washington, DC, USA, 2017. [Google Scholar]
- IRENA. Final Renewable Energy Consumption; The International Renewable Energy Agency: Abu Dhabi, UAE, 2017; pp. 1–3. [Google Scholar]
- EIA. U.S. Energy Fact Explained; U.S. Energy Information Administration: Washington, DC, USA, 2019. [Google Scholar]
- IEA. United States 2019 Review; International Energy Agency: Paris, France, 2019; p. 283. [Google Scholar]
- IEA. World Energy Balances Highlights; International Energy Agency: Paris, France, 2020. [Google Scholar]
- IEA. United Kingdom 2019 Review; International Energy Agency: Paris, France, 2019. [Google Scholar]
- IEA. Africa Energy Outlook 2019: South Africa; International Energy Agency: Paris, France, 2019; p. 288. [Google Scholar]
- USAID. South Africa Power Africa Fact Sheet; USAID: Washington, DC, USA, 2020; pp. 1–2. [Google Scholar]
- Taylor, S.; Todd, P. Marketing Decomposition and crossover effects in the theory of planned behavior: A study of consumer adoption intentions. Int. J. Res. Mark. 1995, 12, 137–155. [Google Scholar] [CrossRef]
- Davis, F.D.; Warshaw, P.R. What do intention scales measure? J. Gen. Psychol. 1992, 4, 391–407. [Google Scholar] [CrossRef]
- Sopha, B.M.; Klöckner, C.A. Psychological factors in the diffusion of sustainable technology: A study of Norwegian households’ adoption of wood pellet heating. Renew. Sustain. Energy Rev. 2011, 15, 2756–2765. [Google Scholar] [CrossRef]
- Fraj, E.; Martínez, E. El nivel de conocimiento medioambiental como factor moderador de la relación entre la actitud y el comportamiento ecológico. Investig. Eur. De Dir. Y Econ. De La Empresa 2005, 11, 223–243. [Google Scholar]
- Lillemo, S.C.; Halvorsen, B. The impact of lifestyle and attitudes on residential firewood demand in Norway. Biomass Bioenergy 2013, 57, 13–21. [Google Scholar] [CrossRef]
- Hemström, K.; Mahapatra, K.; Gustavsson, L. Perceptions, attitudes and interest of Swedish architects towards the use of wood frames in multi-storey buildings. Resour. Conserv. Recycl. 2011, 55, 1013–1021. [Google Scholar] [CrossRef]
- Arabatzis, G.; Malesios, C. Pro-environmental attitudes of users and non-users of fuelwood in a rural area of Greece. Renew. Sustain. Energy Rev. 2013, 22, 621–630. [Google Scholar] [CrossRef]
- Kaiser, F.G.; Wolfing, S.; Fuhrer, U. Environmental attitude and ecological behaviour. J. Environ. Psychol. 1999, 19, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Chandon, P.; Morwitz, V.G.; Reinartz, W.J. Do Intentions Really Predict Behavior? Self-Generated Validity Effects in Survey Research. J. Mark. 2005, 69, 1–14. [Google Scholar] [CrossRef]
- Wilson, C.; Dowlatabadi, H. Models of Decision Making and Residential Energy Use. Annu. Rev. Environ. Resour. 2007, 32, 169–203. [Google Scholar] [CrossRef]
- Nyrud, A.Q.; Roos, A.; Sande, J.B. Residential bioenergy heating: A study of consumer perceptions of improved woodstoves. Energy Policy 2008, 36, 3159–3166. [Google Scholar] [CrossRef]
- Fielding, K.S.; McDonald, R.; Louis, W.R. Theory of planned behaviour, identity and intentions to engage in environmental activism. J. Environ. Psychol. 2008, 28, 318–326. [Google Scholar] [CrossRef]
- Claudy, M.C.; Peterson, M.; O’Driscoll, A. Understanding the Attitude-Behavior Gap for Renewable Energy Systems Using Behavioral Reasoning Theory. J. Macromark. 2013, 33, 273–287. [Google Scholar] [CrossRef]
