Influence of Blasting Vibration of MLEMC Shaft Foundation Pit on Adjacent High-Rise Frame Structure: A Case Study
Abstract
:1. Introduction
2. Overview of MLEMC Shaft Foundation Pit Engineering
3. Field Blasting Experiment and Vibration Monitoring Analysis
3.1. Experiments Results and Analysis
3.2. Blasting Vibration Attenuation Rule and Establishment of Prediction Model
- According to the newly obtained prediction model (Equation (11)), the surface PPV fitting degree calculated is higher than the classical Sadovski formula. This indicates that PPV attenuation is more complex due to the influence of foundation pit depth, and the classical formula has certain limitations. The prediction model can well reflect the law of vibration wave affected by depth during the ground propagation of foundation pit blasting.
- According to the PPV regression analysis, the newly established PPV prediction model has a high accuracy, and the correlation coefficient is 0.857. Therefore, the following prediction model can be used to calculate the PPV of foundation pit blasting surface.
4. Verification and Analysis of Numerical Model of High-Rise Building
4.1. Establishment of Numerical Model
4.2. Parameters of Numerical Simulation
4.2.1. Parameters of High-Rise Building
4.2.2. Explosive Parameters
4.2.3. Rock Parameters
4.2.4. Soil Parameters
4.3. Reliability Verification of Numerical Model and Parameters
5. Influence of Blasting Vibration on the High-Rise Frame Building
5.1. Modal Analysis of Natural Frequency of High-Rise Buildings
5.2. Vibration Velocity Analysis of the High-Rise Building
5.3. Dynamic Stress Analysis of the High-Rise Building
5.4. Prediction Model of Blasting Vibration Velocity of High-Rise Buildings
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Symbols
PPV | Peak particle velocity |
Ee | Elastic modulus of reinforce concrete |
Es | Elastic modulus of steel |
At | The total area of member section |
Wbeam | The reinforcement of beam |
ρ | Density |
E | The elastic modulus |
E0 | Internal energy per unit volume |
σ0 | The yield stress |
β | Hardening parameter |
Φ | The internal friction angle |
MS | Mass matrix |
U | Displacement vector |
T | The natural vibration period of the house |
B | The width (m) of the building |
The dynamic tensile strength | |
The strain rate of concrete. | |
i | The ratio of vibration velocity between other floors and the first floor |
σ(n) | The dynamic tensile stress of floor n |
VF1 | The vibration velocity of the first floor |
JWL | Jones–Wilkens–Lee parameters |
Ec | Elastic modulus of concrete |
As | The sectional area of reinforcement |
W | Reinforcement ratio |
Wcolumn | The reinforcement of column |
μ | The Poisson ratio |
V | The relative specific volume respective |
R1, R2, A, B, ω | Material constants |
Etan | Minimum bending stiffness |
RKF | The shape parameter of failure surface |
C | The cohesion |
KS | Stiffness matrix |
Mass of nodal acceleration | |
H | The total height of the building |
α | The growth factor of dynamic tensile strength |
The static tensile strength | |
The quasi-static strain rate of concrete | |
n | The floor |
VFn | The vibration velocity of floor n. |
VF17 | The vibration velocity of the seventeenth floor |
References
- Smith, P.D.; Rose, T.A. Blast loading and building robustness. Prog. Struct. Eng. Mater. 2002, 4, 213–223. [Google Scholar] [CrossRef]
