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Abstract: In order to investigate pressure performance of multiple fractured horizontal wells
(MFHWs) penetrating heterogeneous unconventional reservoir and avoid the high computational
cost of numerical simulation, a semi-analytical model for MFHWs combining Green function solution
and boundary element method has been obtained, where the reservoir is divided into different
homogeneous substructures and coupled at interface boundaries by plane source function in a closed
rectangular parallelepiped. Hydraulic fractures are assumed uniform flux and dual porosity model is
used for natural fractures system. Then the model is validated by compared with analytical solution
of MFHWs in a homogeneous reservoir and trilinear flow model, which shows that this model can
achieve high accuracy even with a small interface discretization number, and it can consider the radial
flow around each hydraulic fractures. Finally, the pressure responses with heterogeneous parameters
of reservoirs are discussed including heterogeneous permeability, non-uniform block-length and
fracture half-length distribution as well as dual porosity parameters like elastic storage ratio and
crossflow ratio.

Keywords: multiple fractured horizontal well; Green function; semi-analytical solution;
unconventional reservoir

1. Introduction

With the rapid development of unconventional reservoirs, the horizontal well intercepted by
hydraulic fractures has become the main technology [1,2], which can significantly increase contact
areas between fractures and formation zone. Thus, the transient performances of Multiple Fractured
Horizontal Wells (MFHWs) have attracted more and more scholars’ attention. There have been
extensive studies [3–5] on the MFHWs of unconventional reservoir, which generally can be classified
into analytical model, numerical model and semi-analytical model.

To consider the effect of formation heterogeneity, one of the most common analytical models is
the trilinear flow model with three different flow areas of outer region, inner region and hydraulic
fracture, which is proposed by Brown [6]. To describe the hydraulic fractures surrounding by the
stimulated area, Stalgorova [7,8] subdivided the trilinear flow regions into five flow regions model.
Guo [9] extended the flow area into seven parts including various fracture distribution along the
horizontal wellbore. Later, on account of the fractal nature of fractured media, the new formulations are
implemented in the trilinear flow model using fractal theory [3,10,11]. The fundamental petro-physical
characteristic of unconventional reservoirs is considered, but all multi-linear models are based on
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two critical assumptions. One assumption is that fluid flow obeys linear flow in all regions. As a
result, some other flow regimes are ignored such as first radial flow around hydraulic fractures and
later elliptical flow [12]. The other assumption is that the formation properties around each fracture
are assumed to be the same, and the interference between different fractures is not investigated.
However, Zawilla [13] and Liu [14] indicated that heterogeneous properties are commonly existed in
the unconventional reservoir formation and different fracturing stages.

The numerical simulation is an effective method to model the flow performance of MFHWs,
which can deal with the formation heterogeneity easily. Especially, Discrete Fracture Model
(DFM) [4,15,16] is used for complex fracture network with high computational costs, which accounts
the effects of individual fractures explicitly. In order to avoid lots of meshing of unstructured grid
around each fracture, Embedded Discrete Fracture Method (EDFM) is proposed [17] by orthogonal
coarse grid instead of fine small unstructured grid, but the transient performance of MFHWs needs
detailed pressure solution by small space scale and time scale.

Since Gringarten [18] (1973) introduced the source/Green’s function solution into the fluid flow in
porous media, this semi-analytical method has greatly expanded our ability to solve different well
problems. The transient performances of MFHWs are calculated by many authors [19,20]. Then, Ozkan
and Raghavan [21,22] (1991) used Laplace transformation into the source function, which can easily
extend to the naturally fractured media and variable rate production condition. After that, relevant
transient solutions of MFHWs are obtained [23–25]. Most of their works focus on the different fracture
distributions and different reservoir types, while reservoir heterogeneity is less studied. To consider
the Stimulated Reservoir Volume (SRV) in the unconventional reservoir, a composite model [5,26,27] is
built by deriving point source solution from circular composite reservoir. However, the structure of
MFHWs in composite circular reservoirs cannot match the linear flow around the SRV area and the
reservoir heterogeneity around each fracture is not considered either.