- Alam, S.S.; Nik Hashim, N.H.; Rashid, M.; Omar, N.A.; Ahsan, N.; Ismail, M.D. Small-scale households renewable energy usage intention: Theoretical development and empirical settings. Renew. Energy 2014, 68, 255–263. [Google Scholar] [CrossRef]
- Haryanto, B. The Influence of Ecological Knowledge and Product Attributes in Forming Attitude and Intention to Buy Green Product. Int. J. Mark. Stud. 2014, 6, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Hsu, Y.-C.P.; Chan, F. Surveying Data on Consumer Green Purchasing Intention: A Case in New Zealand. Int. J. Bus. Soc. Res. 2015, 05, 1–14. [Google Scholar]
- Amoroso, D.L.; Lim, R.A. Exploring the Personal Innovativeness Construct: The Roles of Ease of Use, Satisfaction and Attitudes. Asia Pac. J. Inf. Syst. 2015, 25, 662–685. [Google Scholar] [CrossRef]
- Klöckner, C.A.; Oppedal, I.O. General vs. domain specific recycling behaviour—Applying a multilevel comprehensive action determination model to recycling in Norwegian student homes. Resour. Conserv. Recycl. 2011, 55, 463–471. [Google Scholar] [CrossRef]
- Van Rijnsoever, F.J.; Farla, J.C.M. Identifying and explaining public preferences for the attributes of energy technologies. Renew. Sustain. Energy Rev. 2014, 31, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Fujiki, M.; Zheng, Y. Statistical Characteristics of Environmental Consciousness and Pro-Environmental Behavior in East Asia; Doshisha University: Kyoto, Japan, 2012; pp. 1–6. [Google Scholar]
- Laroche, M.; Bergeron, J.; Barbaro-Forleo, G. Targeting consumers who are willing to pay more for environmentally friendly products. J. Consum. Mark. 2001, 18, 503–520. [Google Scholar] [CrossRef] [Green Version]
- Wesley-Schultz, P. The Structure of Environmental Concern: Concern for Self, Other People, and The Biosphere. J. Environ. Psychol. 2001, 21, 327–339. [Google Scholar] [CrossRef] [Green Version]
- Tilikidou, I. Pro-Environmental Purchasing Behaviour. Corp. Soc. Responsib. Environ. Manag. 2007, 14, 121–134. [Google Scholar] [CrossRef]
- Tonglet, M.; Phillips, P.S.; Bates, M.P. Determining the drivers for householder pro-environmental behaviour: Waste minimisation compared to recycling. Resour. Conserv. Recycl. 2004, 42, 27–48. [Google Scholar] [CrossRef]
- Kalafatis, S.P.; Pollard, M.; East, R.; Tsogas, M.H. Green marketing and Ajzen’s theory of planned behaviour: A cross-market examination. J. Consum. Mark. 1999, 16, 441–460. [Google Scholar] [CrossRef]
- Stern, P.C. New Environmental Theories: Toward a Coherent Theory of Environmentally Significant Behavior. J. Soc. Issues 2000, 56, 407–424. [Google Scholar] [CrossRef]
- Fernandez, V.P. Observable and unobservable determinants of replacement of home appliances. Energy Econ. 2001, 23, 305–323. [Google Scholar] [CrossRef]
- Awerbuch, S.; Deehan, W. Do consumers discount the future correctly? A market-based valuation of residential fuel switching. Energy Policy 1995, 23, 57–69. [Google Scholar] [CrossRef]
- Sopha, B.M.; Klöckner, C.A.; Skjevrak, G.; Hertwich, E.G. Norwegian households’ perception of wood pellet stove compared to air-to-air heat pump and electric heating. Energy Policy 2010, 38, 3744–3754. [Google Scholar] [CrossRef]
- Lillemo, S.C.; Alfnes, F.; Halvorsen, B.; Wik, M. Households’ heating investments: The effect of motives and attitudes on choice of equipment. Biomass Bioenergy 2013, 57, 4–12. [Google Scholar] [CrossRef]