- Ngo, T.; Mendis, P.; Gupta, A.; Ramsay, J. Blast loading and blast effects on structures—An overview. Electron. J. Struct. Eng. 2007, 7, 76–91. [Google Scholar]
- Henrych, J.; Abrahamson, G.R. The dynamics of explosion and its use. J. Appl. Mech. 1980, 47, 218. [Google Scholar] [CrossRef]
- Singh, P.K.; Roy, M.P. Damage to surface structures due to blast vibration. Int. J. Rock Mech. Min. Sci. 2010, 47, 949–961. [Google Scholar] [CrossRef]
- Athanasopoulos, G.A.; Pelekis, P.C. Ground vibrations from sheetpile driving in urban environment: Measurements, analysis, and effects on buildings and occupants. Soil Dyn. Earthq. Eng. 2020, 19, 371–387. [Google Scholar] [CrossRef]
- Zhu, W.H.; Ming, F.; Li, X.P. Elevate effect analysis of frame structure response under blasting seismic wave. J. Coal 2011, 36, 411–415. [Google Scholar]
- Roy, P.P. Technical Note Characteristics of ground vibrations and structural response to surface and underground blasting. Geotech. Geol. Eng. 1998, 16, 151–166. [Google Scholar] [CrossRef]
- Dowding, C.H.; Aimone-Martin, C.T.; Meins, B.M.; Hamdi, E. Large structure response to high frequency excitation from rock blasting. Int. J. Rock Mech. Min. Sci. 2018, 111, 54–63. [Google Scholar] [CrossRef]
- Ma, G.; Hao, H.; Zhou, Y. Assessment of structure damage to blasting induced ground motions. Eng. Struct. 2000, 22, 1378–1389. [Google Scholar] [CrossRef]
- Gad, E.F.; Wilson, J.L.; Moore, A.J.; Richards, A.B. Effects of mine blasting on residential structures. J. Perform. Constr. Facil. 2005, 19, 222–228. [Google Scholar] [CrossRef]
- Xie, C.Y.; Luo, Z.Q.; Jia, N.; Xiong, L.X.; Cheng, G.H. Dynamic effects of open blasting vibration on adjacent buildings and measures for vibration reduction. J. Vib. Shock 2013, 32, 187–193. [Google Scholar]
- Børvik, T.; Hanssen, A.G.; Langseth, M.; Olovsson, L. Response of structures to planar blast loads–A finite element engineering approach. Comput. Struct. 2009, 87, 507–520. [Google Scholar] [CrossRef]
- Wu, C.; Hao, H.; Lu, Y. Dynamic response and damage analysis of masonry structures and masonry infilled RC frames to blast ground motion. Eng. Struct. 2005, 27, 323–333. [Google Scholar] [CrossRef]
- Sielicki, P.W.; Sumelka, W.; Łodygowski, T. Close Range Explosive Loading on Steel Column in the Framework of Anisotropic Viscoplasticity. Metals 2019, 9, 454. [Google Scholar] [CrossRef] [Green Version]
- Jayasooriya, R.; Thambiratnam, D.P.; Perera, N.J.; Kosse, V. Blast and residual capacity analysis of reinforced concrete framed buildings. Eng. Struct. 2011, 33, 3483–3495. [Google Scholar] [CrossRef]
- Dhakal, R.P.; Pan, T.C.; Irawan, P.; Tsai, K.C.; Lin, K.C.; Chen, C.H. Experimental study on the dynamic response of gravity-designed reinforced concrete connections. Eng. Struct. 2005, 27, 75–87. [Google Scholar] [CrossRef]
- Dhakal, R.P.; Pan, T.C. Response characteristics of structures subjected to blasting-induced ground motion. Int. J. Impact Eng. 2003, 28, 813–828. [Google Scholar] [CrossRef]
- Bayraktar, A.; Türker, T.; Altunişik, A.C.; Sevim, B. Evaluation of blast effects on reinforced concrete buildings considering Operational Modal Analysis results. Soil Dyn. Earthq. Eng. 2010, 30, 310–319. [Google Scholar] [CrossRef]
- Lu, X.; Lu, X.Z.; Guan, H.; Ye, L.P. Collapse simulation of reinforced concrete high-rise building induced by extreme earthquakes. Earthq. Eng. Struct. Dyn. 2013, 42, 705–723. [Google Scholar] [CrossRef] [Green Version]
