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Abstract: Photovoltaic monitoring data are the primary source for studying photovoltaic plant
behavior. In particular, performance loss and remaining-useful-lifetime calculations rely on trustful
input data. Furthermore, a regular stream of high quality is the basis for pro-active operation
and management activities which ensure a smooth operation of PV plants. The raw data under
investigation are electrical measurements and usually meteorological data such as in-plane irradiance
and temperature. Usually, performance analyses follow a strict pattern of checking input data
quality followed by the application of appropriate filter, choosing a key performance indicator
and the application of certain methodologies to receive a final result. In this context, this paper
focuses on four main objectives. We present common photovoltaics monitoring data quality issues,
provide visual guidelines on how to detect and evaluate these, provide new data imputation
approaches, and discuss common filtering approaches. Data imputation techniques for module
temperature and irradiance data are discussed and compared to classical approaches. This work is
intended to be a soft introduction into PV monitoring data analysis discussing best practices and
issues an analyst might face. It was seen that if a sufficient amount of training data is available,
multivariate adaptive regression splines yields good results for module temperature imputation
while histogram-based gradient boosting regression outperforms classical approaches for in-plane
irradiance transposition. Based on tested filtering procedures, it is believed that standards should
be developed including relatively low irradiance thresholds together with strict power-irradiance
pair filters.

Keywords: photovoltaics; photovoltaic system performance; photovoltaic system data; data quality;
data imputation; data filtering

1. Introduction

With the transition from being a niche energy source to becoming mainstream, photovoltaics (PV)
have to compete from not only an economic but also a reliability point of view with established energy
production techniques. Reliable system operation addresses the whole life cycle of PV systems from
the production of high-quality solar cell material to the development and construction of solar plants
until decommissioning and recycling of the plant and its individual components. Therefore, the by
far longest phase in the life cycle is the operation and maintenance (O&M) part, which ensures
smooth day-to-day system operation. O&M activities as well as related PV performance studies
rely on high-quality PV data measurements. Modern system performance checks, which are based
on measurements of the electrical parameter of a system, often in combination with weather-related
measurements such as temperature and irradiance, are sometimes constantly carried out. Although this
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is becoming mainstream for large scale PV plants, the performance of most installed PV systems
is evaluated either in certain time intervals or just in case of detected production issues. In the
meantime data are often recorded without quality checks. The study Analytical Monitoring of
Grid-connected Photovoltaic Systems [1] of the IEAs PVPS (International Energy Agency’s Photovoltaic
Power Systems Programme) Task 13 provides a broad overview of explaining and visualizing field
measured performance data. Van Sark et al. [2] summarize key aspects of PV system monitoring and
characterization. 3E provides with their sensor check data service advanced diagnostic checks for solar
radiation sensors [3]. Therefore, they rely on satellite-based irradiance data for comparison. Established
research institutions, focusing on statistical analyses of monitoring data, have developed automatized
algorithms to detect faulty and missing data in PV monitoring datasets. Well known examples are
Pecos [4] from Sandia National Laboratories or a technical report by NREL [5]. Another example was
presented by Killinger et al. [6], where they use clear sky and PV power models to identify faulty power
output data. A comprehensive overview of PV system monitoring and fault detection approaches is
given by Livera et al. [7], with clear guidelines on the required measurement parameters and their
maximum uncertainties. Most of these studies discuss to some extent discuss the requirements in
terms of measured performance and weather parameters. Unfortunately, however, all the listed
approaches fail to provide guidelines of what to do with filtered data nor agree on a common filtering
approach. A study by Koubli et al. [8] proposed back-filling algorithms of missing electrical and
meteorological data using an electrical model [9] and synthetic climate data. Statistical or machine
learning approaches, possibly from other scientific fields, might open up new possibilities for accurate
data imputation.

In this work, we want to provide an overview of occurring problems when working on PV
monitoring data, give useful examples of what faulty data look like, provide solutions on how
to fill larger gaps of missing measured temperature and irradiance data and discuss the necessity
of applying specific filter for statistical performance analyses. Monitoring data are commonly
used and aggregated to provide information on the performance of the PV system in question.
Performance evaluation studies can range from a simple yield comparison between inverters in
the same PV field, to year-to-year comparison of yield measurements over performance loss rate
calculations, where the yearly decline of PV system performance is quantified, to yield estimations
or remaining-useful-lifetime (RUL) studies. The RUL of a PV system is a date at which a pre-defined
power output cannot be reached anymore, and the system reached the economic end of its lifetime.

All these performance evaluation studies have a similar structure including input data treatment
and data filtering. These points are discussed in greater detail in this work. Therefore, the following
topics are covered. After introducing an experimental PV plant whose monitoring data are used for
data visualization, Section 3 provides simple quality check of monitoring data based on visualized
measurement data. First, guidelines of monitoring data acquisition according to standard the first
part of IEC 61724:2017 [10] are presented. After, module temperature data are discussed together
with common module temperature models and data filling techniques based on statistical models.
In Section 3.2, the complexity of in-plane irradiance is introduced, and data imputation approaches are
discussed. Afterwards, proposed visualized quality checks for PV power, in-plane irradiance and key
performance indicators (KPI) are presented. Therefore, different categories of faulty or missing data
are defined. In order to get reliable results of these types of studies high-quality input data are required
and tailored data filter should be applied. In Section 4, general filtering approaches for different data
evaluation studies are discussed.