- Balcombe, P.; Rigby, D.; Azapagic, A. Investigating the importance of motivations and barriers related to microgeneration uptake in the UK. Appl. Energy 2014, 130, 403–418. [Google Scholar] [CrossRef]
- Mahapatra, K.; Gustavsson, L. Innovative approaches to domestic heating: Homeowners’ perceptions and factors influencing their choice of heating system. Int. J. Consum. Stud. 2007, 32, 75–87. [Google Scholar] [CrossRef]
- Michelsen, C.C.; Madlener, R. Switching from fossil fuel to renewables in residential heating systems: An empirical study of homeowners’ decisions in Germany. Energy Policy 2016, 89, 95–105. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef] [Green Version]
- Kale, S.H. Grouping Euroconsumers: A Culture-Based Clustering Approach. J. Int. Mark. 1995, 3, 35–48. [Google Scholar] [CrossRef]
- Sui Pheng, L.; Yuquan, S. An exploratory study of Hofstede’s cross-cultural dimensions in construction projects. Manag. Decis. 2002, 40, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Campos, P.H.; César, P.; Nazel, F. Cuantificación de las distancias culturales entre países: Un análisis de Latinoamérica. Cuad. De Adm. 2007, 20, 253–272. [Google Scholar]
- Hofstede, G.; Hofstede, G.J.; Minkov, M. Cultures and Organizations: Software of the Mind, 3rd ed.; McGraw Hill Professional: New York, NY, USA, 2010; pp. 1–576. [Google Scholar]
- De Mooij, M.; Hofstede, G. Cross-Cultural Consumer Behavior: A Review of Research Findings. J. Int. Consum. Mark. 2011, 23, 181–192. [Google Scholar] [CrossRef]
- Clark, T. International Marketing and National Character: A Review and Proposal for an Integrative Theory. J. Mark. 1990, 54, 66–79. [Google Scholar] [CrossRef]
- Luna, D.; Forquer Gupta, S. An integrative framework for cross-cultural consumer behavior. Int. Mark. Rev. 2001, 18, 45–69. [Google Scholar] [CrossRef] [Green Version]
- De Mooij, M. Papers Cultural marketing: Maximising business effectiveness in a multicultural world. J. Cult. Mark. Strategy 2015, 1, 11–18. [Google Scholar]
- Medina Molina, C.; Rufín Moreno, R.; Rey Moreno, M. El papel moderador de la cultura en el proceso generador de satisfacción y lealtad. Investig. Eur. De Dir. Y Econ. De La Empresa 2011, 17, 57–73. [Google Scholar] [CrossRef]
- Steenkamp, J.-B.E.M.; ter Hofstede, F.; Wedel, M. A Cross-National Investigation into the Individual and National Cultural Antecedents of Consumer Innovativeness. J. Mark. 1999, 63, 55–69. [Google Scholar] [CrossRef]
- Olavarrieta, S. Aspectos metodológicos en la investigación cross-cultural. Rev. Latinoam. De Adm. 2001, 55–78. [Google Scholar]
- De Mooij, M. Comparing dimensions of national culture for secondary analysis of consumer behavior data of different countries. Int. Mark. Rev. 2017, 34, 444–456. [Google Scholar] [CrossRef]
- Hofstede, G. Dimensionalizing Cultures: The Hofstede Model in Context. Online Read. Psychol. Cult. 2011, 2, 1–26. [Google Scholar] [CrossRef]
- Kirkman, B.L.; Lowe, K.B.; Gibson, C.B. A quarter century of culture’s consequences: A review of empirical research incorporating Hofstede’s cultural values framework. J. Int. Bus. Stud. 2006, 37, 285–320. [Google Scholar] [CrossRef]
- Zhang, J.; Beatty, S.E.; Walsh, G. Review and future directions of cross-cultural consumer services research. J. Bus. Res. 2008, 61, 211–224. [Google Scholar] [CrossRef]
