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Abstract: The main goal of this paper is to prove that bi-objective optimization of high-pressure gas
networks ensures grater system efficiency than scalar optimization. The proposed algorithm searches
for a trade-off between minimization of the running costs of compressors and maximization of gas
networks capacity (security of gas supply to customers). The bi-criteria algorithm was developed
using a gradient projection method to solve the nonlinear constrained optimization problem, and a
hierarchical vector optimization method. To prove the correctness of the algorithm, three existing
networks have been solved. A comparison between the scalar optimization and bi-criteria optimization
results confirmed the advantages of the bi-criteria optimization approach.
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1. Introduction

The introduction of a Third Party Access (TPA) regime has been a central element of liberalization of
the gas industry. The objective is to foster competition in the gas market, improve supply efficiency and
bolster infrastructural investments, thereby strengthening energy security. However, TPA provisions
have a game-changing impact on the gas supply market by introducing competition, breaking the
incumbent’s monopoly, lowering prices and adding complexities to service provision by the system
operator. The main responsibility of the gas network operator is to maintain safe and efficient operation
of the gas supply system in real time and to ensure security of supplies in the short, medium and long
term. Operation optimization of natural gas pipelines has received increasing attentions due to such
advantages as maximizing the operating economic benefit and the gas delivery amount.

This paper is concerned with the high-pressure gas networks under steady-state conditions. If we
assume that the goal is to minimize the operational costs, then the steady-state optimization algorithm
determines the pressure values in the network nodes, flow values in the pipes, flows in the compressor
stations and the compression ratio of compressor stations, minimizing the objective function.

Different methods are proposed in the literature to solve the problem of this nature. In particular,
non-linear models are applied because non-linearities can be represented in their original form. In [1]
mixed integer non-linear programming is used to tackle the steady-state case; In [2] sequential linear
programming is employed to study the behaviour of an integrated gas and power system. In [3] mixed
integer linear programming is applied for the steady-state optimization of gas flows. Nowadays, it is
possible to state that mixed integer linear programming techniques are mature because they are fast,
robust, and are able to solve problems with up to hundreds of thousands of variables [4].

Several locally mixed integer linear programming formulations used to piecewise linearize a
non-linear function have been proposed in the literature. A unified framework can be found in [5].
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It should be noted that the gas network control is a complex process which can be operated on the
basis of various criteria. The criteria are formulated by the network operator and depend primarily
on the operating conditions of the network, structure of the network, its hydraulic properties and
type of consumers. Under certain conditions, scalar optimization is sufficient to satisfy the operator
requirement while in other cases one should look for compromise solutions, which are optimization
problems with an objective function in the form of vector.

Solving the single objective optimization problems is far more common than solving the
multi-objective problems, since there appears to be no generally effective and efficient method
available for solving the multi-objective problems directly as they are. Typically, a multi-objective
problem is to be effectively converted to a single objective problem before applying an optimization
algorithm. This conversion can be done easily by first deciding the relative importance for each objective
a priori. Then, for example, the decision-maker may combine the individual objective functions into a
scalar cost function (linear or non-linear combination), which effectively converts a multi-objective
problem into a single objective one.

Nonetheless, there are more and more papers in which the task of gas transmission system
optimization is formulated as a multi-criteria task.

In [6] a bi-criteria optimization algorithm is formulated (running cost and maximum capacity) to
solve a simple structure of the network, assuming a steady-state flow.

In [7] an algorithm for the optimization of design and operation of a gas transmission system is
employed. The objective function consists of two components: one describes the costs of construction
and operation of pipelines while the other specifies the costs of construction and operation of the
compressor station. The problem was solved using mixed non-linear programming

In [8] an algorithm for investment and operational costs minimization of a high-pressure gas
network is applied. The mixed integer non-linear programming was used to find optimal suction and
discharge pressures of a fixed number of compressor stations, as well as the length and the diameter of
the pipeline segments. The optimization goal was to minimize the annual costs, assuming 10-year
investment depreciation. The main disadvantage of this algorithm is the assumption that pipeline
diameters are treated as continuous variables.

In the paper by [9], a multi-objective ant colony optimization technique for pipeline optimization
has been developed to solve the multi-objective gas pipeline transportation problem. The multi-objective
problem considered is about minimizing fuel consumption in the compressors and maximizing
the throughput.