2. Experimental PV System

In this work, monitoring data quality tests will be performed on a PV system, which is installed
and operated at the Bolzano airport (ABD). This system is well suited for the study as it is an
experimental PV installation under close surveillance with high-quality data. Longitude and latitude of
the system are 46.4625◦ N and 11.3299◦ E respectively and the ground has an elevation of 240 m above



Energies 2020, 13, 5099 3 of 18

sea-level. The system was installed in 2010, and is part of a larger experimental PV plant. According to
the Köppen–Geiger classification, the climate in Bolzano is categorized as a temperate climate with
warm summers and without dry seasons (Cfb) [11].

The system consists of 16 mono-crystalline (mc-Si) modules connected in series, and has an
installed capacity of 1.98 kW. The system is ground mounted with a fixed tilt of 30◦ and an orientation
of 8.5◦ west of south. Additionally, a weather station is installed in close proximity to the test site.
Here, the ambient temperature, various irradiance parameters such as the in-plane irradiance (GPOA)
and the wind speed are recorded. On the rear side of each system the module temperature is measured.
The sensors are systematically cleaned and periodically calibrated to comply with the first part of
standard IEC 61724:2017 [10]. The in-plane irradiance is recorded with a pyranometer of the model
Kipp and Zonen cmp11 with an estimated uncertainty of below 2%.

The weather data are recorded with a measurement frequency of one minute. Since the electrical
parameters are measured at a resolution of 15 min, all values are averaged to the same time interval.
A period of nine years is evaluated ranging from February 2011 until February 2020. The period of
observation is not equal to the operation time. The systems began operating in August 2010, so roughly
six months before the observation time starts. The delayed start of observation was set due to a delayed
start of recording weather data.

3. Monitoring Data Acquisition

Monitoring data is usually provided from two sources. These are electrical parameters from
the PV plant, e.g., the power in the maximum power point (Pmpp), and climate related data
from a nearby weather station or satellite data. The first part of standard IEC 61724:2017 [10],
Photovoltaic system performance—monitoring, covers the guidelines on how to correctly monitor PV plants.
Therefore, monitoring systems are categorized into three classes based on the selection of measured
variables and types of carried out performance assessments. The choice of monitoring system is usually
dependent on the PV system size.

Table 1 presents the mandatory measured parameter per monitoring class including stated
uncertainties according to part one of standard IEC 61724:2017. Here, Class A monitoring corresponds
to the highest level of data monitoring and Class C to the lowest.

In this work, we focus on irradiance, temperature and power measurements. These are
the most commonly measured and used data in performance evaluation studies of PV systems.
In-plane irradiance GPOA is measured in the same plane of the PV modules. Irradiance for PV
applications is measured either with thermopile pyranometers or photovoltaic reference devices.
The usage of these devices, calibration interval and guidelines as well as possible measurement
corrections are stated in standard IEC 60904:2015 [12] and in IEC 61724:2017 [10]. If on-site
measurements are difficult to realize, irradiance datasets can be acquired via clear-sky modeling
or satellite-derived data. Usually, such measurements are subject to higher uncertainties and do often
deviate considerably from ground measurements. Another problem when using satellite data is data
consistency. Although satellite data quality consistently improves the data retrieved in the past might
have a different accuracy from data used today.

Temperature data are measured with temperature sensors, usually thermo-couple or
resistance-based sensors such as a Pt100 (Pt for platinum). Ambient air temperature sensors must be
well ventilated and shielded from solar radiation. PV module temperature sensors are attached at the
back of the module. Here, it is very important to ensure a good adhesion between the sensor and the
module to provide accurate readings. Thermally conductive adhesive should be used appropriately
for prolonged outdoor usage. Measurement uncertainties are supposed to be below 2 ◦C. The number
of sensors per PV plant is dependent on the plant size and is defined in part one of standard IEC
61724:2017 [10].
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Table 1. Measured monitoring parameter divided by meteorological and electrical parameter [10].

Parameter Class A Class B Class C

Irradiance parameter

In-plane irradiance x x x

Global horizontal irradiance x x

Direct normal irradiance

Diffuse irradiance

Max. uncertainties 3% 8% Any
Environmental parameter

PV module temperature x x

Ambient air temperature x x x

Wind speed x x

Wind direction x

Rainfall x x

Humidity x x

Electrical parameter

DC array voltage & current x

DC array power x

AC array voltage & current x x

AC array power x x x

Output energy x x x

Output power factor x x x

Max. uncertainties 2% 3% Any

Figure 1 shows the necessary steps of monitoring data preparation for any kind of performance
evaluation. These include reading of monitoring data, possible cases of corrupted data and commonly
used parameters which are subject to filtering. Therefore, the second and third part are closely related
with one another as data filtering is used to address some of the common data issues. Commonly
found monitoring data sources are listed in the figure as well as in Table 1.

Figure 1. General steps of monitoring data preparation.
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The first task of performance evaluation studies is to collect available data and perform a first
data quality check. Very important data issues, which are not often discussed, are data synchronization
and data aggregation. It is visible in Figure 1 that data usually come from different sources.
A check of the timestamp synchronization is vital to ensure the calculation of high-quality KPIs.
The knowledge of the type of data aggregation is thereby also an important information. Usually data
are collected periodically (e.g., 1 min, 15 min). In order to provide consistent data, the way of
recording high-resolution values is crucial, i.e., are they averaged over the collection period or is it
an instantaneous value. Plotting the time series of single day observations helps to verify if data
synchronization and aggregation is guaranteed.