- De Mooij, M. Cross-cultural research in international marketing: Clearing up some of the confusion. Int. Mark. Rev. 2015, 32, 646–662. [Google Scholar] [CrossRef]
- Taras, V.; Sarala, R.; Muchinsky, P.; Kemmelmeier, M.; Singelis, T.M.; Avsec, A.; Coon, H.M.; Dinnel, D.L.; Gardner, W.; Grace, S.; et al. Opposite Ends of the Same Stick? Multi-Method Test of the Dimensionality of Individualism and Collectivism. J. Cross Cult. Psychol. 2014, 45, 213–245. [Google Scholar] [CrossRef] [Green Version]
- Fischer, R.; Poortinga, Y.H. Are cultural values the same as the values of individuals? An examination of similarities in personal, social and cultural value structures. Int. J. Cross Cult. Manag. 2012, 12, 157–170. [Google Scholar] [CrossRef]
- Rodriguez Cano, C.; Carrillat, F.A.; Jaramillo, F. A meta-analysis of the relationship between market orientation and business performance: Evidence from five continents. Int. J. Res. Mark. 2004, 21, 179–200. [Google Scholar] [CrossRef]
- Husted, B.W. Culture and ecology: A cross-national study of the determinants of environmental sustainability. Manag. Int. Rev. 2005, 45, 349–371. [Google Scholar] [CrossRef]
- Park, H.; Russell, C.; Lee, J. National Culture and Environmental Sustainability: A Cross-National Analysis. J. Econ. Financ. 2007, 31, 104–121. [Google Scholar] [CrossRef]
- Tata, J.; Prasad, S. National cultural values, sustainability beliefs, and organizational initiatives. Cross Cult. Manag. Int. J. 2015, 22, 278–296. [Google Scholar] [CrossRef]
- Dianne, C.; Bonanni, C.; Bowes, J.; Ilsever, J. Beyond Trust: Web Site Design Preferences Across Cultures. J. Glob. Inf. Manag. 2005, 13, 25–54. [Google Scholar] [CrossRef]
- Vachon, S. International Operations and Sustainable Development: Should National Culture Matter? Sustainable 2010, 18, 350–361. [Google Scholar] [CrossRef]
- Waldman, D.A.; De Luque, M.S.; Washburn, N.; House, R.J.; Adetoun, B.; Barrasa, A.; Bobina, M.; Bodur, M.; Chen, Y.-J.; Debbarma, S.; et al. Cultural and leadership predictors of corporate social responsibility values of top management: A GLOBE study of 15 countries. J. Int. Bus. Stud. 2006, 36, 823–837. [Google Scholar] [CrossRef]
- Ringov, D.; Zollo, M. Corporate responsibility from a socio-institutional perspective The impact of national culture on corporate social performance. Corp. Gov. 2007, 7, 476–485. [Google Scholar] [CrossRef]
- Mahapatra, K.; Gustavsson, L. Adoption of innovative heating systems-needs and attitudes of Swedish homeowners. Energy Effic. 2010, 3, 1–18. [Google Scholar] [CrossRef]
- Decker, T.; Menrad, K. House owners’ perceptions and factors influencing their choice of specific heating systems in Germany. Energy Policy 2015, 85, 150–161. [Google Scholar] [CrossRef]
- Vasseur, V.; Kemp, R. The adoption of PV in the Netherlands: A statistical analysis of adoption factors. Renew. Sustain. Energy Rev. 2015, 41, 483–494. [Google Scholar] [CrossRef]
- Garson, G.D. Structural Equation Modeling; Statistical Associates Publishers: Asheboro, NC, USA, 2015; pp. 1–46. [Google Scholar]
- Westland, J. Lower bounds on sample size in structural equation modeling. Electron. Commer. Res. Appl. 2010, 9, 476–487. [Google Scholar] [CrossRef]
- Soper, D. A-priori Sample Size Calculator for Structural Equation Models [Software]. 2020. Available online: http://www.danielsoper.com/statcalc (accessed on 24 July 2019).