For the heterogeneous reservoirs, Kikani [28] (1993) modeled the pressure performance of different
sectional homogeneous reservoir by BEM (boundary element method). Idorenyin [29] (2016) considered
the arbitrary-shaped composite reservoirs by extending Kikani’s model. Based on the element boundary
method and Green’s function, Medeiros [30] (2010) presented a semi-analytical model for the pressure
transient analysis of horizontal wells in heterogeneous reservoirs. Based on the fact that the main
contribution for hydrocarbon flow rate of MFHWs is the SRV area [31], so this paper is to build a
semi-analytical model for MFHWs in heterogeneous stimulated reservoir volume of naturally fractured
media. To avoid fine grid of numerical reservoir simulator around fractures and wells, the plane source
functions in the closed domain and boundary element method are applied, where stimulated reservoir
volume is divided into compartmentalized heterogeneous blocks. In addition, the result is verified
with other analytical methods. Finally, heterogeneous effects on pressure and production performance
are presented.

2. Modeling of MFHWs

Firstly, we will present basic the physical model and assumption for hydraulic fractures and
stimulated reservoir volume (SRV). Then, the Green’s function formulation of the pressure-transient
solution for a locally homogeneous reservoir substructure will be given with inner and outer boundaries.

2.1. Physical Model and Assumptions

A Multiple fractured horizontal well passing through a heterogeneous reservoir with different
properties is shown in Figure 1, where each block is the subsections of the reservoir characterized by
uniform average properties. Except for the interfaces between the blocks, other boundaries of the
blocks are assumed to be impermeable. The basic assumptions of the model are as follows:

(1) The reservoir is heterogeneous along the horizontal wellbore with nf blocks of different length xei
(i = 1, 2, 3, . . . , nf), and there is one hydraulic fracture distributed in each block. The thickness of
the stimulated reservoir volume is uniform h and width is ye. The initial pressure is assumed pi.



Energies 2020, 13, 5204 3 of 15

(2) The artificial hydraulic fractures are vertical to the horizontal wellbore, with fracture half-length
Lfi, fracture height hfi, (i = 1, 2, 3, . . . , nf), and uniform flux distribution assumed in each
hydraulic fracture.

(3) Each block of unconventional reservoir was established by Warren and Root’s (1963) dual porosity
model, where natural fractures and matrix follow the Darcy’s flow model. For each blocks,
different natural fracture permeability kfi, crossflow coefficient λi, and elastic storage ratio ωi
(i = 1, 2, 3, . . . , nf) can be defined.

(4) The fluid assumed slightly compressible with constant viscosity and compressibility.
(5) Gravity and capillary effect are negligible.
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2.2. Pressure Solution for a Reservoir Substructure

Based on the Green’s function, the pressure transient solution of dimensionless space and time in
porous media can be written as follows [18,31,32], where the domain boundary is divided into the
inner and outer boundaries, represented by BwD, and BeD, respectively:

∆p(MD, tD) = −

∫ tD
0

∫
BwD

[
G
(
MD, M′D, tD − τ

)∂p(M′D,τ)
∂nBwD

− p
(
M′D, τ

)∂G(MD,M′D,tD−τ)
∂nBwD

]
M′D∈BwD

dM′Ddτ

−

∫ tD
0

∫
BeD

[
G
(
MD, M′D, tD − τ

)∂p(M′D,τ)
∂nBeD

− p
(
M′D, τ

)∂G(MD,M′D,tD−τ)
∂nBeD

]
M′D∈BeD

dM′Ddτ
(1)

where ∆p(MD, tD) is the pressure drop, G
(
MD, M′D, tD − τ

)
is the Green’s function, p

(
M′D, τ

)
is the

pressure. The BwD corresponds to well surface and BeD is the outer surface of the dimensionless
domain, the points MD and M′D represent the observation and source locations in dimensionless space,
respectively, and tD is dimensionless time, and defined as:

tD =
k

φCtµ`2 t (2)

where, µ is the fluid viscosity, k is the permeability, ` is the characteristic reference length, Ct is the total
compressibility, φ is the porosity and t is time.