- Rezaei Rad, A.; Banazadeh, M. Probabilistic risk-based performance evaluation of seismically base-isolated steel structures subjected to far-field earthquakes. Buildings 2018, 8, 128. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.G.; Yu, Y.L. On several problems of safety criterion for blasting vibration. Eng. Blasting 2001, 7, 88–92. [Google Scholar]
- Jiang, N.; Zhou, C. Blasting vibration safety criterion for a tunnel liner structure. Tunn. Undergr. Space Technol. 2012, 32, 52–57. [Google Scholar] [CrossRef]
- Jiang, N.; Gao, T.; Zhou, C.; Luo, X. Effect of excavation blasting vibration on adjacent buried gas pipeline in a metro tunnel. Tunn. Undergr. Space Technol. 2018, 81, 590–601. [Google Scholar] [CrossRef]
- Jiang, N.; Zhou, C.; Lu, S.; Zhang, Z. Propagation and prediction of blasting vibration on slope in an open pit during underground mining. Tunn. Undergr. Space Technol. 2017, 70, 409–421. [Google Scholar] [CrossRef]
- Langhaar, H.L. Dimensional Analysis and Theory of Models; Wiley: New York, NY, USA, 1951; Volume 2. [Google Scholar]
- AQSIQ. GB6722-2014 Safety Regulations for Blasting Beijing; China WaterPower Press: Beijing, China, 2014. [Google Scholar]
- Shen, X.P.; Wang, C.Y.; Zhou, L. A damage plastic constitutive model for reinforced concrete and its engineering application. Eng. Mech. 2007, 24, 122–128. [Google Scholar]
- Kong, D.D.; Zhao, Y.H.; Wang, P.; Zhang, S.Q. Equivalent Modulus Method in Finite Element Analysis of Reinforced Concrete Materials. J. Shenyang Jianzhu Univ. (Nat. Sci. Ed.) 2005, 21, 200–203. [Google Scholar]
- Yi, C.; Sjöberg, J.; Johansson, D. Numerical modelling for blast-induced fragmentation in sublevel caving mines. Tunn. Undergr. Space Technol. 2017, 68, 167–173. [Google Scholar] [CrossRef]
- Chen, Y.L.; Ma, J.J.; Li, Y.N.; Wang, L.F.; Tian, S.L. Numerical Simulation of Blasting Vibration Response of Structure Building Framework. Blasting 2018, 35, 154–160. [Google Scholar]
- Hosseini, M.S.; Cordisco, F.A.; Zavattieri, P.D. Analysis of bioinspired non-interlocking geometrically patterned interfaces under predominant mode I loading. J. Mech. Behav. Biomed. Mater. 2019, 96, 244–260. [Google Scholar] [CrossRef]
- Ministry of Construction, PRC. GB50009-2012 Load Code for Building Structures; China Building Industry Press: Beijing, China, 2012.
- Tan, D.X.; Zhou, Y.; Mi, S.T.; Yi, W.J.; Xie, L.M.; Jiang, Y.Z. Ambient vibration dynamic test and finite element analysis for high-rise buildings. China Civ. Eng. J. 2015, 9, 41–50. [Google Scholar]
- Xu, H.Z. Dynamic Buckling Study of Beam-Slab Structures under Impact Loading. Master’s Thesis, Dalian University of Technology, Dalian, China, 2001. [Google Scholar]
- Wu, X.; Zhang, Y.P.; Guo, Q.F. Influence of the Step Elevation on Blasting Seismic Wave. Appl. Mech. Mater. 2017, 858, 131–136. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Wei, L. Discussion on calculation methods of lateral stiffness of high-rise building structure. Build. Struct. 2020, 50, 44–49. [Google Scholar]
- Lu, Y.B.; Li, Q.M. About the dynamic uniaxial tensile strength of concrete-like materials. Int. J. Impact Eng. 2011, 38, 171–180. [Google Scholar] [CrossRef]
- Ministry of Water Resources, PRC. DL5073-2000 Code for Seismic Design of Hydraulic Buildings; China Electric Power Press: Beijing, China, 2001.