- Ryan, T.P. Sample Size Determination and Power; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 1–374. [Google Scholar] [CrossRef]
- Joseph, F.H., Jr.; Black, W.C.; Babin, B.J.; Rolph, E.A. Multivariate Data Analysis: Pearson New International; Pearson: London, UK, 2013. [Google Scholar]
- Arbuckle, J. IBM SPSS Amos 21 User’s Guide; Amos Development Corporation: Crawfordville, FL, USA, 2012. [Google Scholar]
- Wan, T.T.H. Evidence-Based Health Care Management: Multivariate Modeling Approaches; Springer: Berlin/Heidelberg, Germany, 2002; pp. 1–233. [Google Scholar]
- Fishbein, M.; Ajzen, I. Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research; Addison-Wesley: Boston, MA, USA, 1975. [Google Scholar]
- Todd, P.; Taylor, S. An Integrated Model of Waste Management Behavior: A test of household recycling and composting intentions. Environ. Behav. 1995, 27, 603–630. [Google Scholar]
- Dunlap, R.E.; Van Liere, K.D. The “new environmental paradigm”: A proposed measuring instrument and preliminary results. J. Environ. Educ. 1978, 9, 10–19. [Google Scholar] [CrossRef]
- Poortinga, W.; Steg, L.; Vlek, C. Values, Environmental Concern, and Environmental Behavior A Study into Household Energy Use. Environ. Behav. 2004, 36, 70–93. [Google Scholar] [CrossRef]
- Dunlap, R.E.; Van Liere, K.D.; Mertig, A.G.; Jones, R.E. Measuring Endorsement of the New Ecological Paradigm: A Revised NEP Scale. J. Soc. Issues 2000, 56, 425–442. [Google Scholar] [CrossRef]
- Ullman, J.B. Structural Equation Modeling; Harper Collins: New York, NY, USA, 1996. [Google Scholar]
- Uriel, E.; Aldás, J. Análisis Multivariante Aplicado; Thomson: Madrid, Spain, 1996. [Google Scholar]
- Ximénez, M.C.; García, A.G. Comparación de los métodos de estimación de máxima verosimilitud y mínimos cuadrados no ponderados en el análisis factorial confirmatorio mediante simulación Monte Carlo. Psicothema 2005, 17, 528–535. [Google Scholar]
- Brown, T.A. Confirmatory Factor Analysis for Applied Research; The Guilford Press: New York, NY, USA, 2006. [Google Scholar]
- Valdivieso, C. Efecto de los métodos de estimación en las modelaciones de estructuras de covarianzas sobre un modelo estructural de evaluación del servicio de clases. Comun. En Estadística 2013, 6, 21–44. [Google Scholar] [CrossRef] [Green Version]
- Cheung, G.W.; Rensvold, R.B. Assessing Extreme and Acquiescence Response Sets in Cross-Cultural Research Using Structural Equations Modeling. J. Cross Cult. Psychol. 2000, 31, 187–212. [Google Scholar] [CrossRef]
- Cheung, G.W.; Rensvold, R.B. Evaluating Goodness-of- Fit Indexes for Testing Measurement Invariance. Struct. Equ. Modeling A Multidiscip. J. 2002, 9, 233–255. [Google Scholar] [CrossRef]
- Gaskin, J. Stats Tools Package; Gaskination’s Statwiki: Provo, UT, USA, 2016. [Google Scholar]
- Horn, J.L.; McArdle, J.J. A practical and theoretical guide to measurement invariance in aging research. Exp. Aging Res. 1992, 18, 117–144. [Google Scholar] [CrossRef] [PubMed]
- Van de, V.; Leung, K. Methods and Data Analysis for Cross-Cultural Research; SAGE: London, UK, 1997. [Google Scholar]
- Fischer, R. Standardization to account for cross-cultural response bias: A classification of score adjustment procedures and review of research in JCCP. J. Cross Cult. Psychol. 2004, 35, 263–282. [Google Scholar] [CrossRef]