In [10] a multi-objective optimization method to trade-off reliability and power demand in the
decision-making process is developed. In the optimization, the steady-state behaviour of the natural
gas pipeline networks is considered, but the uncertainties of the supply conditions and the customer
consumptions are accounted for. The multi-objective optimization is about finding the operational
strategies which minimize power demand and the risk of gas supply shortage.

In [11] three objective functions to simultaneously optimize: minimizing the fuel consumption
in the compressor stations, maximizing the network throughput and maximizing the percentage of
added hydrogen at the network entrance is employed. The NSGA-IIb genetic algorithm coupled
with a Newton–Raphson procedure of the MATLAB toolbox (MathWorks, Inc., Natick, MA, USA)
is implemented.

In [12] the short- and medium-term planning problems of the regimes of multi-line technical gas
pipeline corridors (MLGP) of the Russian gas supply system is considered. The fall in gas production
caused by depleted gas fields leads to a decrease in the load of some operating MLGPs.

The purpose of this article is to develop and test mathematical models and a computer program
in order to support the adoption of dispatch solutions for managing modes of large MLGPs under
conditions of incomplete loading.

The paper by [13] addresses the Line Pack Management of the “GZ1 Hassi R’mell-Arzew” gas
pipeline. For a gas pipeline system, the decision-making on the gas line pack management scenarios
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usually involves a delicate balance between minimizing fuel consumption in the compression stations
and maximizing the gas line pack. In order to select an acceptable Line Pack Management of Gas
Pipeline scenario from these two angles for “GZ1 Hassi R’mell-Arzew” gas pipeline, the idea of
multi-objective decision-making has been introduced.

Pipeline failures due to natural disasters, corrosion and manufacturing defects have generated
a tremendous economic loss. To recover efficiently from the disruption with a minimum loss, [14]
propose a multi-objective optimization model that minimizes both the loss from disruption and
recovery time. Recovery on disrupted pipelines may incur an additional recovery cost but, on the other
hand, it can alleviate the cost of unmet demand. Considering the gas production and transmission
costs, we use multi-objective optimization to study the recovery decisions in a pipeline network.

The paper by [15] proposes the multi-objective optimization of the design of natural gas
transmission networks to support the decision of regulatory authorities. Problem formulation involves
two objective functions: minimization of the transportation fare and maximization of the transported
gas volume. These design parameters of the pipeline project must be previously established by
the regulatory agency, considering an attractive return on investment for the entrepreneurs and the
demands of current and future consumers.

2. Bi-Criteria-Objective Function

In our case, the objective function is formulated in the following form:

f(x) = α1f1(x) + α2f2(x) (1)

where:

f1(x)—objective function for running cost;
f2(x)—objective function for gas line pack;
xT = [pt1, pt1, . . . , ptk]—vector of discharge pressure;
α1, α2—weighting factors (α1 + α2 = 1) indicating relative significance of the objective functions.

The first part of this function, which expresses the running cost of the compressors, should be
minimized (minimization of the operating costs), and the second part, which expresses the line pack,
should be maximized (ensuring delivery security). In order to establish a relationship between the
two functions, weighting factors were used. In this case study, it was assumed that both functions
are equally important for the user, therefore the weighting coefficients are equal to 0.5. Weights must
be constant and must be functions of the original objectives. The values of the weighting factors are
arbitrarily chosen by the user (transmission system operator). Depending on the hydraulic properties
of the system, the capacity, the structure, the number of compressor stations and on the amount of
the transported gas, the operator decides what is more important: the running cost of the compressor
stations or security of gas supply.

The elements of vector x are discharge pressure values of the working compressor stations.
Determining components of the x vector, which will minimize the formulated objective function is the
solution to the bi-criteria optimization problem. This involves finding such discharge pressure values
for each compressor station which will ensure that the operational costs of the transmission system
will be a compromise between maximizing line pack costs and minimizing running costs.

Minimizing the running costs of the transmission system is equivalent to minimizing power
consumption in the compressor stations. The total power consumption in the system is expressed by
Equation (2):

f1(x) =
k∑

i=1

Ni =
k∑

i=1

n·pa·Qs, i·Zs, i·Ts

η·3600·(n− 1)·Ta
·

(pd, i

ps, i

)( n−1
n )

− 1

 [W] (2)

where:



Energies 2020, 13, 5141 4 of 19

Ni—power consumption for the i-th compressor station [W];
n—isentropa exponent;
pa—absolute pressure [Pa];
Qs—volumetric gas flow through the i-th compressor station at standard conditions [m3/h];
Zs—gas compressibility factor for the suction [-];
Ts—temperature for the suction [K];
Ta—absolute temperature [K];
η—adiabatic efficiency;
pd,i—discharge pressure for the i-th compressor station [Pa];
ps,i—suction pressure in for the i-th compressor station [Pa];
k—number of switch-on compressor stations in the system [-].