Then, the homogeneous Neumann boundary condition is used to eliminate partial derivative
of Green function. The point flux term is obtained by Darcy’s law to represent the normal pressure
derivatives on the boundary surfaces. Therefore, we can rewrite Equation (1) as follows:

∆p(MD, tD) =
tD∫
0

∫
BwD

q̃w
(
M′D, τ

)
G
(
MD, M′D, tD − τ

)
dM′Ddτ +

tD∫
0

∫
BeD

q̃e
(
M′D, τ

)
G
(
MD, M′D, tD − τ

)
dM′Ddτ (3)
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where, q̃w
(
M′D, τ

)
, q̃e

(
M′D, τ

)
are the point flux of well surface and outer surface, respectively. We divide

the inner and outer boundary surface into n and m segments of uniform flux, and the source function
are defined as

BwD =
n∑

j=1

BwDj j = 1, 2, 3, · · · , n (4)

BeD =
m∑

k=1

BeDk k = 1, 2, 3, · · · , m (5)

Sα(MD, tD) =

∫
Bα

G
(
MD, M′D, tD − τ

)
dM′D for α = wDj or eDk (6)

Therefore, the Equation (3) can be rewritten as follows:

∆p(MD, tD) =
n∑

j=1

tD∫
0

q̃wj(τ)SwDj(MD, tD − τ)dτ +
m∑

k=1

tD∫
0

q̃ek(τ)SeDk(MD, tD − τ)dτ (7)

Ozkan and Raghavan [21] applied the Laplace transformation into Equation (7), the variable flow
rate condition and naturally fractured media can be easily implemented by Green’s function. Convert
the convolution integrals into algebraic expressions. Then, Equation (7) can be rewritten as

∆p(MD, s) =
n∑

j=1

s× q̃wj(s)SwDj(MD, s) +
m∑

k=1

s× q̃ek(s)SeDk(MD, s) (8)

The function with bar signs in Equation (8) indicates their function in Laplace transforms with
respect to the time tD, and s is the Laplace-transform variable.

2.3. Source Functions for the Inner and Outer Boundaries

To obtain the transient pressure solution of fractured horizontal well in a rectangular parallelepiped,
the source functions of inner and outer boundaries are evaluated by the Green’s function. For the
partial and full penetration of the hydraulic fractures in the reservoir, 3D plane source and 2D line
source should be considered.

Corresponding to the point source in the rectangular parallelepiped, the Green’s function in dual
porous media can be expressed as [21]

G
(
MD, M′D, s

)
=

µ
2k f `yeDhD

{
ch(
√

uxD1)+ch(
√

uxD2)
√

ush(
√

uxeD)

+2
∞∑

k=1
cos kπ yD

yeD
cos kπ

y′D
yeD

ch(εkxD1)+ch(εkxD2)
εksh(εkxeD)

+2
∞∑

n=1
cos nπ zD

hD
cos nπ zwD

hD

[
ch(εnxD1)+ch(εnxD2)

εnsh(εnxeD)

+ 2
∞∑

k=1
cos kπ yD

yeD
cos kπ

y′D
yeD

chεk,nxD1+chεk,nxD2

εk,nsh(εk,nxeD)

]}
(9)

In Equation (9), we have defined MD = (xD, yD, zD), M′D =
(
x′D, y′D, z′D

)
, xeD = xe

` , yeD =
ye
` hD = h

` ,

xD1 = xeD −
∣∣∣xD − x′D

∣∣∣, xD2 = xeD −
∣∣∣xD + x′D

∣∣∣, εn =

√
u + (nπ/hD)

2, εk =

√
u + (kπ/yeD)

2, εk,n =√
u + (kπ/yeD)

2 + (nπ/hD)
2 and u = s f (s), f (s) = sω(1−ω)+λ

λ+s(1−ω) for naturally fractured reservoir.
The inner and outer boundaries consist of the planar surfaces in the rectangular parallelepiped,

which represented hydraulic fractures and boundary planes. The source function for a plane is
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perpendicular to the x-axis, so a planar source in the y-z plane can be calculated by integration of
Equation (9) (shown in Figure 2)