- Elosua, P. Evaluación progresiva de la invarianza factorial entre las versiones original y adaptada de una escala de autoconcepto. Psicothema 2005, 17, 356–362. [Google Scholar]
- Calvo-Porral, C. Analisis de la Invarianza Factorial y Causal Con AMOS; Alfa Delta Digital: Valencia, Spain, 2017; p. 76. [Google Scholar]
- Pavluković, V.; Armenski, T.; Alcántara-Pilar, J.M. Social impacts of music festivals: Does culture impact locals’ attitude toward events in Serbia and Hungary? Tour. Manag. 2017, 63, 42–53. [Google Scholar] [CrossRef]
- Gaskin, J. GroupDifferences. Stats Tools Package; Gaskination’s Statwiki: Provo, UT, USA, 2016. [Google Scholar]
- Carlos, L.; Martínez, S. El papel de la invarianza factorial en la validación del constructo calidad de servicio electrónico. Rev. Eur. De Dir. Y Econ. De La Empresa 2013, 22, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Gaskin, J. X2 Threshold. Stats Tools Package; Gaskination’s Statwiki: Provo, UT, USA, 2016. [Google Scholar]
- Del Barrio, S.; Luque, T. Análisis de Ecuaciones Estructurales; Pirámide: Madrid, Spain, 2000; pp. 489–557. [Google Scholar]
- Ram, S.; Sheth, J. Consumer resistance to innovation: The markething problem and its solutions. J. Consum. Mark. 1989, 6, 5–14. [Google Scholar] [CrossRef]
- Valente, T.W. Social Network tresholds in the diffusion of innovations. Soc. Netw. 1996, 18, 69–89. [Google Scholar] [CrossRef]
- Maier, F.H. New Product Diffusion Models in Innovation Management—A System Dynamics Perspective. Syst. Dyn. Rev. 1998, 14, 285–308. [Google Scholar] [CrossRef]
- Malhotra, N.K.; Dash, S. Marketing Research an Applied Orientation; Pearson Publishing: London, UK, 2011. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Michelsen, C.C.; Madlener, R. Homeowners’ preferences for adopting innovative residential heating systems: A discrete choice analysis for Germany. Energy Econ. 2012, 34, 1271–1283. [Google Scholar] [CrossRef]
- Katz, J.P.; Swanson, D.L.; Nelson, L.K. Culture-based expectations of corporate citizenship: A propositional framework and comparison of four cultures. Int. J. Organ. Anal. 2001, 9, 149–171. [Google Scholar] [CrossRef]
- Greenhalgh, T.; Robert, G.; Macfarlane, F.; Bate, P.; Kyriakidou, O. Diffusion of innovations in service organizations: Systematic review and recommendations. Milbank Q. 2004, 82, 581–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, H.P.; Young, P.H. Innovation diffusion in heterogeneous populations: Contagion, social influence, and social learning. Am. Econ. Rev. 2009, 99, 1899–1924. [Google Scholar] [CrossRef] [Green Version]
- Tellis, G.J.; Stremersch, S.; Yin, E. The International Takeoof of New Products: The Role of Economics, Culture, and Country Innovativeness. Mark. Sci. 2003, 22, 188–208. [Google Scholar] [CrossRef]
- Rai, V.; Robinson, S.A. Agent-based modeling of energy technology adoption: Empirical integration of social, behavioral, economic, and environmental factors. Environ. Model. Softw. 2015, 70, 163–177. [Google Scholar] [CrossRef] [Green Version]
- Sheth, J.N. Psychology of Innovation Resistance: The Less Developed Concept in Diffusion Research. Res. Mark. 1981, 4, 273–282. [Google Scholar] [CrossRef]