The second part of the objective function relates to gas line pack in the network. Total gas volume
in the network as a function of geometrical dimensions of the pipelines, and gas parameters can be
expressed by the following Equation (3):

V =
m∑

i=1

π

4
·
Ta

pa
·

(pav, i

Zi·T

)
·D2

i ·Li

[
m3

]
(3)

pav =
2
3

px +
py

2

px + py

 [Pa] (4)

where:

V—volume of gas in the network [m3];
pav,i—average pressure in the i-th pipeline [Pa];
px—pressure at the sending node of the pipeline [Pa];
py—pressure at the receiving node of the pipeline [Pa];
Zi—gas compressibility factor for the i-th pipeline [-];
T—gas temperature in the pipeline [K];
Di—internal diameter of the i-th pipeline [m];
Li—length of the i-th pipeline [m];
m—number of pipelines in the system [-].

In order to compare the power consumption as a result of running cost minimization with power
consumption as a result of line pack maximization, the second term of objective function was expressed
by Equation (5):

f2(x) = Ns =
m∑

i=1

Qv, i·∆pi [W] (5)

where:

Ns—power loss corresponding to given flow parameters [W],
Qv,i—volumetric gas flow through the i-th pipeline at real conditions [m3/s],
∆pi—pressure drop for the i-th pipeline [Pa].

The results of calculations (see Table 1) have shown that the greater line pack in the network,
the higher operational costs of the compressor station. Calculations were made on the pipeline with an
internal diameter of 0.7 m and a length of 50 km.
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Table 1. Pressure drop, volumetric flow rate for real and standard conditions.

∆p Qrz Qn M

MPa m3/h m3/h Kg

0.5 10,136 348,984 249,735
1.0 13,747 512,169 366,511
1.5 16,161 649,293 464,637
2.0 17,936 774,327 554,112
2.5 19,303 892,367 638,582
3.0 20,387 1,005,880 719,812
3.5 21,265 1,116,246 798,791
4.0 21,988 1,224,318 876,128
4.5 22,590 1,330,654 952,222
5.0 23,098 1,435,640 1,027,351

This means that the first part of the objective function is to be minimized and the second part is to
be maximized. We are searching for an appropriate discharge pressure values for working compressor
stations which will ensure a compromise between these two components.

3. Constraints

For high pressure gas networks, operating above 7.0 Bar-gauge, the Panhandle equation is used.
For each pipe k [having node l (k) at its left, and r (k) at its right] the pressure drop equation has
the form:

p2
l(k) − p2

r(k) = KQ1,854 (6)

where:

p—pressure;
Q—flow through pipe.

K = 18, 43
L

E2D4,854 (7)

where:

L—pipe length;
D—pipe diameter;
E—pipe efficiency stated as a constant (~0.9).

For the whole of the network, the equality constraints are the following (more details in [16,17]):

A·Q−K·F− L = 0 (Kirchhoff′s first law) (8)

∆P + AT
·P = 0 (Kirchhoff′s sec ond law) (9)

∆P = KT
f ·Q (flow equation) (10)

where:

A—the nodal-branch incidence matrix (dim A = n ×m);
n—the number of nodes;
m—the number of branches;
P—the vector of squared nodal pressures (dim P = n × 1);
K—the unit - nodal incidence matrix (dim K = n × r);
r—the number of units;
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F—the vector of flows through units (dim F = r × 1);
L—the vector of loads;
∆P—the vector of squared drop pressures (dim ∆P = m × 1);
Kf—the vector of pipe constants (dim Kf = m ×m);
Q—the vector of flows through pipes (dim Q = m × 1).

3.1. Operational Constraints

The gas transmission system contains three types of controllable units, referred to as “non-pipe
elements”. The upper and lower bounds are placed on all non-pipe element flows, as well as inlet and
outlet pressures. These apply only when the non-pipe element is switched on.

In addition, bounds may be placed on any pressure in the network (including outlets and inlets).
Sources and regulators are modelled using linear constraints, which are bounds on the pressure and
flow. Compressors have both linear and non-linear constraints.