S(MD, s) =
∫ hwD/2
−hwD/2

∫ L f D
−L f D

G
(
MD, M′D, s

)
dy′Ddz′D

=
µL f DhwD

khyeD

{
ch(
√

uxD1)−ch(
√

uxD2)
√

ush(
√

uxeD)
+

2yeD
πL f D

∑
∞

k=1
1
k cos

(
kπ yD

yeD

)
cos

(
kπ ywD

yeD

)
sin

(
kπ

L f D
yeD

)
chεkxD1−chεkxD2

εkshεkxeD

}
+

µ
πkh ×

4hDL f D
yeDs

∑
∞

n=1
1
n cos

(
nπ zD

hD

)
sin

(
nπ zwD

hD

)
cos

(
nπ hwD

2hD

){ chεnxD1−chεnxD2
εnshεnxeD

+
2yeD
πL f D

∑
∞

k=1
1
k sin

(
kπ yD

yeD

)
cos

(
kπ ywD

yeD

)
sin

(
kπ

L f D
yeD

)
chεn,kxD1−chεn,kxD2

εn,kshεn,kxeD

} (10)
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When the reservoir is fully penetrated by hydraulic fractures, the boundary surface is at full
penetration, namely hwD = hD; thus, Equation (10) can simplify to (the second item of Equation (10) is
equal to 0)

S(MD, s) =
µL f DhwD

khyeD

{
ch(
√

uxD1)−ch(
√

uxD2)
√

ush(
√

uxeD)
+

2yeD
πL f D

∑
∞

k=1
1
k cos

(
kπ yD

yeD

)
cos

(
kπ ywD

yeD

)
sin

(
kπ

L f D
yeD

)
chεkxD1−chεkxD2

εkshεkxeD

} (11)

3. Solution of Coupling Multiple Blocks

To obtain the pressure drop solution of MFHW in multiple reservoir blocks, we will demonstrate
the coupling process of nf rectangular reservoir blocks in series in the x direction as shown in Figure 1.
Then, the pressure solution process of the linear system of equations is presented.

The fractured horizontal well extends through a heterogeneous reservoir with rectangular
parallelepiped blocks. All block boundary surfaces are assumed to be impermeable, except for
the interface between different blocks. We will assume that the hydraulic fractures are uniform
flux distribution. For the infinite conductivity condition, the pressure response can be achieved by
subdividing each fracture or assumed by 0.732 point pressure of fracture, and finite conductivity
fractures can be obtained by incorporating pressure drop with hydraulic fractures [24]. Here,
each hydraulic fracture as one segment represents inner boundary of each block, while boundary
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surfaces are discretized into me segments. From Equation (8), the pressure drop at the center of the ith
fracture can be given by

∆p(MDwi, s)

=



q̃w1(s)SwD1(MDw1, s) +
me∑

k=1
q̃e1,2k(s)SeD1,2k(MDw1, s) i = 1

q̃wi(s)SwDi(MDwi, s) +
me∑

k=1
q̃ei,1k(s)SeDi,1k(MDwi, s) +

me∑
k=1

q̃ei,2k(s)SeDi,2k(MDwi, s) i = 2, 3, . . . , n f − 1

q̃wn f
(s)SwDn f

(
MDwn f , s

)
+

me∑
k=1

q̃en f ,1k(s)SeDn f ,1k
(
MDwn f , s

)
i = n f

(12)

where MDwi indicate the center point of ith fracture, so q̃wi is the point MDwi flux, SeDi,1k(MDwi, s) and
SeDi,2k(MDwi, s) are the source function of left and right surface at point MDwi in ith block, respectively.

The pressure drop at the kth segment of two interfaces of ith block, where the left face marked 1,
and right face marked 2, can be given by

∆p
(
MDei,1k, s

)

=



q̃wi(s)SwDi
(
MDei,1k, s

)
+

me∑
k=1

q̃ei,1k(s)SeDi,1k
(
MDei,1k, s

)
+

+
me∑

k=1
q̃ei,2k(s)SeDi,2k

(
MDei,1k, s

)
, i = 2, 3, · · · , n f − 1

q̃wn f
(s)SwDn f

(
MDen f ,1k, s

)
+

me∑
k=1

q̃en f ,1k(s)SeDn f ,1k
(
MDen f ,1k, s

)
, i = n f

(13)

∆p
(
MDei,2k, s

)