- Lee, S. An integrated adoption model for e-books in a mobile environment: Evidence from South Korea. Telemat. Inform. 2013, 30, 165–176. [Google Scholar] [CrossRef]
Variables | Categories | US% | UK% | SA% | Total% | n |
---|---|---|---|---|---|---|
Gender | Female | 57.06 | 59.06 | 58.52 | 58.12 | 247 |
Male | 42.94 | 40.94 | 41.48 | 41.88 | 178 | |
Age Range | 20–30 | 20.86 | 15.75 | 20.00 | 19.06 | 81 |
31–40 | 33.74 | 27.56 | 31.11 | 31.06 | 132 | |
41–50 | 12.88 | 23.62 | 24.44 | 19.76 | 84 | |
51–60 | 12.27 | 9.45 | 17.04 | 12.94 | 55 | |
61–65 | 6.75 | 4.72 | 5.19 | 5.65 | 24 | |
66–70 | 7.36 | 6.30 | 1.48 | 5.18 | 22 | |
>70 | 6.13 | 12.60 | 0.74 | 6.35 | 27 | |
Civil Status | Single | 9.20 | 16.54 | 22.22 | 15.53 | 66 |
Couple without dependent children | 19.63 | 39.37 | 17.78 | 24.94 | 106 | |
Couple with dependent children | 52.15 | 31.50 | 43.70 | 43.29 | 184 | |
Separated without dependent children | 4.91 | 4.72 | 4.44 | 4.71 | 20 | |
Separated with dependent children | 7.36 | 5.51 | 5.19 | 6.12 | 26 | |
Widow(er) without dependent children | 4.29 | 2.36 | 2.35 | 10 | ||
Widow(er) with dependent children | 1.48 | 0.47 | 2 | |||
Other | 2.45 | 5.19 | 2.59 | 11 | ||
Level of Education | High/Secondary school | 19.63 | 36.22 | 20.00 | 24.71 | 105 |
Lower University Degree | 39.26 | 40.16 | 44.44 | 41.18 | 175 | |
Higher University Degree (Master, PhD) | 39.26 | 22.83 | 29.63 | 31.29 | 133 | |
Other studies | 1.84 | 0.79 | 5.93 | 2.82 | 12 | |
Current Occupation | Student | 2.45 | 2.36 | 0.74 | 1.88 | 8 |
Housewife | 4.29 | 4.72 | 0.74 | 3.29 | 14 | |
Retired | 20.25 | 23.62 | 519 | 16.47 | 70 | |
Unemployed | 2.45 | 3.15 | 2.96 | 2.82 | 12 | |
Business owner | 7.36 | 7.87 | 11.85 | 8.94 | 38 | |
Employed | 57.67 | 56.69 | 72.59 | 62.12 | 264 | |
Freelance professional | 5.52 | 1.57 | 5.93 | 4.47 | 19 |
Energy Technology | Sample | % | |
---|---|---|---|
Traditional or fossil fuels | Electric heating system | 190 | 44.7 |
Heat pump | 20 | 4.7 | |
Gas boiler | 134 | 31.5 | |
Oil boiler | 15 | 3.5 | |
Fuel boiler | 10 | 2.4 | |
Others | 26 | 6.1 | |
Clean Systems | Biomass boiler | 9 | 2.1 |
Photovoltaic panels | 16 | 3.8 | |
Others | 5 | 1.2 | |
Totals | 425 | 100 |
Current Technology | Future Behavioural Intention | Sample | % |
---|---|---|---|
From Traditional to: | Biomass | 30 | 7.06 |
Solar | 181 | 42.59 | |
Other clean systems | 36 | 8.47 | |
Continue using | 137 | 32.24 | |
From Biomass to: | Solar | 2 | 0.47 |
Continue using | 7 | 1.65 | |
From Solar systems to: | Biomass | 1 | 0.24 |
other clean systems | 1 | 0.24 | |
Continue using | 14 | 3.29 | |
From other clean systems to: | Solar | 2 | 0.47 |
Traditional systems | 1 | 0.24 | |
Continue using | 2 | 0.47 | |
Stop using heating | 11 | 2.59 | |
Totals | 425 | 100 |
Model | RMR | NFI Delta1 | RFI Rho1 |
---|---|---|---|
Model | 0.043 | 0.972 | 0.964 |
CR | AVE | NEPA | NEPB | ATR | ATT | |
---|---|---|---|---|---|---|
ATR | 0.841 | 0.468 | 0.684 | |||
NEPA | 0.773 | 0.533 | 0.417 ** | 0.730 | ||
NEPB | 0.762 | 0.522 | −0.073 ** | 0.331 ** | 0.722 | |
ATT | 0.799 | 0.570 | 0.576 ** | 0.472 ** | −0.064 ** | 0.755 |
Model | DF | CMIN | p-Value |
---|---|---|---|
Measurement weights | 30 | 301.851 | 0.000 |
Structural covariances | 42 | 647.041 | 0.000 |