3.1.1. Compressors

The centrifugal compressors used on the transmission system have specific characteristics.
The operating regime can be expressed by what is known as an “envelope” (Figure 1). If the increase
in pressure produced by a machine is plotted graphically against the flow, four limits which enclose an
area in which the compressor can properly run emerge. The limits are defined as:

• “surge”: this is the point at which the flow through the compressor becomes so low that a reversal
of flow can occur, which can be damaging to the compressor by causing high stress in the bearings
or in the impeller;

• “choke”: at the opposite end of the diagram, a compressor can reach choke. When the pressure
ratio is low, there comes a point at which no further increase in the flow through the compressor
is possible;

• “maximum and minimum speed”: obviously a compressor can run up to a given maximum speed
consistent with machine safety, and equally there is a minimum speed line.
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The surge line is formulated by the inequality:

a1·Q2
− b1·Q + 1 ≥

pd

ps
(11)
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where:

Q—the flow through compressor (m3/h) and a1, b1 are specified coefficients.

The choking line is formulated by the inequality:

a2·Q2
− b2·Q + 1 ≤

pd

ps
(12)

By construction, compressors have a maximum and a minimum speed limit. Operating beyond
this upper limit may result in damaging the compressor. On the other hand, an unacceptable efficiency
occurs while operating below the lower limit. These constraints are formulated by the inequality:

RPMAX ≥ −a + b1Q + c
pd

ps
− d

(
pd

ps

)2

− e
(

pd

ps

)
Q ≥ RPMIN (13)

where:

RPMAX—maximum speed (R.P.M.);
RPMIN—minimum speed (R.P.M.);
a, b, c, d, e—coefficients.

For the purpose of the developed algorithm, non-linear constraints of the envelope have been
linearized [18,19]. Linearization is obtained in the form of a convex quadrangle describing the operative
envelope from the outside. The latter is transformed to a set of linear inequalities in terms of pressure
and volumetric flow.

When a converged optimum solution is obtained, the real envelopes are inspected to ensure that
no violations are present.

Since all the compressors do not usually have the same characteristics, problems may occur when
running different types of compressors at the same time. For instance, in a series arrangement the
maximum flow limit through one of the compressors may be lower than for the rest of the compressors,
therefore, a flow limit is imposed on those compressors with a higher flow constraint. This is stated by
the inequality:

Qmax ≥ Q (14)

where:

Qmax—maximum compressor flow;
Q—compressor inlet flow.

For the parallel arrangement, all the pressure ratios have to be equal. Therefore, the compressor
with the lowest pressure ratio imposes a limit on the rest of the compressors with a higher pressure
ratio. This is stated by the inequality,

CRmax ≥
pd
ps

(15)

where:

CRmax—maximum compressor ratio.

Finally, the compressors have a maximum power, which should not be exceeded. Developing
more power than indicated by the limit may destroy the compressor. The power required by the prime
mover is stated by Equation (1).

N ≤ Nmax (16)
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3.1.2. Regulators

Flow through regulators is always unidirectional, which is stated by:

po > pi (17)

where:

po—outlet nodal pressure;
pi—inlet nodal pressure.

There is an equation which relates inlet-outlet pressure difference with the flow. If, for instance,
the maximum drop pressure characteristic is known for a particular regulator, the maximum permissible
flow can be obtained through this equation, and vice versa. In our problem, we do not use that equation;
instead, we use the maximum flow obtained from that equation. The flow inequality constraint is

Qmax ≥ Q (18)

where:

Qmax—maximum flow through the regulator;
Q—actual flow through the regulator.

Finally, the outlet pressure remains constant for any flow rate. This is stated by:

po = constant (19)

3.1.3. Valves

There are several types of valves, for our purposes only the isolating valves are of interest. These are
used to interrupt the flow and to shut off sections of the network. In our problem valves are represented
by two inequalities. The first one states that pressure difference is always greater upstream, i.e.,

po > pi (20)

where:

po—outlet pressure;
pi—inlet pressure.

There is an equation for valves which relates their flow within the pressure difference throughout
the valve. Since the maximum flow through the valve is given by the constructors, we can obtain the
maximum pressure difference from the valve equation. Thus, we only need to define one constraint.
In our problem, we have chosen the flow inequality:

Qmax ≥ Q (21)

where:

Qmax—maximum flow through the valve;
Q—actual flow through the valve.