Standardized quality checks include the deletion of invalid readings and treatment of missing
data [10]. Therefore, it is recommended to identify faulty data entries and to apply realistic thresholds
as well as statistical outlier tests. In the case of missing data, it is recommended to assess whether
filling (imputation) of missing data is reasonably possible, and what kind of approach needs to
be used. Many different approaches for data imputation exist, including using different types of
interpolation, Kalman filtering, auto-regression or moving averages [13,14]. For high-resolution data
(minutely or hourly) and short gaps, interpolation is a reasonable approach, but with larger gaps or
lower resolution data (daily, weekly) other approaches yield better results [13]. Depending on the
availability of other measured parameters (for instance satellite-based irradiance measurements or
peered irradiance sensors in different locations), multi- or univariate regression or machine learning
models can also be applied [14,15]. In the PV community there does not seem to be a consensus of
how data filling should be performed and will often depend on the amount of data to be filled and
the size of data gaps. In all situations where data has been imputed, it is recommended to label filled
values to remain identifiable and to document the imputation approach applied.

In the process of data quality checking and data correction, temperature should be considered
separately from irradiance and power data. Thresholds and outlier detection using statistical tests,
which will be presented in the following section, are important to improve the quality of a dataset
but not always sufficient to detect faulty measurements. By analyzing the time series of the raw
data, significant measurement errors can already be identified. They can either be connected to faulty
readings or stem from problems during measurement acquisition. Common problems are for example
the shadowing of irradiance sensors by an object for a certain amount of time or the detachment of
module temperature sensors from the module. Such events can easily be identified when visualizing
the data at hand. If small parts of the datasets are affected data imputation can be used to recover the
faulty/missing data. In case of longer data outages other sources should be used to retrieve the data,
for example satellite data for irradiance or temperature models for the module temperature. In the
following, temperature data on one hand, and irradiance and PV power data on the other hand are
discussed with application examples in terms of data imputation. The examples stem from issues we
were facing while analyzing the data for further treatment.

3.1. Temperature Data

The module temperature Tmod is a function of several solar irradiance related parameters
such as ambient temperature, wind speed and direction, mounting configuration, thermal behavior
and efficiency of the module, and system level parameters such as soiling or shading conditions.
Usually, plotting ambient and module temperature over time provides a fairly good estimation of
the measurement quality. If multiple module temperature sensors are available an inter-comparison
is suggested. With such figures, strong outliers are easy to detect and can be taken care of. If module
temperature readings are showing unexpected trends, module temperature models could be applied,
and the measured values be compared to modeled values. If the discrepancy between both is too high,
measured values should be replaced with modeled ones. The choice of the model will depend on the



Energies 2020, 13, 5099 6 of 18

availability of other climate data from that specific side. The simplest model hereby is the Nominal
Operating Cell Temperature (NOCT Model) equation [16]:

Tmod[
◦C] = Tamb +

GPOA

800 W/m2 (NOCT − 20 ◦C). (1)

NOCT is the normal operating cell temperature and is determined for a 45◦ south-facing module
with incident irradiance of 800 W/m2, an ambient temperature of 20 ◦C and a wind speed of 1 m/s.
GPOA is the measured in-plane irradiance and Tamb the measured ambient temperature. The NOCT
variable is mostly provided in the datasheet of the respective model. The inclusion of wind speed,
if available, usually improves the accuracy of the module temperature estimation. A well behaving
model is the Sandia module temperature model (SMTM) [17]:

Tmod[
◦C] = GPOA(ea+b·WS) + Tamb (2)

WS is the measured wind speed and a and b empirical parameters depending on mounting
configuration, module backside material as well as solar cell material. More sophisticated models
including more empirical coefficients, the transmittance of the module cover and the absorption
coefficient of the cell were formulated by Skoplaki et al. [18] and Mattei et al. [19]. The choice of the
model, and therefore the accuracy of the modeled temperature, will always depend on the available
input parameters.

Plotting module temperature over time already gives an impression whether the measurements
are realistic. The following figure shows ambient and module temperature of the PV plant
under investigation. When looking at Figure 2 it is obvious that the module temperature readings are
faulty at the beginning of recording. For roughly one year the values are very similar to the ones of the
ambient temperature sensor. The module temperature sensor was detached from the module because
of the usage of unsuitable tape and glue. After reattaching using adequate adhesion material in April
2012, the readings are stable throughout the time of observation.

Figure 2. Original back of the module temperature measurements of mc-Si PV system; red—ambient
temperature; blue—module temperature.

Several regression models have been tested to replace the faulty data with modeled module
temperature values. Two of them, namely multivariate regression and multivariate adaptive regression
splines (MARS), are discussed further as the better performing models. Therefore, the data were
subject to light outlier filters according to the third part of IEC 61724:2016 [20], which are listed in
Section 4. The initial motivation for using a regression model was to have a simple model which
does not require any metadata of the PV system. Regression models rely only on measured data.
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As explained before, to use the SMTM one must know the kind of mounting type and which backside
material is used in the modules.

The faulty data in Figure 2 account for 11% of the overall dataset. Therefore, the strongly
correlated values of ambient temperature, in-plane irradiance and wind speed were used to model
Tmod. The remaining dataset was used to test the regression models. 20% of the remaining, trustful,
data were used as test set and 80% of the data as training data. In order to rate the regression models,
this and the two established models, NOCT and SMTM, haven been tested on the test set and the
results yield the model parameter presented in Table 2.