=



q̃w1(s)SwD1
(
MDe1,2k, s

)
+

me∑
k=1

q̃e1,2k(s)SeD1,2k
(
MDe1,2k, s

)
, i = 1

q̃wi(s)SwDi
(
MDei,2k, s

)
+

me∑
k=1

q̃ei,1k(s)SeDi,1k
(
MDei,2k, s

)
+

+
me∑

k=1
q̃ei,2k(s)SeDi,2k

(
MDei,2k, s

)
, i = 2, 3, · · · , n f − 1

(14)

where k = 1, 2, 3, . . . ., me, MDei,1k, MDei,2k indicate the center point of kth segment of left and right
surface in ith block, so q̃ei,1k q̃ei,2k is the according flux of point MDei,1k and MDei,2k, respectively.

Except the first and last block of SRV, each block has 1 + 2me points with unknown parameters of
pressure and flux, therefore there are (1 + 2me) × 2× n f − 4me unknown. Based on Equations (12)–(14),

we yield n f + 2
(
n f − 1

)
×me linear equations. In order to get the same number of equations as the

unknowns, the pressure and flux continuity condition can be applied.

(1) Continuity conditions of pressure and flux at the interface

The pressure drop of the same interface should be equal for each segment k of different blocks,
and the flux of interfaces should be continuous, so we have ∆p(MDei,2k, s) = ∆p

(
MDei+1,1k, s

)
q̃(MDei,2k, s) = −q̃

(
MDei+1,1k, s

) i = 1, 2, 3, . . . , n f − 1 k = 1, 2, 3, . . . , me (15)

(2) Horizontal wellbore conditions

Assuming that the horizontal wellbore is infinite conductivity, the pressure drop of each fracture
mid-point MDwi should be equal to the pressure drop of horizontal wellbore ∆p(MDw, s), so we can
have nf − 1 additional equations

∆p(MDwi, s) = ∆p(MDw, s) i = 1, 2, 3, . . . , n f (16)
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Moreover, the sum of the fluxes from all hydraulic fractures should be equal to the total production
rate qtotal.

n f∑
i=1

q̃wi2L f ihei = qtotal/s (17)

The linear system defined by Equations (12)–(17) has (1 + 2me) × 2 × n f − 4me equations for
(1 + 2me) × 2 × n f − 4me unknowns, which can be written in the matrix-vector form AX = B. Here,
take a multiple fractured horizontal well with nf fractures and boundary segment me = 1; for example,
the components of coefficient matrix A is

A =



s× S
w1
w1 s× S

w1
e1,2 0 0 0 · · · 0 0 −1

s× S
e1,2
w1 s×

(
S

e1,2
e1,2 + S

e2,1
e2,1

)
−s× S

e2,1
w2 −s× S

e2,1
e2,2 0 · · · 0 0 0

0 −s× S
w2
e2,1 s× S

w2
w2 s× S

w2
e2,2 0 · · · 0 0 −1

0 −s× S
e2,2
e2,1 −s× S

e2,2
w2 s×

(
S

e2,2
e2,2 + S

e3,1
e3,1

)
−s× S

e3,1
w3 · · · 0 0 0

0 0 0 −s× S
w3
e3,1 −s× S

w3
w3 · · · 0 0 −1

...
...

...
...

...
. . .

...
...

...
0 0 0 0 0 · · · −s× S

wn f

en f ,1 s× S
wn f
wn f

−1

2L f 1h1s 0 2L f 2h3s 0 2L f 3h3s · · · 2L f n f
hen f s 0 0


(2n f )×(2n f )

(18)

where to simplify writing, S
Dwi
Dwi = SDwi(MDwi, s), S

Dwi
eDi,2k = SeDi,2k(MDwi, s). The solution vector, X,

has the following components:

X =
[̃
qw1, q̃e1,2, q̃w2, q̃e2,2, q̃w3, q̃e3,2, · · · · · · , q̃w(n f−1), q̃e(n f−1),2, q̃wn f

, ∆pwD

]T

2n f×1
(19)

and the components of the right-hand side vector, B, are

B = [0, 0, 0, 0, · · · · · · , 0, qtotal]
T
(2n f )×1 (20)