Observable Variables | US | SA | Z-Score | ||||
---|---|---|---|---|---|---|---|
Estimate | P | Estimate | P | ||||
FUR | ← | ATR | 0.543 | 0 | 0.49 | 0 | −0.607 |
IAQ | ← | ATR | 0.586 | 0 | 0.511 | 0 | −0.89 |
FSS | ← | ATR | 0.653 | 0 | 0.508 | 0 | −1.528 |
EFF | ← | ATR | 0.529 | 0 | 0.565 | 0 | 0.437 |
TIM | ← | ATR | 0.624 | 0 | 0.687 | 0 | 0.645 |
EUE | ← | ATR | 0.601 | 0 | 0.675 | 0 | 0.768 |
NEP2 | ← | NEPA | 0.779 | 0 | 0.828 | 0 | 0.406 |
NEP3 | ← | NEPA | 0.873 | 0 | 0.573 | 0 | −2.733 |
NEP10 | ← | NEPA | 0.742 | 0 | 0.51 | 0 | −2.01 |
NEP6 | ← | NEPB | 0.822 | 0 | 0.626 | 0 | −1.154 |
NEP7 | ← | NEPB | 0.929 | 0 | 0.66 | 0 | −1.701 |
NEP8 | ← | NEPB | 1.193 | 0 | 1.095 | 0 | −0.51 |
ATT1 | ← | ATT | 0.784 | 0 | 0.478 | 0 | −3.083 |
ATT3 | ← | ATT | 0.776 | 0 | 0.657 | 0 | −1.187 |
ATT4 | ← | ATT | 0.71 | 0 | 0.598 | 0 | −1.141 |
Relationship between Constructs | US | UK | SA | US vs. UK | US vs. SA | UK vs. SA | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SC | p-value | SC | p-value | SC | p-value | Test of Difference of Means (Z-Score) | Test of Difference of Means (Z-Score) | Test of Difference of Means (Z-Score) | ||||
H1 | ATT | → | INT | 0.40 | 0.005 | 0.609 | 0.007 | 0.195 | 0.469 | 1.170 | −0.299 | −1.039 |
H2 | NEPA | → | ATT | 0.368 | 0.002 | 0.606 | 0.000 | 0.137 | 0.381 | 0.613 | −2.073 | −2.496 |
NEPB | → | ATT | −0.2 | 0.033 | −0.302 | 0.042 | −0.076 | 0.517 | −0.274 | 1.453 | 1.524 | |
H3 | NEPA | → | INT | 0.003 | 0.001 | −0.55 | 0.018 | 0.005 | 0.969 | −2.078 | 0.008 | 2.198 |
NEPB | → | INT | 0.209 | 0.033 | 0.507 | 0.002 | 0.147 | 0.158 | 1.603 | −0.831 | −2.262 | |
H4 | ATR | → | ATT | 0.39 | 0.000 | 0.069 | 0.649 | 0.725 | 0.000 | −2.025 | −0.155 | 2.076 |
H5 | ATR | → | INT | −0.032 | 0.796 | 0.125 | 0.361 | −0.088 | 0.719 | 0.854 | −0.831 | −0.846 |
Proposed Moderating Effects on the Relationship between Constructs | Comparison of Groups | t-Test of Difference of Means (Z-Score) | |||||
---|---|---|---|---|---|---|---|
MIDV | HIDV | ||||||
Estimate | p-Value | Estimate | p-Value | ||||
NEPA | → | ATT | 0.256 | 0.000 | 0.135 | 0.135 | −1.055 |
NEPB | → | ATT | −0.127 | 0.026 | −0.080 | 0.259 | 0.516 |
ATR | → | ATT | 0.228 | 0.000 | 0.368 | 0.000 | 1.351 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Londoño-Pulgarín, D.A.; Muñoz-Leiva, F.; Crespo-Almendros, E. Conversion of Residential Heating Systems from Fossil Fuels to Biofuels: A Cross-Cultural Analysis. Energies 2020, 13, 5063. https://doi.org/10.3390/en13195063
Londoño-Pulgarín DA, Muñoz-Leiva F, Crespo-Almendros E. Conversion of Residential Heating Systems from Fossil Fuels to Biofuels: A Cross-Cultural Analysis. Energies. 2020; 13(19):5063. https://doi.org/10.3390/en13195063
Chicago/Turabian StyleLondoño-Pulgarín, Diana A., Francisco Muñoz-Leiva, and Esmeralda Crespo-Almendros. 2020. "Conversion of Residential Heating Systems from Fossil Fuels to Biofuels: A Cross-Cultural Analysis" Energies 13, no. 19: 5063. https://doi.org/10.3390/en13195063
APA StyleLondoño-Pulgarín, D. A., Muñoz-Leiva, F., & Crespo-Almendros, E. (2020). Conversion of Residential Heating Systems from Fossil Fuels to Biofuels: A Cross-Cultural Analysis. Energies, 13(19), 5063. https://doi.org/10.3390/en13195063