The difference between the modeled module temperature using MARS regression and the correctly
measured temperature can be seen in Figure 3. The relationship between measured and modeled data
should be nearly linear. R2 between model and measured values is 0.92 and the root-mean-square-error
(RMSE) is 4.26 ◦C. These values show that a trained regression model is performing slightly better
compared to the SMTM, provided that a sufficient amount of the measured data is trustful and can be
used as training data. Furthermore, the modeling results in Table 2 show that the SMTM yields more
accurate results compared to the NOCT model and is always preferable if wind speed measurements
and metadata are available.

Figure 3. Measured versus modeled (MARS regression model) module temperature of mc-Si PV system.

Table 2. Modeling parameter R2 and RMSE of module temperature data replacement.

Model R2 RMSE

Multivariate regression 0.91 4.60 ◦C

MARS 0.92 4.26 ◦C

NOCT Model 0.89 5.15 ◦C

SMTM 0.91 4.61 ◦C

3.2. In-Plane Irradiance Imputation

Irradiance determination is a very complex topic. In the best case, the in-plane irradiance (GPOA)
is measured with an irradiance measurement device installed in the same plane as the investigated
PV system. If no in-plane irradiance sensor is installed, a transposition of the GPOA from global
horizontal irradiance GHI must be calculated. Therefore, irradiance data can be categorized into
different accuracy classes based on data availability [21]:

(a) High accuracy: GPOA is measured on-site
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(b) Medium accuracy: horizontal irradiance GHI is measured on-site and GPOA is estimated using
decomposition and transposition approaches

(c) Low accuracy: GPOA is estimated using decomposition and transposition approaches
from extracted GHI, which is taken from one of the following sources: interpolated
(weighted regression) using peered data of different weather stations in relatively close
proximity to the test side, satellite or re-analysis-based datasets, clear-sky modeled datasets

The order of accuracy corresponds to increasing uncertainties in the datasets. Although measured
irradiance values can have uncertainties as low as 2% [22], the introduction of decomposition
and transposition approaches as well as the estimation of GHI introduces additional,
partially very high, uncertainties.

In general, ground measurements are always preferred because of higher accuracy, both for
in-plane and horizontal irradiance. If weather stations are used the spatial resolution might be not
high enough leading to high uncertainties. Datasets from satellite data might be inaccurate because
of their low spatial (and possibly temporal) resolution and treatment of clouds, snow or aerosol.
Many different clear-sky models are available. In the simplest case, they are based on geometrical
calculations. More advanced clear-sky models take into account different measurable atmospheric
parameters such as ozone, aerosols and precipitable water. The problem is that these data must be
measured and provided as model inputs.

To get useful results, the best of these options must be selected for each case and
carefully evaluated.

GHI is the sum of diffuse and direct irradiance and is defined by:

GHI[W/m2] = DHI + DNIcos(θZ). (3)

Here, DHI is the diffuse share of horizontal irradiance, which comes from all directions and DNI
is the direct normal irradiance. θZ is the solar zenith angle.

GPOA depends on several factors such as the sun position, orientation of the system, individual
irradiance components, albedo and shading. It can be expressed as the sum of the in-plane beam
component of irradiance GbPOA and the in-plane diffuse irradiance components, which include an
in-plane ground-reflected component GgPOA

and a sky-diffuse component in the plane of array GdPOA :

GPOA[W/m2] = GbPOA ++GgPOA
+ GdPOA . (4)

If no measured in-plane irradiance is available, the individual components are calculated from
GHI, provided through one of the scenarios mentioned above. The separation of the individual
irradiance parts is necessary because the diffuse irradiance component is very complex to model.
A comprehensive discussion on models can be found in [23] and a comparison and rating of different
models in [24,25]. Figure 4 shows a simplified model structure to calculate the in-plane irradiance [26].

If instead GPOA sensors are available at the side, they should be used to ensure the highest
possible data accuracy. Usually, the readings are much more precise and accurate. To ensure smooth
and reliable operation of the sensors, they must be systematically cleaned and calibrated in order to
comply with part one of standard IEC 61724:2017 [10]. Possible problems are measurement errors,
sensor alignment issues or sensor drifts and are discussed in greater detail in the next section.

As discussed before, faulty or missing measurements for a limited amount of time could be
replaced by data imputation. However, if a measurement is faulty or missing for longer periods of
time, filling these values with simple approaches such as interpolation are no longer valid or possible.
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Figure 4. Simplified modeling steps from global horizontal to in-plane irradiance.

In a recent study, we encountered such an issue when examining a dataset [27] needed for PV
performance loss calculations. We found that our input dataset was missing in-plane irradiance
measurements for a period of four years at the beginning of the dataset, and had smaller gaps
of hours to days in other years. Aside from in-plane irradiance, the dataset also contained other
irradiance measurements (global horizontal irradiance GHI and diffuse horizontal irradiance DHI)
and measurements of other parameters such as relative humidity RH. These other measurements were
not missing for the first four years of the dataset.