3.1.4. Compressor Stations

The inequality constraints imposed on each compressor station are as follows:

εmax ≥ ε ≥ εmin (22)
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pd ≤ pd max (23)

N ≤ Nmax (24)

Qf ≤ Qmax (25)

where:

εmin—minimum ratio [-];
εmax—maximum compression ratio [-];
ε—compression ratio [-];
pd max—maximum discharge pressure [Pa];
pd—discharge pressure [Pa];
Nmax—maximum power of the compressor station [W];
N—compressor station power [W];
Qmax—maximum flow through the compressor station [m3/h];
Qf—flow through the compressor station [m3/h].

3.1.5. Nodes and Pipelines

Constraints for nodes and pipelines are as follows:

pmax ≥ p ≥ pmin (26)

w ≤wmax (27)

where:

pmin—minimum nodal pressure [Pa];

pmax—maximum nodal pressure [Pa];

p—pressure value at node [Pa];
wmax—maximum gas velocity in the pipeline [m/s];
w—gas velocity in the pipeline [m/s].

4. Bi-Criteria Algorithm

To prove the advantages of the bi-criteria method over the scalar method to control the gas
transmission system, a comparative analysis using both methods was performed for the same gas
structures [20]. An arithmetic average of the optimization results of running cost minimization and
line pack maximization calculated using scalar optimization were compared with vector optimization
results. The Rosen method was chosen for scalar optimization The Rosen method was also used,
together with hierarchical method to develop the bi-criteria algorithm. The choice of methods was
based on the literature analysis and our own research.

4.1. Rosen Method

The Rosen’s gradient projection method [21–24] is an alternative to the Zoutendijk’s method [25].
Both methods are based on the concept of feasible directions. The Zountendijk’s method, however,
requires a solution of an auxiliary linear optimization problem to find a usable direction, while the
Rosen’s method uses the projection of the negative of the objective function gradient onto the active
constraints. The Rosen’s method requires linear constraints. In other words, it is assumed that
non-linear constraints have first been linearized at some point in the design space. However, in general,
the objective function remains non-linear. The Rosen method is the most common in the group of
feasible directions methods due to its effectiveness. The key factor of this method is the direction
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gradient projection on the surface tangent to the constraints. At the current point, the constraints given
by the equation

gj(x) ≤ 0, j = 1, 2, . . . , m (28)

can be split into two groups:

- active constraints gj(x) = 0, j = j1, j2, . . . , jp;
- non-active constraints gj(x) < 0, j , j1, j2, . . . , jp.

The gradients of the p active constraints are given by:

∇gj(x) =
[
a1j, a2j, . . . , anj

]T
, j = j1, j2, . . . , jp (29)

dim x = n × 1.
Matrix N(n × p) is given by:

N =
[
∇gj1, ∇gj2, . . . ,∇gjp

]
(30)

Matrix:
P = I−N

(
NTN

)−1
NT (31)

is called the projection matrix.
It projects the vector–∇f(x) onto the intersection of all the hyperplanes perpendicular to the

vectors ∇g(x).
It is assumed that the constraints which are active are independent so that the columns of the

matrix N will be linearly independent and hence (NT N) will be non-singular.
The new iteration point is given by

xk+1 = xk + α Sk (32)

where:

α—is a step length along the search direction Sk.

Sk =
Pk
∇f

(
xk

)
‖ Pk
∇f(xk) ‖

(33)

Solution search is along such a direction S which is periodically updated. This method eliminates
the constraints which do not contribute to improving the search direction from the projection matrix.

4.2. Hierarchical Method

A survey of current continuous non-linear multi-objective optimization concepts and methods is
presented in [10,26–31]. The authors conclude that the selection of a specific method depends on the
type of information provided in the problem, the user’s preferences, the solution requirements, and the
availability of software. A hierarchical method has been chosen because in this method the objectives
are ranked by the user in order of importance. The optimum solution x* is then found by minimizing
the objective functions starting with the most important ones and then proceeding according to the
order of importance of the objectives. Let the subscripts of the objectives indicate not only the objective
function number, but also the priorities of the objectives.