The pressure and flux solution of this linear system can be solved. Then, the solution in the
Laplace transform domain can be inverted into real-time domain by the Stehfest Algorithm [33].
The dimensionless pressure and dimensionless fluxes of ith fracture are defined as:

pD =
2πkh
µqtotal

∆pwD; q f i = 2L f DihwDiq̃wi; q f Di =
2L f DihwDiq̃wi

qtotal
, i = 1, 2, · · · , n f . (21)

4. Comparison and Verification

In order to verify the accuracy of our model, a relatively simple model of MFHW is discussed,
which located in the center of a closed, homogenous- and single-porosity media, rectangular reservoir
with three blocks. The transient pressure performance of MFHW in homogeneous reservoirs is
calculated by [24] using the source function and the principle of superposition method. The properties
of the hydraulic fractures and reservoir are given in Table 1, and the results with different discretized
number me (Figure 3) are shown in Table 2 and plotted in Figure 4.

Table 2 presents the comparisons of our models with Zerzar’s model about pressure and pressure
derivatives. Four cases of different interface discretization between the blocks are shown in Figure 3.
Table 2 demonstrates that there are almost no differences among the four cases. All of them can match
the Zerzar’s model very well. The maximum error (me = 1) between the Zerzar’s model and our model
is 0.0664% of dimensionless pressure drop, 0.2043% of dimensionless pressure derivative, which is too
small to be distinguished on the log-log plot of Figure 4, which shows high correctness of our model.
To simplify the calculation process, we assumed me = 1 for the following discussion.
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Table 1. Values of well and reservoir parameters.

Parameters Value Unit

Reference length, ` 100 m
Hydraulic fracture number 3 -

Reservoir size in x, y-direction xe, ye 1200 m
Each block size in x, y direction, xei, yei 400 m

Half-length of each hydraulic fracture, Lfi 60 m
Formation thickness, h 100 m

hydraulic fracture height, hfi 100 m
Natural fracture permeability, kfi 100 mD

Matrix Permeability, km 1 mD
Initial pressure 35 MPa

elastic storage ratio ωfi 0.1 -
crossflow coefficient λfi 2 -
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Table 2. Comparison of the model results with different segments of block interfaces.

tD
Zerar 2004 me = 1 me = 2 me = 3 me = 4

pD dpD/dlntD pD dpD/dlntD pD dpD/dlntD pD dpD/dlntD pD dpD/dlntD

0.001 0.031139 0.016465 0.031139 0.016465 0.031139 0.016465 0.031139 0.016465 0.031139 0.016465
0.01 0.098465 0.052051 0.098465 0.052051 0.098465 0.052051 0.098465 0.052051 0.098465 0.052051
0.1 0.298781 0.138895 0.298781 0.138895 0.298781 0.138895 0.298781 0.138895 0.298781 0.138895
1 0.644286 0.184087 0.644049 0.183229 0.644049 0.183229 0.644049 0.183229 0.644049 0.183229

10 1.289051 0.50975 1.285585 0.509678 1.285585 0.509678 1.285585 0.509678 1.285585 0.509678
100 5.237377 4.36373 5.237641 4.366273 5.237641 4.366273 5.237641 4.366273 5.237641 4.366273

1000 44.5198 43.70941 44.53383 43.78088 44.53383 43.78088 44.53383 43.78088 44.53383 43.78088
10,000 437.4155 437.3679 437.1711 435.6028 437.1711 435.6028 437.1711 435.6028 437.1711 435.6028

Errors - - 0.0664% 0.2043% 0.0654% 0.2003% 0.065% 0.2001% 0.065% 0.2001%
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In Figure 4, the flow stages of MFHW can be identified including first linear flow, first radial flow
and late pseudo-steady boundary flow, which are different from traditional MFHWs flow regimes.
As hydraulic fractures are close to the impermeable boundaries in our model, the second linear and
radial flows do not appear. In addition, we compare our model with trilinear flow model [6], which is
widely used for unconventional reservoir because of its concise formula and convenient calculation.
In Figure 4, it shows that the pressure and pressure derivative of our model can be matched perfectly
with trilinear model at first linear flow and late pseudo-steady boundary flow period. However, radical
flow around each hydraulic fracture is missing in trilinear flow model, which is not in line with real
situation. Therefore, our model is more accurate than trilinear flow model.