The aim of the study was to fill the missing GPOA measurements using the available GHI, DHI and
RH measurements. To replace the missing data, we compared several classical irradiance transposition
models (implemented in the python software package PVLIB [28]) with several machine learning-based
models [29]. We compared the isotropic [30], Klucher [31], Hay–Davies [32], Reindl [33,34], King (As
discussed by the authors of PVLIB, the King model is not well documented nor is there published
documentation [28]) and Perez [35] classical models, and random forest [36], extra trees [37], gradient
boosting [38] and histogram-based gradient boosting (The implementation of histogram-based gradient
boosting in scikit-learn is based on the LightGBM framework [39]) machine learning regression models
as implemented in the python library scikit-learn [29]. We added solar position parameters (solar
zenith, solar azimuth and solar elevation) to our input dataset of GHI, DHI and RH, and removed all
measurements of solar elevation ≤ 0◦. Using a random subsample (n = 50,000) of our complete training
dataset (n = 275,000), we performed hyperparameter optimization to determine optimal values for
the modeling parameters for both the classical transposition models as well as the machine learning
models. The models were subsequently run (transposition models) and trained and run (machine
learning models) using the full training dataset, and cross-validated using a 0.75/0.25 train-test split.
Although testing all considered methods for modeling estimation GPOA, we found that the machine
learning-based models clearly outperformed the transposition-based models, with average RMSEs of
around 30 W/m2 and 70 W/m2. The highest accuracy was found for the histogram-based gradient
boosting regressor (RSME of 29.8 W/m2). Using this regressor, we estimated and filled the missing
GPOA values.

In summary, ground measurements are always preferred if available, possibly with necessary
corrections. For certain locations, other methods may yield good results. Retrieving accurate irradiance
data of locations with complicated shading conditions and a high amount of diffuse light due to
regular fog, mist or cloud cover, is still an open issue.

3.3. In-Plane Irradiance and Power

A thorough check of power and in-plane irradiance raw data is absolutely necessary to perform
any kind of data analysis. The quality of the datasets depends on various factors and can be
compromised for many reasons. In this section, simple visual quality checks and examples of common
data issues are presented. Therefore, Figure 5 is based on the measured data of the experimental PV
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system introduced in Section 2, while Figure 6 presents data from various other plants installed across
the globe which are kept anonymous.

Figure 5. Data quality check figures for mc-Si PV system: (a) Normalized 1h energy values vs. time;
(b) Normalized power-density plot—time of the day vs. day of the year; (c) Normalized 15 min power
vs. in-plane irradiance; (d) Daily Performance Ratio vs. time.

Figure 6. Exemplary data quality issues: (a) Imprecise irradiance sensor alignment (P vs. GPOA);
(b) Inverter clipping (E vs. time); (c) Negative power values (P vs. GPOA); (d) Power data shift
(E vs. time); (e) Data hole (E vs. time); (f) Inverter failure (daily PR vs. time); (g) Irradiance sensor
degradation (daily in-plane radiation vs. time); (h) Summer/Winter time shift and strong degradation
(Normalized power-density plot).

Since irradiance and power time series are supposed to behave in a similar fashion and are
directly proportional over a large irradiance interval, similar checks can be performed. Figure 5 shows
recommended visualizations for a basic data quality check.

The following relations are depicted for the example PV plant: (a) energy vs. time, (b)
power-density plot, (c) power vs. in-plane irradiance and (d) daily performance ratio (PR) over
time. All measured data can be evaluated in a similar fashion. The Performance Ratio describes
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the relation between incoming irradiation and power produced by the PV system. It is a unit-less
parameter and is calculated using the following formula [10]:

PR =
Yf

Yref
=

EAC/Pnom

HPOA/GSTC
, (5)

PRDC =
Ya

Yref
=

EDC/Pnom

HPOA/GSTC
(6)

The first equation holds for AC power and the second for DC power. For AC, the final yield Yf
is divided by the reference yield Yref. If DC power is evaluated, Yf is replaced by the array yield Ya.
Yield values are given in [kWh/m2]. The yields itself are ratios of normalized energy E and normalized
in-plane irradiation HPOA. Energy values are aggregated power measurements while irradiation values
are aggregated irradiance instances (from W to Wh). The energy E is normalized by the nominal power
of the respective system Pnom obtained under Standard Test Conditions [40] (ambient temperature
TSTC = 25 ◦C, in-plane irradiance GSTC = 1000 W/m2, air mass AM 1.5) and HPOA by STC irradiance
GSTC. In Figure 5, all values have been normalized to STC. By doing this, an easier inter-comparison
between different PV systems can be performed.

By examining the figures, it is apparent that this particular plant operates without any
profound problems. The only visible issue is a very slight power loss over time, especially in the last
two to three years, which can be seen in Figure 5a,d. Time-dependent system performance degradation
has to be expected, and is not necessarily an issue, as long as the degradation is within acceptable
margins. If strong system degradation is detected, it is recommended to evaluate the performance of
individual modules to trace back the root causes of the observed degradation. Aside from detecting
issues with system performance, Figure 5c,d are valuable to evaluate the alignment of the irradiance
sensor in plane with the PV system and to rate the irradiance measurement quality. As said before,
power and irradiance are nearly proportional. Therefore, high-quality data are characterized by a
linear relationship, visualized in Figure 5c. Here, instantaneous measurement data are depicted.
A higher number of outliers might suggest certain synchronization issues. In Figure 5c, some outlying
values are visible where irradiance values of up to 500 W/m2 are measured while no power is
produced. That is because the system is installed in a valley of a mountainous region. Under low sun
inclination in the morning, the irradiance sensor is already irradiated while the PV system is still in the
shadow, and thereby not producing any power, while higher irradiance values are correctly measured.
Figure 5d could also depict other aggregation time steps (daily/weekly/monthly sums/averages)
for PR, power or irradiance values. Like this, time-dependent trends could be evaluated, which are
assumed to be periodical and without strong degradation patterns.

