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Abstract: This paper presents the use of scaling and dimensional analysis to assess the viability
of conventional modelling of immiscible displacement occurring when water is injected into the
oil-saturated, porous rock—a conventional secondary oil-recovery method. A brief description of
the laboratory tests of oil displacement with water performed on long core sets taken from wells
operating on a Polish oil reservoir was presented. A dimensionless product generator based on
dimensional analysis and Buckingham Π theorem was used to generate all possible combinatorial
sets of dimensionless products for physical variables describing the phenomenon. The mathematical
model of the phenomenon was transformed to its dimensionless form, using a selected set of the
products. The results of the laboratory tests were analyzed as functions of the products. Statistically
verified quantities describing both dependent and independent experiment variables were subject to
a regression analysis to study dependencies of the experimental results upon selected dimensionless
products. The degrees of the dependencies were determined and compared with the model coefficients.
The conclusions are drawn for the purposes of model application to correctly describe the laboratory
and, consequently, field scale processes of immiscible oil displacement by water.

Keywords: immiscible displacement; mathematical modelling; scaling; dimensional analysis;
dimensionless products; regression analysis; similitude

1. Introduction

Immiscible displacement is a phenomenon occurring, e.g., during the process of water injection
to an oil field as a secondary method of oil recovery [1,2]. Effectiveness of this phenomenon is
estimated in laboratories by performing experiments on bore-hole cores [3,4]. The obtained results of
laboratory tests are typically used to model this phenomenon with full-scale reservoir models [5,6].
However, to quantitatively characterize the phenomenon, it is necessary to apply appropriate models
of laboratory experiments. To the authors’ best knowledge, there are relatively few papers reporting
immiscible displacement experimental results associated with their modelling and analyses of its
correctness [7,8]. This paper presents a unique report on the subject with regard to the carbonate rocks
and reservoir fluids found in Polish petroleum formations.

Both small- and large-scale modelling are conventionally performed by an approximate description
of the real-world phenomena. To assess the viability of such modelling, a scaling and dimensional
analysis is performed as applied to the immiscible flow data obtained from the laboratory experiments.
Scaling laws are derived by dimensional analysis from the general standpoint according to the
Buckingham Π theorem [9].
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This theorem says that every function with n dimensional parameters ai, i = 1, 2, . . . , n, of which
k has basic dimensions, can be represented as a function of n − k dimensionless parameters of the
following type: Π j = a

p1, j

1 a
p2, j
2 . . . a

pn, j
n , j = 1, 2, . . . , n− k, where exponents pi, j are rational numbers.

The theorem provides a method for conversion of a physically meaningful equation involving n physical
variables f (ai, a2, . . . , an) = 0 into a new equation F (Π1,Π2, . . . ,Πn−k) = 0 of n− k dimensionless
Π j, j = 1, 2, . . . , n− k. The Buckingham Π theorem states that validity of the laws of physics does not
depend on a specific unit system. It should be noticed that choice of dimensionless parameters is not
unique. However, the theorem provides a method for computing sets of dimensionless parameters
from the given variables even if the form of the equation f (ai, a2, . . . , an) = 0 is unknown.

If the Π parameters are identical for two different systems, then the phenomenon will proceed
in the same way, despite different ai parameters. The parameters of the Π type is therefore called
similarity parameters or criteria of similarity.

Thus, Buckingham Π theorem allows for the reduction of the most general equations of physical
variables that describe the phenomenon to equations involving only sets of dimensionless products
(Π’s) constructed from the original variables. The significance of the dimensionless Π products is
then analyzed with respect to their influence upon experimental results and confronted with the
dependencies of the model. If it is positively verified, the model can be applied to the large-scale
problems, according to the similarity theory [10]. This theory is used mainly in the fluid mechanics [11],
hydraulics [12], and aerodynamics [13]. In the area of the fluid mechanics, there are several specific Π
products known for their unique names, such as the Reynolds number, Re [14], and Weber number,
We [15]. They have well-defined physical interpretation. The former is the ratio of inertial forces to
viscous forces, and the latter is a measure of fluids inertia compared to their interfacial tension.