5. Results and Discussion

The semi-analytical pressure solution for MFHWs within some rectangular reservoir blocks
of different parameters is obtained. This section presents pressure behavior and flux distribution
of each hydraulic fracture with some heterogeneous parameters. We assume that there are three
compartments of the reservoir, the horizontal well penetrates these three compartments and there are
three hydraulic fractures in the middle of each block. Besides the basic properties given in Table 1,
the parameters in dual porosity media includes elastic storage ratio ω f = 0.1 and crossflow coefficient
λ f = 2. The heterogeneous parameter ratio values of three blocks are shown in Table 3.

Table 3. The heterogeneous parameter ratio of three blocks.

Parameters Case 1 Case 2 Case 3 Case 4 Case 5

k f 1 : k f 2 : k f 3 1:1:1 1:2:1 1:1/2:1 1:2:3 1:1/2:1/4
xe1 : xe2 : xe3 1:1:1 1:2:1 1:1/2:1 - -
ω f 1 : ω f 2 : ω f 3 1:1:1 1:2:1 1:2:3 - -
λ f 1 : λ f 2 : λ f 3 1:1:1 1:2:1 1:2:3 - -
L f 1 : L f 2 : L f 3 1:1:1 1:2:1 2:1:2 - -

5.1. Heterogeneous Permeability

We consider five cases of heterogeneous permeability distribution, and the natural fracture
permeability ratio of these three blocks is shown in Table 3. In cases 2 and 4, the permeability increases
in second and third compartment, while in cases 3 and 5, the permeability decreases in second and
third compartment. Figure 5 shows the pressure and pressure derivative responses as well as the flux
distribution of three different hydraulic fractures.
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In Figure 5a, for the pressure-transient responses, we can see that the heterogeneous permeability
distribution of different drainage blocks affects both arriving time and the pressure drop of the
whole MFHW flow regimes including first linear flow, crossflow regime, first radial flow and late
pseudo-steady boundary flow. The higher the permeability of cases 2 and 4, the earlier different regimes
arrive, and the less the pressure drop compared with reference case 1 (homogeneous permeability),
which is beneficial to production. On the contrary, with the lower permeability of cases 3 and
5, the higher-pressure transient curve means more pressure drop demands for constant flow rate
condition of horizontal wellbore. Figure 5b shows the effect of heterogeneous permeability on the
flux of each fracture. As shown in Figure 5b, there are great differences between different fracture
fluxes with unequal permeability distribution. In homogeneous permeability case 1, the flux of each
fracture is equal to qtotal/3. For the other heterogeneous permeability cases, the flux of fractures in
higher permeability blocks is larger during the early linear flow period. Then, the difference will
decrease because of crossflow between each block. Finally, the differences will become stable in the last
pseudo-steady boundary period. Simultaneously, for lower-permeability case 5, the crossflow period
appears earlier compared to the higher-permeability case 4, which is the same as the pressure response
in Figure 5a.

5.2. Non-Uniform Length of Blocks

To consider the non-uniform length distribution effect, we use a heterogeneous permeability model
with kf1:kf2:kf3 = 1:2:1. Three different cases with unequal length distributions of each compartment are
considered in Table 3 under the constant whole drainage length condition. Then, the pressure response
and flux distribution are shown in Figure 6.Energies 2020, 13, 5204 12 of 16 
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From Figure 6a, we can see that if the whole drainage length is constant, the dimensionless
pressure drop and pressure derivative curves have no change when the drainage length of each fracture
is different. However, in Figure 6b, the flux distribution of each fracture is different after considering
the block length heterogeneity. Non-uniform block length only affects the final flux proportion of each
fracture. It has no effect on the arriving time to the crossflow and last pseudo-steady flow period.
In other words, there is no obvious effect on the wellbore pressure drop when the partial section
area is damaged or stimulated in the same drainage area, which only affect the flux proportion of
each fracture.
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5.3. Different Elastic Storage Ratio