Another helpful way to verify data quality is to look at a heatmap plot of instantaneous
measurement values, as shown in Figure 5b for normalized power. Here, 15 min power data of
the mc-Si system are colored according to normalized power and plotted as a function of the time of
the day and the day of the year. Higher power values for a longer duration of the day are detected in
summer because of higher irradiation and longer days in summertime. From such a plot one can detect
longer system outages, timestamp issues, shading instances or also exceptionally strong degradation.
If similar plots are shown on a weekly or monthly scale, additionally cloudy days can be detected.
The data of the system are converted to UTC (Universal Time Coordinated) to remove daylight-saving
time shifts in the density plot. It is visible that the data follow a fairly stable pattern and can be
considered being of high quality.

In general, strong outliers, missing data, sensor measurement issues, inverter clipping instances
or other common data issues can be identified from the plots above. In Figure 6, examples of such
data issues are presented from several PV systems not belonging to the experimental PV installation
introduced above. All data are anonymized and normalized.

In the figures, blue has been used to represent power values plotted on the y-axis, orange for
irradiance values and green for PR values. In each subplot, the corresponding problem is depicted.
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Figure 6a shows a typical sensor alignment issue. Many data points are away from the
linear trend-line between power and irradiance. Furthermore, two distinct lines can be recognized.
These issues can stem from various problems, Usually they are connected to an offset between
timestamps, an incident which decreases the power output at some point, a change in irradiance
readings or the sensor with a different tilt/orientation as the solar modules. In such situations it is
recommended to investigate the power and irradiance data over smaller time scales to possibly detect
certain performance impairing issues. Furthermore, the irradiance data must be thoroughly filtered or
possibly replaced.

Figure 6b shows inverter clipping of a PV system, which occurs when their AC power rating is
lower than the total installed PV module capacity and the output power is limited. This is actually
not an error or issue, but a way to increase the reliability of PV systems. Nevertheless, it is important
to be detected and taken into account for further data treatment. Using undersized inverters has the
benefits of saving money for cheaper components, producing more power under low light conditions
and the fact that PV systems degrade naturally over time (a high rated inverter power might not be
needed anymore). Thus, inverter clipping is common practice in modern PV plants.

In Figure 6c, the system under investigation apparently produced negative power values. From a
physical standpoint, that is not possible. It is more likely that the polarity has been switched. Filtering
negative values is a common procedure defined in standard IEC 61724:2016 [20].

The system data, presented in Figure 6d, show inverter clipping and a power data shift after one
year of operation. Since the source and reason of the shift is not known, it is advisable to omit the first
year of operation to ensure realistic measurement conditions.

The data holes in Figure 6e stem from calibration activities of the sensors at the measurement site.
In order to avoid these issues related to maintenance of the measurement system, it is recommended
to have redundancy in sensors, and to have a proper calibration plan to avoid losing large amounts
of measurements.

In Figure 6f, the daily aggregated PR of a PV system is seen. Two instances of inverter
failures were recorded, marked with red ellipses. Inverter failures are preceded by distinct losses
in performance. The performance drops and the PR values deviate clearly from their normal patterns.
Either the inverter breaks down completely or the deviation is detected beforehand, and the inverter is
repaired or exchanged. Inverter failures can be categorized as reversible performance losses.

Figure 6g depicts the daily in-plane radiation measured with an irradiance sensor. A simple
approach to detect possible sensor drifts or sensor degradation (if solar cell material is used) is to
perform a linear regression of the irradiance time series. A clear trend change of the regression line
over time would indicate a possible drift in the sensor readings. Certain trend variations could also be
explained by inter-annual irradiance variability (especially for shorter time series) and appearing global
brightening effects in recent year. These effects are observed since the late 1980s and are attributed
to reductions in aerosol content in the atmosphere and cloud cover leading to higher transmission
of sunlight [41]. In this particular case a decrease in measured irradiance over time can be seen.
If this irradiance sensor measurements were to be used for constructing PR or other KPI time-series,
the PR would artificially increase, provided the corresponding power time series is fairly stable over
time. After enquiring about this sensor, it was reported that it is an amorphous silicon reference cell.
It is expected that the active solar material in the reference cell degraded, resulting in decreasing
irradiance measurement values while not being re-calibrated. To evaluate the PV system performance
corresponding to this irradiance sensor, it is necessary to use another source of irradiance measurement
to ensure realistic readings.

Figure 6h shows a power heatmap for a thin-film PV system. The data are measured and plotted
in central European time including summertime, therefore a 1-h shift in March and October every
year can be seen. It is visible that this shift interrupts the periodic structure of the figure and should
therefore be removed by converting the timestamp to UTC. Furthermore, this particular system is
subject to an unusual high degradation, visible in the decreasing color intensity over time.
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4. Data Filtering

Once the raw data are evaluated, data filters are used to provide stable measurement conditions
and to extract the data of interest for specific applications. Therefore, the choice of filters will,
among other things, depend on the findings based on performed quality checks. Standard IEC
61724:2016 part three provides guidelines of initial minimum filters for monitored high-resolution
(15 min data) variables [20]. The most relevant ones are listed in Table 3 below:

Table 3. Recommended filter of part three from IEC 61724:2016 [20].