In this paper, we apply the procedure introduced above, to assess the viability of conventional
modelling of immiscible fluid displacement as used in oil reservoir simulations and implemented
in all commercial simulators. The procedure is applied to the analysis of a set of laboratory tests
performed on bore-hole cores. A detailed description of the procedure is presented, and the appropriate
conclusions are drawn.

2. Laboratory Tests

This paper takes advantage of the results of five laboratory tests of oil displacement by water
performed on various long core sets [16]. Each set consisted of four cores arranged according to
diminishing permeability. The cores were of constant sizes: 2.5 cm in diameter and 5 cm in length.
The cores in the first four tests featured similar permeability parameters, ranging between 30 and
60 mD, while in test No. 5, cores with a bigger permeability (up to 400 mD) were used. Prior to starting
the displacement tests, all cores were saturated with water and then with oil, to take the irreducible
water into account in tests and to estimate the effective porosity of the cores.

Displacement experiments differed between themselves in the rate and total volume of injected
water. In tests No. 1 and No. 2, water was injected at the rate of 0.05 cm3/min, and altogether 1.06 of
the cores pore volume (PV) was injected. In tests No. 3 and No. 4, water was injected at the same
rate as in previous tests, while altogether 1.09–1.10 of the cores PV was injected. Test No. 5 differed
from the others in the injection rate, which was 0.03 cm3/min, and, in a total 1.08 of the cores, PV was
injected into it. The same reservoir fluids of known properties were used in all the tests. The tests were
performed under constant initial and outflow pressure (a boundary condition) of Pini = Pout = 424 bars
and constant temperature of T = 119 ◦C. The other boundary condition referred to the constant injection
rate at the inflow end of the core sets.

A list of physical variables describing displacement experiments in relation to the laboratory tests,
together with the variable dimensions, is shown in Table 1.
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Table 1. List of physical variables, together with their dimensions.

Variable Unit Dimension Type

position x cm L
time t s t

water permeability at residual oil saturation kwro mD L2

oil permeability at irreducible water saturation korw mD L2

oil pressure Po bar M/Lt2

water pressure Pw bar M/Lt2

water viscosity µw cP M/Lt
oil viscosity µo cP M/Lt
oil density ρo g/cm3 M/L3

water density ρw g/cm3 M/L3

injection velocity vw,inj cm/s L/t
interface tension σ dyne/cm M/t2

absolute permeability k mD L2

As the pressure variation in the core sets was relatively low (below 1.2 bar, equivalent to approx.
0.003 of the initial pressure, Pini) during the experiments, the above variables of viscosity, µ, density, ρ,
and interfacial tension, σ, determined in Reference [17], were treated as constant values. The relative
permeabilities for reservoir oil and water were determined from separate measurements on rock
samples of the same formation [17]. It should be noted that the rock of the cores is water-wet [17].
As the injected water used in the tests is the original reservoir water, no changes of core wettability
are expected.

Because the considered experiments are carried out on batteries of cores with a diameter much
lower than their lengths and the boundary conditions (the injection rate at the inflow end and the
pressure at the outflow end) were assumed to be transversely constant, the fluid flow can be modelled
as a 1D phenomenon in first approximation. Consequently, only one parameter related to the position
dimension was among parameters affecting this displacement phenomenon, i.e., the length of the core
batteries—L.

The next parameters include the following: the final time of experiment performance—t; averaged
properties of cores—their porosities, φ (not specified in Table 1, as they are dimensionless); absolute
permeabilities—k; and phase permeabilities of oil and water defined at the residual saturations of
reservoir fluids.

Other parameters, describing the process of oil displacement with water, apply to properties of
reservoir fluids, such as the phase pressures, viscosities, densities, and interface tension. The last
considered parameter, substantially affecting the performed experiments, was the water injection
velocity—vw,inj, calculated directly from the injection rate divided by the area of the core cross-section.