To consider the different elastic storage ratio effect of each block in drainage area, three cases are
considered in Table 3, and corresponding pressure and flux curves are shown in Figure 7.
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Figure 7a illustrates that the elastic storage ratio between different drainage blocks mainly affects
the first linear flow, first radial flow and crossflow regimes. When the elastic storage ratio increases
from case 1 to case 2 and case 3, which means the storage capacity of natural fracture system is greater
and more fluid is stored in the natural fractures, the dimensionless pressure derivative curves show
smaller groove because of less fluid transfer between natural fractures and matrix. From Figure 7b,
it shows the same performance as pressure response. The flux distribution is only affected in the
early stages, while the flux of each fracture converges to the same qtotal/3 at the later pseudo-steady
flow period. Similarly, the less natural fracture storage capacity ω, the less corresponding flux of
hydraulic fracture.

5.4. Different Crossflow Ratio

Another important parameter of dual porosity for naturally fracture system is crossflow ratio.
Three cases are investigated in Table 3, and the pressure responses and flux distribution are shown in
Figure 8.
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The crossflow ratio represents the fluid flowing ability from the matrix to the natural fracture
system. As shown in Figure 8, the different crossflow ratio only affects crossflow stage in the pressure
responses and flux distribution. The larger λ value of the block is, the earlier the crossflow appears
between different cases and the higher the flux is during the crossflow period.

5.5. Non-Uniform Half-Length Distribution of Fractures

With the constant total fracture length, we consider three cases of non-uniform fracture half-length
distribution. The ratio of three hydraulic fracture half-lengths is shown in Table 3. Figure 9 gives the
pressure response and flux distribution.
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From Figure 9a, we can see that if the total fracture half-length is constant, pressure response curves
have nothing to do with different half-length distribution. However, In Figure 9b, the flux distribution
of each fracture is changed by half-length heterogeneity. The flux difference between each fracture
becomes smaller as the flow time increases, and becomes stable gradually after crossflow stages.

6. Conclusions

This work investigates the pressure transient solutions of MFHWs in heterogeneous systems where
the sections of the naturally fractured reservoir display different characteristics. A semi-analytical
method is presented which combines source function and boundary element method. Major conclusions
are summarized below:

(1) This model only discretizes hydraulic fractures and interface boundaries. With a small number of
segments interface discretization, it can match verified model very well on the log–log plots. As a
result, this model can greatly reduce fine gridding required by numerical approach.

(2) Compared to the trilinear flow model, this model can consider the radial flow around the hydraulic
fracture, and the interference effect between hydraulic fractures with different formation properties.

(3) As the permeability increases along the horizontal well direction, the pressure drop decreases and
flow regimes become earlier. The fractures flux fluctuates with flow regimes, where the difference
between high- and low-permeability blocks decreases firstly, then increases gradually, and tends
to be stable finally. When the entire drainage length keeps constant, the pressure responses have
nothing to do with non-uniform heterogeneous block length while flux distribution has been
changed obviously.

(4) The elastic storage ratio mainly affects the early flow regimes including first linear flow, first
radial flow and crossflow periods. The bigger the elastic storage ratio, the smaller the groove and
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the greater the flux. However, the crossflow ratio only affects the crossflow period. The bigger
the crossflow ratio, the earlier the crossflow arrives.
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Nomenclature

A coefficient matrix
B right-hand side vector
BWD The dimensionless inner surface domain
BeD The dimensionless outer surface domain
Ct the total compressibility, MPa−1

G Green’s function
h the reservoir thickness, m
k permeability, mD
kfi the ith fracture permeability, mD
Lfi the ith fracture half-length, m
l The characteristic reference length, m
MD The observation locations in dimensionless space
M′D The source locations in dimensionless space
me interface segment number
nf the hydraulic fractures number
pi initial reservoir pressure, MPa
∆p Pressure drop, MPa
pD the dimensionless pressure value
qtotal the total wellbore flow rate, m3/d
tD the dimensionless time
X The solution vector
xe the length of blocks
ye the width of reservoir
λi The ith block crossflow coefficient
ωi The ith block elastic storage ratio
µ Viscosity
φ Porosity

Subscripts and Superscripts

D dimensionless
e boundary
i serial number of hydraulic fractures
ω wellbore
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