−6 W/m2 < irradiance < 1500 W/m2

−30 ◦C < ambient temperature < 50 ◦C
0 m/s < wind speed < 32 m/s

−0.01 × Pnom < AC power < 1.02 × Pnom

Here, Pnom is the rated power of the system. The standard also suggests testing for inverter
clipping, irradiance sensor shading, calibration drift and other malfunctions. Recommended visualized
tests are presented above. Furthermore, standard IEC 61724:2017 part one [10] recommends an in-plane
irradiance threshold of 20 W/m2 ensuring measurements during daylight hours.

Next to the common usage of these standard filters, filtering will always depend on the purpose
of the study. In the following, filters are discussed with respect to performance loss rate calculations,
a field where filtering can have tremendous effects on the final outcome. No standards or guidelines
are available which suggest best practices in terms of filtering and thus chosen filters mostly depend
on the preferences and experiences of the individual research group. Often, filtering is performed
without the required level of detail. Filtering approaches are partly selected in such a way to achieve
desired results in later analyses and often not discussed properly. That is why some common thoughts
about filtering are presented below.

Irradiance and power filters are already suggested by standard IEC 61724:2016 but are
mostly extended. Furthermore, clear-sky or PR filters are often used to find representative
power-irradiance pairs. In the following, filter approaches are discussed.

Irradiance threshold filter: Irradiance filters are usually deployed in form of maximum and minimum
thresholds. They are intended to remove nighttime values and measurement errors. In some cases,
narrow irradiance filters (e.g., 800 W/m2–1100 W/m2) are used to limit the measured data to narrow
bands with similar conditions compared to STC or NOCT. The downside of such approaches is that a
large amount of the data are removed, and it is questionable if the remaining data are representative
for the overall system performance under real operating conditions.

Power threshold filter: Power filters are first and foremost used to remove power measurement
errors and system outages, since the extraction of data of interest is usually performed with an
irradiance filter. The thresholds for the filter are not universally applicable compared to irradiance
thresholds because the power output varies among systems. A simple way to account for that is to
filter in relation to the maximum rated power.

Statistical Performance Metric filter: Power (P) and Performance Ratio (PR) are the most common
performance metrics used. The PR describes the direct relation between irradiance and power and is a
quality indicator for the performance of PV systems. It is very well suited to detect inconsistencies
between power and irradiance measurements. Statistical Performance Metric filters are used to ensure
that power-irradiance pairs match and remove sensor shading instances, measurements with strong
soiling or other reasons which cause one-sided measurement deviations. In order to detect and remove
such deviations, statistical approaches are used. Therefore, filter intervals are created and applied
based on statistical averaging.

Clear Sky filter: Clear-sky filters are approaches which filter measured data for clear-sky instances
and remove data periods where cloud cover or partial shading (to a certain degree) was prevalent.
Clear-sky measurements have the advantage of being consistent throughout the time of observation
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and are therefore well comparable. That is why measured clear-sky instances are preferred to be used
to be compared with modeled irradiance, to evaluate the irradiance measurement quality, but also to
rate different irradiance sources. Clear-sky models are developed and deployed in the PV performance
libraries PVLIB [42] and RdTools [43], which are available for Python.

Inverter saturation: This filter type corresponds to instances of high DC/AC ratios of PV systems
causing inverter clipping. Here, the produced DC power of the PV modules exceeds the rated AC
power of the inverter and system output power will thus be limited to the rated AC level. To account
for these instances a threshold filter at the saturation bound of the AC power can be set, usually 99%
of the rated AC power is selected.

No matter which filters are applied, it is of utmost importance to ensure that the filtered data
are trustful and of high quality. Furthermore, it is important to report the applied filters to be able
to trace back any data issues one might experience at a later stage of the calculations, and to ensure
reproducibility of the study.

Below, three different example filters are applied for the experimental PV plant introduced in
Section 2 and the filtered data are presented in power vs. in-plane irradiance plots as well as aggregated
daily PR plots.

Figure 7 illustrates the effect of different filters not just on the raw data, but also on PR time
series, which deviate slightly among the chosen filters. Below the figures, the applied filter as well as
the filter ratios (after removing negative values) are depicted. The filters represent three commonly
used approaches for a subsequent PV performance analysis such as performance loss rate calculations.
It has to be kept in mind that data filtering is location dependent as in some cases it is possible to apply
stricter filters without losing too much data (especially approaches such as irradiance threshold or
clear-sky filter).

Figure 7. P vs. GPOA and daily PR vs. time plots for various filters applied to mc-Si PV system
data—Filter 1: standard IEC 61724:2017 filter [10,20]; Filter 2: own filter used for performance loss
analysis; Filter 3: clear-sky filter used in RdTools [43].

Filter 1 is used to only remove obvious measurement errors and nighttime values. The sole
application of this filter is only recommended if someone is interested in the yearly produced power
or yearly energy yield of the system since almost all data of importance are kept but no outlier
removal has taken place. The daily PR of filter 1 plot omits numerous daily PR values below
0.6 for better visualization. The other two filters are removing a greater amount of raw data by
applying stricter threshold and statistical filtering. Both filters provide efficient outlier removal using
different approaches. Although filter 2 is based on a high irradiance threshold filter combined with
a statistical power-irradiance outlier removal, filter 3 overlaps the measurements with a clear-sky
model. Filter 2 requires an irradiance data quality check, while clear-sky filters (filter 3) account for
that. The drawback of filter 3 is the high amount of filtered data. It is visible that only 3.8% of the
initial raw data are kept. This is also visible in the daily PR figure, where just a few data points are
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remaining during winter months. Although the share of removed data is also fairly high for filter 2,
the remaining data still account for roughly 80% of the produced power from the system. Nevertheless,
the high irradiance threshold may exclude performance affecting effects at lower irradiance levels.
It is visible that the choice of the filter directly affects the shape of the PR time-series (or another KPI
time-series), which is often used for further data evaluation. Consequently, the choice of the filter will
alter the results of the evaluation.