The main results of the analyzed laboratory tests consisted in the obtained oil outflow and the
displacement coefficient as functions of the injection time. The characteristic displacement coefficient
at 1 PV of injected water amounted to 56.1%, 56.7%, 56.9%, 56.5%, and 52.8% in test Nos. 1, 2, 3, 4,
and 5, respectively.

3. Dimensionless Π Products for Immiscible Displacement

A universal generator of Π products was developed based on the Buckingham Π theorem.
The algorithm implemented in the generator was adopted from the literature [18]. Figure 1 presents the
block diagram of this algorithm. Moreover, Π products are generated from all possible combinations
(without repetition) of dimensional variables, ai, of different dimensions by writing out k-element
string from the n-element ai set. Every k-element string is a base of the wholeΠ product set. Every such
set is generated by complementing k-element string with one of the n− k remaining elements of the ai
set. Thus, there are n− k quantities equal to the products of k + 1 dimensional variables ai, each raised
to an exponent that is determined from the condition of Π being dimensionless with respect to each of
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the k basic dimensions. This algorithm results in
(

n
k

)
sets containing n− k dimensionless Π products;

however, the effective number of the sets is smaller than
(

n
k

)
, as some of the original sets are identical.
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In the analyzed case of immiscible displacement, input variables of the algorithm included the
list of n = 13 physical variables from Table 1, and basic k = 3 dimensions from which the dimensions
of these variables are derived, i.e., L—length, M—mass, and t—time. Therefore, according to the
Buckingham theorem, ten (n − k) Πi parameters, where i = 1, 2, . . . ,10 can be defined to describe the
immiscible displacement experiments.

Altogether there are 173 possible sets of Π products for immiscible displacement that were
generated. Table 2 presents examples of six sets which were used in the further analysis where the
basic model equations applied to describe the phenomenon were transformed to a dimensionless form.
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Table 2. Generated sets of products Π (selected for analysis).

Set No. 17 Set No. 78 Set No. 131

Π1 L/(kwro
0.5) Π1 vt/L Π1 (ρw

0.5)L/(t0.5)(µo
0.5)

Π2 tvw,inj/L Π2 kwro/L2 Π2 ρwkwro/(tµo)
Π3 korw/kwro Π3 korw/L2 Π3 ρwkocw/(tµo)
Π4 (kwro

0.5)Po/σ Π4 LPo/(µovw,inj) Π4 tPo/µo
Π5 (kwro

0.5)Pw/σ Π5 LPw/(µovw,inj) Π5 tPw/µo
Π6 σk/ [µwvw,injL(kwro)0.5] Π6 µw/µo Π6 µw/µo
Π7 σk/ [µovw,injL(kwro)0.5] Π7 vw,injLρo/µo Π7 ρo/ρw
Π8 (vw,inj

2)(kwro
0.5)ρo/σ Π8 vw,injLρw/µo Π8 (t0.5)(ρw

0.5)vw,inj/(µo
0.5)

Π9 (vw,inj
2)(kwro

0.5)ρw/σ Π9 σ/µovw,inj Π9 (t0.5)(ρw
0.5)σ/(µo

1.5)
Π10 kwro φ/k Π10 k/L2 Π10 ρwk/(tµo)

Set no. 173 Set no. 151 Set no. 65

Π1 L/(kwro
0.5) Π1 L/ (k0.5) Π1 L/ (k0.5)

Π2 vw,injt/ (kwro
0.5) Π2 vw,injt/ (k0.5) Π2 vw,injt/ (k0.5)

Π3 korw/kwro Π3 kwro/k Π3 kwro/k
Π4 (kwro

0.5)Po/ (vµw) Π4 korw/k Π4 korw/k
Π5 (kwro

0.5)Pw/ (vµw) Π5 (k0.5)Po/σ Π5 Po/ (ρovw,inj
2)

Π6 µo/µw Π6 (k0.5)Pw/σ Π6 Pw/(ρovw,inj
2)