Experiment | Monitoring Points | Excavation Depth (m) | Standoff Distance (m) | Charge in One Delay (kg) | Vibration Velocity (cm·s−1) | Dominant Frequency (Hz) | Velocity Amplification Factor of the Top (VF17/VF1) |
---|---|---|---|---|---|---|---|
I | #1 | 16.000 | 24.083 | 0.600 | 0.493 | 43.240 | 1.190 |
#2 | 16.000 | 30.529 | 0.600 | 0.335 | 28.750 | ||
#3 | 16.000 | 37.577 | 0.600 | 0.239 | 31.250 | ||
#4 | 16.000 | — | 0.600 | 0.174 | 24.440 | ||
#5 | 16.000 | — | 0.600 | 0.284 | 18.850 | ||
II | #1 | 16.000 | 24.083 | 0.800 | 0.588 | 36.210 | 1.230 |
#2 | 16.000 | 30.529 | 0.800 | 0.379 | 28.670 | ||
#3 | 16.000 | 37.577 | 0.800 | 0.291 | 25.750 | ||
#4 | 16.000 | — | 0.800 | 0.195 | 38.450 | ||
#5 | 16.000 | — | 0.800 | 0.358 | 20.140 | ||
III | #1 | 16.000 | 24.083 | 6.000 | 1.773 | 26.470 | 1.260 |
#2 | 16.000 | 30.529 | 6.000 | 1.192 | 29.640 | ||
#3 | 16.000 | 37.577 | 6.000 | 0.790 | 51.230 | ||
#4 | 16.000 | — | 6.000 | 0.591 | 24.530 | ||
#5 | 16.000 | — | 6.000 | 0.995 | 15.760 | ||
IV | #1 | 18.000 | 25.456 | 6.000 | 1.668 | 34.870 | 1.220 |
#2 | 18.000 | 31.623 | 6.000 | 1.153 | 18.760 | ||
#3 | 18.000 | 38.471 | 6.000 | 0.753 | 43.570 | ||
#4 | 18.000 | — | 6.000 | 0.519 | 24.410 | ||
#5 | 18.000 | — | 6.000 | 0.919 | 28.340 | ||
V | #1 | 18.000 | 25.456 | 8.000 | 1.898 | 52.430 | 1.200 |
#2 | 18.000 | 31.623 | 8.000 | 1.384 | 25.760 | ||
#3 | 18.000 | 38.471 | 8.000 | 0.997 | 29.480 | ||
#4 | 18.000 | — | 8.000 | 0.608 | 28.990 | ||
#5 | 18.000 | — | 8.000 | 1.196 | 31.570 |
Experiment | Monitoring Points | Vertical Vibration Velocity (cm·s−1) | Tangential Vibration Velocity (cm·s−1) | Radial Vibration Velocity (cm·s−1) |
---|---|---|---|---|
I | #3 | 0.239 | 0.031 | 0.042 |
#4 | 0.174 | 0.024 | 0.033 | |
#5 | 0.284 | 0.051 | 0.057 | |
II | #3 | 0.291 | 0.098 | 0.101 |
#4 | 0.195 | 0.044 | 0.058 | |
#5 | 0.358 | 0.099 | 0.100 | |
III | #3 | 0.790 | 0.133 | 0.142 |
#4 | 0.591 | 0.098 | 0.112 | |
#5 | 0.995 | 0.148 | 0.267 | |
IV | #3 | 0.753 | 0.145 | 0.136 |
#4 | 0.519 | 0.084 | 0.099 | |
#5 | 0.919 | 0.184 | 0.236 | |
V | #3 | 0.997 | 0.155 | 0.234 |
#4 | 0.608 | 0.101 | 0.233 | |
#5 | 1.196 | 0.231 | 0.297 |
Category | Variables | Dimension |
---|---|---|
Dependent variable | Vibration displacement μ | L |
Peak particle velocity υ | LT−1 | |
Particle vibration acceleration α | LT−2 | |
Frequency f | T−1 | |
Independent variable | Charge Q | M |
Distance between structure and blasting source r | L | |
Foundation pit excavation depth d | L | |
Density of rock mass ρ | ML−3 | |
Phase velocity c | LT−1 | |
Detonation time t | T |
Classical Sadovski’s Formula (Equation (8)) | Correlation Coefficient | Obtained Formula (Equation (11)) | Correlation Coefficient |
---|---|---|---|
0.723 | 0.857 |
Density ρ/(g·cm−3) | Elastic Modulus E/GPa | Poisson’s Ratio μ |
---|---|---|
2.5 | 37.5 | 0.19 |
ρ/(g·cm−3) | V/(cm·μs−1) | A/GPa | B/GPa | R1 | R2 | ω | E0/GPa |
---|---|---|---|---|---|---|---|
1.10 | 0.4 | 214.4 | 18.2 | 4.2 | 0.9 | 0.15 | 4.19 |