Thus, f1(x) and fk(x) denote the most and least important objective functions, respectively. The first
problem is formulated as:

minf1(x) (34)

subject to:
gj(x) ≤ 0, j = 1, 2, . . . , m (35)
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and its solution x1 and f1(x1) is obtained.
Then the second problem is formulated as:

minf2(x) (36)

subject to:
gj(x) ≤ 0, j = 1, 2, . . . , m (37)

f1
(
x1

)
= f1 (38)

This procedure is repeated until all the k objectives have been considered. For the i-th problem
we have:

minfi(x) (39)

subject to:
gj(x) ≤ 0, j = 1, 2, . . . , m (40)

fi(x) = fi (41)

Finally, the xk solution is taken as the desired x * solution of the multi-objective
optimization problem.

5. Results

Optimization was performed for three different gas network structures which are presented in
Figures 2–4.
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5.1. Network 1

Pipeline geometry of network 1 is presented in Table 2.

Table 2. Pipeline geometry of network 1.

Pipeline L D Pipeline L D

ID (m) (mm) ID (m) (mm)

1 64,480 900 10 10,400 600
2 53,280 900 11 13,120 400
3 13,600 900 12 8640 700
4 13,280 900 13 1760 600
5 28,000 900 14 1760 700
6 6400 700 15 19,680 600
7 32,800 900 16 13,920 700
8 34,080 900 17 25,440 700
9 26,880 900

Nodal input data of network 1 is presented in Table 3.

Table 3. Nodal input data of the network 1.

Node Pressure Demand Node Pressure Demand

ID (kPa) (m3/h) ID (kPa) (m3/h)

1 5000 0 11 - 150,000
2 - 0 12 - 40,000
3 - 30,000 13 - 20,000
4 - 0 14 - 55,000
5 - 50,000 15 - 0
6 - 0 16 - 30,000
7 - 0 17 - 100,000
8 - 0 18 - 100,000
9 - 30,000 19 - 160,000

10 - 110,000 20 - 0

Optimization results for network 1 are presented in Table 4.

Table 4. Optimization results for network 1.

Compressor Psuction Pdischarge Power

Station (kPa) (kPa) (kW)

Scalar Optimization—Power Minimization

1 4737 5759 1907
2 4623 5661 3447

Scalar Optimization—Line Pack Maximization

1 4737 7500 4643
2 4623 7200 7779

Bi-Criteria Optimization

1 4737 6327 2861
2 4623 6241 5171

5.2. Network 2

Pipeline geometry of network 2 is presented in Table 5.
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Table 5. Pipeline geometry of network 2.

Pipeline L D Pipeline L D

ID (m) (mm) ID (m) (mm)

1 50,000 700 7 100,000 700
2 50,000 700 8 50,000 700
3 100,000 700 9 50,000 700
4 100,000 700 10 50,000 700
5 50,000 700 11 50,000 700
6 100,000 700 12 100,000 700

Nodal input data of network 2 is presented in Table 6.

Table 6. Nodal input data of network 2.

Node Pressure Demand

ID (kPa) (m3/h)

1 4000 -
2 - 100,000
3 - 100,000
4 - 0
5 - 0
6 - 0
7 - 0
8 - 100,000
9 - 100,000

10 - 300,000

Optimization results are presented in Table 7.

Table 7. Optimization results for network 2.

Compressor Psuction Pdischarge Power

Station (kPa) (kPa) (kW)

Scalar Optimization—Power Minimization

1 3063 3715 1066
2 3175 3715 1767

Scalar Optimization—Line Pack Maximization

1 3119 4900 2353
2 3155 4800 5096

Bi-Criteria Optimization

1 3063 4039 1599
2 3175 4039 2651

5.3. Network 3

Pipeline geometry of network 3 is presented in Table 8.
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Table 8. Pipeline geometry of network 3.

Pipeline L D Pipeline L D

ID (m) (mm) ID (m) (mm)

1 50,000 914 20 65,000 914
2 35,000 914 21 50,000 914
3 20,000 914 22 80,000 914
4 80,000 914 23 120,000 914
5 85,000 914 24 60,000 914
6 95,000 914 25 80,000 914
8 85,000 914 26 40,000 914
9 60,000 914 27 50,000 914
10 35,000 914 28 60,000 914
11 45,000 914 29 115,000 914
12 65,000 914 30 35,000 914
13 70,000 914 31 75,000 914
14 150,000 914 32 90,000 914
15 20,000 914 33 80,000 914
16 55,000 914 34 80,000 914
17 65,000 914 35 50,000 914
18 40,000 914 36 60,000 914
19 55,000 914

Nodal input data of network 3 is presented in Table 9.