Π7 (kwro
0.5)vw,injρo/µw Π7 vw,injµw/σ Π7 µw/(ρovw,injk0.5)

Π8 (kwro
0.5)vw,injρw/µw Π8 vw,injµo/σ Π8 µo/(ρovw,injk0.5)

Π9 σ/(vw,injµw) Π9 (vw,inj
2)(k0.5)ρo/σ Π9 ρw/ρo

Π10 k/kwro Π10 (vw,inj
2)(k0.5)ρw/σ Π10 σ/ (ρovw,inj

2k0.5)

4. Immiscible Displacement Equations

Representation of a mathematical model in a dimensionless form enables determination of
coefficients, on which this model depends. Equations, conventionally referred to in the case of
immiscible displacement in the water–oil system, are the two following differential equations resulting
from the equation of continuity and from the Darcy’s law [19]:

φ
∂Sw

∂t
=

1
µw

→

∇·

(
kw
→

∇Φw

)
(1)

φ
∂So

∂t
=

1
µo

→

∇·

(
ko
→

∇Φo

)
(2)

supplemented with the saturation confining relationship:

So + Sw = 1 (3)

oil/water potential definitions:
Φo/w = Po/w − ρo/wgz (4)

and capillary pressure definition:
Pc = Po − Pw (5)

where φ—porosity; Sw,o—water/oil saturation; t—time; µw/o—water/oil viscosity; x, y, z—coordinates;
kw/o—water/oil phase permeability; Φw/o—water/oil potential; Po/w—water/oil phase pressure;
Pc—capillary pressure; ρo/w—water/oil density; ∆ρ—difference of fluids density; and g—acceleration
of gravity.

In the 1D horizontal case, the gravity term in the formulae for potentials is neglected, and the
above equations take the following form:

φ
∂Sw

∂t
=

k
µw

∂
∂x

(
krw

∂Pw

∂x

)
(6)
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φ
∂So

∂t
=

k
µo

∂
∂x

(
kro
∂Po

∂x

)
(7)

So + Sw = 1 (8)

Po = Pw + Pc (9)

Here, the porosity, φ, and permeability, k, are assumed constant and equal to their average values.
Moreover, the pressure dependence of viscosities, µo/w, is assumed negligibly small, and corresponding
terms in (6) and (7) are omitted.

Transformation of the discussed mathematical model to a dimensionless form was performed
by using various sets of dimensionless variables’ definitions. The most convenient and natural one
turned out to be the following:

− time: t∗ = t
vw,inj

L φ(1−Swr)
; where vw,inj—injection velocity, L—cores length, and Swr—residual

water saturation;
− position: x*= x 1

L ;

− fluids saturations: S∗w = Sw−Swr
1−Swr

, S∗o = 1− S∗w;

− oil/water pressure:

P∗o/w = Po/w
(kwro)

0.5

σ
;

− capillary pressure (J-Leverette function): J(S∗w) =
Pc
σ

(
k
φ

)0.5
.

While the definitions of dimensionless position, time, and saturations were of natural and
conventional type, those of the pressures were more arbitrary and related to the sets of Π products of
Table 2.

Using the above definitions, the Equations (6)–(9) are transformed to the dimensionless form
of (10)–(13):

∂S∗w
∂t∗

=

 σk

µwvw,injL(kwro)
0.5

 ∂∂x∗

(
krw

∂P∗w
∂x∗

)
(10)

∂S∗o
∂t∗

=

 σk

µovw,injL(kwro)
0.5

 ∂∂x∗

(
kro
∂P∗o
∂x∗

)
(11)

S∗o + S∗w = 1 (12)

P∗o = P∗w + J(S∗w)
(

kwroφ

k

)0.5

(13)

Here, the interface tension, σ, is assumed to be a negligible function of the water saturations, Sw,
in the observed range of Swr < Sw < 1− Sor.