ρ/(g·cm−3) | E/GPa | μ | σ0/GPa | Etan/GPa | β |
---|---|---|---|---|---|
2.68 | 45 | 0.25 | 0.5 | 0.02 | 0.5 |
Category | ρ/(g·cm−3) | E/GPa | μ | RKF | φ/° | C/GPa | STR-LIM |
---|---|---|---|---|---|---|---|
Silty clay | 1.98 | 0.007 | 0.18 | 0.6 | 0.174 | 0.015 | 0.005 |
Clay crushed stone | 1.99 | 0.011 | 0.19 | 0.5 | 0.262 | 0.035 | 0.005 |
Location | Simulation | Field Experiment | Error of Deviation |
---|---|---|---|
First floor/(cm·s−1) | 0.761 | 0.790 | 3.67% |
Ninth floor/(cm·s−1) | 0.543 | 0.591 | 8.12% |
Top floor/(cm·s−1) | 1.063 | 0.995 | 6.83% |
SET | Natural Vibration Frequency/Hz | Mode of Vibration |
---|---|---|
1 | 0.70421 | |
2 | 1.25467 | |
3 | 1.63751 |
Working Conditions | Floor Fn | Vibration Velocity VFn | i = VFn/VF1 |
---|---|---|---|
Field test I | 1 | 0.239 | 1.000 |
9 | 0.174 | 0.728 | |
17 | 0.284 | 1.188 | |
Field test II | 1 | 0.291 | 1.000 |
9 | 0.195 | 0.670 | |
17 | 0.358 | 1.230 | |
Field test III | 1 | 0.790 | 1.000 |
9 | 0.591 | 0.748 | |
17 | 0.995 | 1.259 | |
Field test IV | 1 | 0.753 | 1.000 |
9 | 0.519 | 0.689 | |
17 | 0.919 | 1.221 | |
Field test V | 1 | 0.997 | 1.000 |
9 | 0.608 | 0.610 | |
17 | 1.196 | 1.200 | |
Numerical simulation I (Excavation depth: 20 m Charge of explosives: 15 kg) | 1 | 1.552 | 1.000 |
3 | 1.369 | 0.884 | |
5 | 1.081 | 0.697 | |
7 | 0.878 | 0.568 | |
9 | 1.090 | 0.703 | |
11 | 1.282 | 0.826 | |
13 | 1.430 | 0.923 | |
15 | 1.681 | 1.084 | |
17 | 1.928 | 1.245 | |
Numerical simulation II (Excavation depth: 16 m Charge of explosives: 6 kg) | 1 | 0.761 | 1.000 |
3 | 0.635 | 0.834 | |
5 | 0.524 | 0.688 | |
7 | 0.391 | 0.514 | |
9 | 0.543 | 0.714 | |
11 | 0.605 | 0.795 | |
13 | 0.710 | 0.933 | |
15 | 0.820 | 1.077 | |
17 | 1.063 | 1.397 | |
Numerical simulation III (Excavation depth: 22 m Charge of explosives: 15 kg) | 1 | 1.353 | 1.000 |
3 | 1.158 | 0.856 | |
5 | 0.944 | 0.698 | |
7 | 0.735 | 0.543 | |
9 | 0.971 | 0.718 | |
11 | 1.154 | 0.835 | |
13 | 1.192 | 0.881 | |
15 | 1.354 | 1.001 | |
17 | 1.536 | 1.135 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, N.; Zhang, Y.; Zhou, C.; Wu, T.; Zhu, B. Influence of Blasting Vibration of MLEMC Shaft Foundation Pit on Adjacent High-Rise Frame Structure: A Case Study. Energies 2020, 13, 5140. https://doi.org/10.3390/en13195140
Jiang N, Zhang Y, Zhou C, Wu T, Zhu B. Influence of Blasting Vibration of MLEMC Shaft Foundation Pit on Adjacent High-Rise Frame Structure: A Case Study. Energies. 2020; 13(19):5140. https://doi.org/10.3390/en13195140
Chicago/Turabian StyleJiang, Nan, Yuqi Zhang, Chuanbo Zhou, Tingyao Wu, and Bin Zhu. 2020. "Influence of Blasting Vibration of MLEMC Shaft Foundation Pit on Adjacent High-Rise Frame Structure: A Case Study" Energies 13, no. 19: 5140. https://doi.org/10.3390/en13195140
APA StyleJiang, N., Zhang, Y., Zhou, C., Wu, T., & Zhu, B. (2020). Influence of Blasting Vibration of MLEMC Shaft Foundation Pit on Adjacent High-Rise Frame Structure: A Case Study. Energies, 13(19), 5140. https://doi.org/10.3390/en13195140