It is important to consider that all three filtering approaches used in this study are deployed for
performance analysis by analysts, depending on their preferences. That is why this topic warrants a
serious discussion, and a way towards standardization should be explored.

It is clear that data filtering is a complex topic and the choice of filter and the ratio between raw
and filtered data will influence all subsequent analyses steps. Usually, filtered data are aggregated to a
desired time resolution such as days or months. If the filter ratio is not too high, aggregated time series
should be created without large gaps. Small holes are either ignored or filled using common models
such as moving average, interpolation or extrapolation. If large holes are present in the time series,
filling algorithms should be used with care and possibly another raw data quality check is advisable.
From experience, up to 20% of missing data can be usually recovered if they are spread along the
timeline and the KPI follows a steady pattern.

There are certain filter guidelines one should obey, but unfortunately no universal filtering
procedure for performance loss analyses has been developed yet apart from the minimal filter
guidelines listed in standard IEC 61724:2017. We believe guidelines/standards should include the
usage of lower irradiance thresholds (in the order of 100–200 W/m2) and stringent power-irradiance
pair filters such as relaxed clear-sky or PR filters. Lower irradiance thresholds ensure the inclusion of
performance behavior along all irradiance levels. Power-irradiance filter should be applied to remove
outlier, which would otherwise affect the analysis results. These outlier filters should be based on
dynamic intervals to account for different climate and installation conditions and varying data quality.

5. Discussion and Summary

In this paper, different data visualization tools for measured PV system data have been
presented for an example PV plant, together with an overview of common data filtering approaches.
Furthermore, data imputation algorithms for module temperature and in-plane irradiance have
been discussed. PV system data measurements are primarily used for yield predictions,
remaining-useful-lifetime estimates, performance loss calculations or other performance related studies.
Independent of the purpose, a good understanding and validation of data quality is crucial to perform
any kind of reliable analyses.

Usually, measured data for PV system studies come from two different sources.
Electrical parameters are collected directly from the PV system in question and meteorological data
are recorded on-site or in close proximity to the test site. If no weather-related data are available,
other sources must be used. The temporal visualization of a KPI, such as power or performance ratio,
is recommended to get a sense of the data quality at hand. Furthermore, the nearly linear relation
between power and irradiance can be used to detect data outliers or sensor related issues. After data
issues have been detected and addressed, the raw data must be filtered depending on the purpose of
the analysis. In general, four common filtering types are applied: in-plane irradiance threshold, power
threshold, statistical filter around averaged performance ratio and clear-sky instance filter. Therefore,
different thresholds and interval windows are set. A standardized set of outlier filters is given in the
standard IEC 61724:2017. Unfortunately, tailored filters for analyses such as remaining-useful-lifetime
estimates or performance loss studies are not available at that point and the choice of filtering method
is up to the individual research group. We believe that the development towards standardized filtering
guidelines would improve performance analysis inter-comparisons and the reliability of reported
results. In general, low irradiance thresholds (100–200 W/m2) together with strict power-irradiance
pair filtering seem to yield a good compromise between keeping a sufficient amount of data and at the
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same time ensuring high-quality power-irradiance data pairs. Low irradiance thresholds include a
wider system performance range, which provides a more complete picture of the system performance.

In the first part of this paper, data imputation techniques have been tested to impute relatively
small amounts (up to 20%) in-plane irradiance data and module temperature data. The motivation
for this study was the investigation of PV datasets where a limited amount of data measurements
were missing or faulty. Machine learning algorithms have been compared to classical irradiance and
temperature models. Strongly correlated field measurements of other parameters have been used for
this purpose. Module temperature data have been recovered using multivariate adaptive regression
splines which yielded very similar results to the widely used Sandia module temperature model.
The advantage of the algorithm over the Sandia model is that it does not require any metadata of
the plant. For in-plane irradiance data imputation, several machine learning algorithms have been
investigated and compared to models available in the PV performance modeling software PVLIB.
Histogram-based gradient boosting regression outperformed classical irradiance models as well as
other machine learning approaches for this purpose.

This work aims to be a step towards a more conscientious approach of measurement data handling.
Although this topic is very complex, respecting certain guidelines and keeping a rigorous data
correction and filter track will help to lower the bias in filtered data and ultimately lead to more
reliable data analysis results. Furthermore, aside from visual inspections of the datasets, some form
of automatized analysis performed in a regular interval as part of the measurement system could
signal faulty measurements at an early stage, so data losses can be prevented and longer, continuous
time series will be ensured. We recommend that authors in this field clearly present and discuss the
chosen filters and how they affect the analysis and results, which will benefit standardization efforts in
e.g., performance loss studies.

In the future, PV system data must be better understood to ensure comparable performance loss
studies or end-of-life estimates. Therefore, paving the way towards standardized data handling and
filtering practices will be crucial for any kind of PV performance investigations.
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