Table 9. Nodal input data of network 3.

Node Pressure Demand Node Pressure Demand

ID (kPa) (m3/h) ID (kPa) (m3/h)

1 4000 0 16 - 117,987
2 - 117,987 17 - 117,987
3 - 0 18 - 117,987
4 - 0 19 - 117,987
5 - 117,987 20 - 117,987
6 - 117,987 21 4000 0
7 - 117,987 22 - 117,987
8 - 117,987 23 - 0
9 - 117,987 24 - 0

10 - 117,987 25 - 117,987
11 - 117,987 26 - 117,987
12 - 117,987 27 - 117,987
13 - 117,987 29 - 117,987
14 - 117,987 30 - 0
15 - 0 31 0

Optimization results for network 3 are presented in Table 10.
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Table 10. Optimization results for network 3.

Compressor Psuction Pdischarge Power

Station (kPa) (kPa) (kW)

Scalar Optimization—Power Minimization

1 4583 4864 707
2 4622 5109 1297
3 4377 4848 1109

Scalar Optimization—Line Pack Maximization

1 4238 5300 4021
2 4431 5300 2782
3 4094 5100 3078

Bi-Criteria Optimization

1 4441 4811 1061
2 4506 5142 1946
3 4272 4904 1664

6. Results Analysis

Table 11 presents the results of the tested networks. In each scenario, the bi-criteria optimization
objective function value was lower than the value of arithmetic average of the objective function of
minimizing power and maximizing gas capacity.

Table 11. Power consumption for each optimization scenario.

Scenario
Compression Stations Total Power

(kW)

Network 1 Network 2 Network 3

Scalar optimization – power minimization 5354 2833 3113
Scalar optimization – line pack maximization 12,422 7449 9881

Arithmetic mean of scalar optimization 8888 5141 6497
Bi-criteria optimization 8032 4250 4671

The difference increases as the dimension of the network increases. For networks 1, 2 and 3,
the differences are 10%, 17% and 28%, respectively. Comparison of optimization results is presented in
Figure 5.

The costs of compressor stations electric energy consumption were calculated for each scenario
assuming that 1 kWh of electricity costs 0.55 Polish zloty (PLN). They are shown in Tables 12 and 13.

Table 12. Comparison of optimization results—24 h scenario.

Network
Total Power 24 h Energy Consumption Gross Cost

(kW) (kWh) (PLN)

Arithmetic Mean of Scalar Optimization

1 8888 213,312 117,321.60
2 5141 123,384 6,786,120
3 6497 155,928 85,760.40

Bi-Criteria Optimization

1 8032 192,768 106,022.40
2 4250 102,000 56,100.00
3 4671 112,104 61,657.20
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Table 13. Comparison of optimization results—1 year scenario.

Network
Total Power 1 year Energy Consumption Gross Cost

(kW) (kWh) (PLN)

Arithmetic Mean of Scalar Optimization

1 8888 77,858,880 42,822,384
2 5141 45,035,160 24,769,338
3 6497 56,913,720 31,302,546

Bi-Criteria Optimization

1 8032 70,360,320 38,698,176
2 4250 37,230,000 20,476,500
3 4671 40,917,960 22,504,878

Cost minimization should not be the only criterion to manage the transmission system. It should
be noted that the operator is responsible for gas delivery to the customer under specific terms. It may
occur that in certain situations (forecast error, sudden change in ambient temperature, inconsistent
gas consumption with the contract by one of the recipients), the operator will not be able to ensure
the gas supply under specific parameters resulting from the concluded contracts. Security of supply
in all conditions can be achieved by increasing the gas line pack in the network, which in turn
results in increased system operational costs. This means that gas transmission system optimization
should take into account two factors: minimization of fuel consumption in terms of operating costs
and maximization of gas line pack in the system in terms of ensuring delivery security. Therefore,
the algorithm should find a compromise solution between these two factors.

The presented tables clearly show that using bi-criteria optimization to manage the gas transmission
network is cheaper than in the case of scalar optimization treated as an arithmetic average of the
objective function of power minimization and line pack maximization.

7. Conclusions

The results of the study confirm that bi-criteria optimization allows for much cheaper gas
transmission system management. It should be noted that the steady gas flow state in the case
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of transmission system is only an approximation of the reality. The next stage for the bi-criteria
optimization algorithm is its adaptation for the transient flow model.
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