As a result of the above transformation, three dimensionless coefficients of Equations (10), (11),

and (13), i.e.,
(

σk
µwvw,injL(kwro)

0.5

)
,
(

σk
µovw,injL(kwro)

0.5

)
, and

(
kwroφ

k

)0.5
, are identified as Π products of Set No.

17, i.e., Π6,Π7, and Π10.
We assume that two systems (the real one and mathematical model) are similar, and the model is

scalable when the following are present:

− Dimensionless initial and boundary conditions in the model and in the real system are identical;
− Relative permeabilities krw, kro and the function J(S∗w) are the same functions in the model and in

the real system, where krw = kw
k , kro =

ko
k ;

− The assumed dimensionless parameters are the same function of the reduced water saturation, S∗w,
in both systems, from which it results that P∗o, P∗w, S∗o , and S∗w are the same functions of t∗ and x∗.
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5. Model Parameters

Characteristic parameters that describe the model used to simulate laboratory tests are listed as
Mi, i = 1 to 7, on the right part of Table 3. M1 and M2 are independent variables that characterize
spatial and temporal results of the tests. As no measurements were done for intermediate positions
(0 < x* < 1), M1 is not used for further analysis. M2 describes test results as a function of time and is
used to analyze time-dependent measurements, such as total reservoir fluid outflow. Parameters M3

and M4 refer to initial conditions of the experiments that were fixed for all the experiments. Parameters
M5, M6, and M7 are essential coefficients of the model Equations (9), (10), and (12), respectively.

Table 3. Dimensionless parameters of the 1D immiscible displacement process. On the left is the
generated set of products, and on the right are the parameters on which model results depend.

Set No. 17 Variability in
Experiments Model Parameters Comment

Π1 L/ (kwro
0.5) − M1 x* = x/L Independent var.,

boundary conditions

Π2 tvw,inj/L + M2 t* = tvw,inj/L
Independent var., initial,

final conditions
Π3 kocw/kwro − M3 (kwro

0.5)Po,ini/σ Initial conditions
Π4 (kwro

0.5)Po,ini/σ − M4 (kwro
0.5)Pw,ini/σ Initial conditions

Π5 (kwro
0.5)Pw,ini/σ − M5 σk/[µwvw,injL(kwro)0.5] Equation coefficient

Π6 σk/ [µwvw,injL(kwro)0.5] + M6 σk/[µovw,injL(kwro)0.5] Equation coefficient
Π7 σk/[µovw,injL(kwro)0.5] + M7 kwro φ/k Equation coefficient
Π8 (vw,inj

2)(kwro
0.5)ρo/σ +

Π9 (vw,inj
2)(kwro

0.5)ρw/σ +

Π10 kwroφ/k +

The complete set of dimensionless parameters generated above as Set No. 17 and selected for the
comparison with model parameters is listed as Πi, i = 1 to 10, on the left side of Table 3, together with
each one’s variability in the experiments. As show in the table, parameters Π2, Π6, Π7, Π8, Π9, and Π10

take different values in the analyzed experiments, and four of them are equal to the corresponding
model parameters: Π2 =M2, Π6 =M5, Π7 =M6, and Π10 =M7. Meanwhile, the other two (Π8 and Π9)
are expected not to influence the experimental results.

It is worth nothing that definite physical meanings can be ascribed to some of the above Π
products. They follow from the below relations, (14) and (15):

Π6/7 =
Rew/o

Wew/o
Π1 (14)

Π8/9 =
Weo/w

Π1
(15)

where Rew/o is the Reynolds number for water/oil, according to Formula (16):

Rew/o =
ρw/o vw,inj k
µw/o L

(16)

and Wew/o is the Weber number for water/oil, according to Formula (17):

Wew/o =
ρw/o vw,inj

2 L
σ

(17)

As a consequence of Reynolds and Weber number meanings given above, and of the constant
value of Π1, Π6/7 corresponds to the ratio of interface tension to viscous forces, while Π8/9 is a measure
of the relative importance of the fluid inertia to their interface tension.
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It should be noted that values of the parameters Π6 and Π7, as well as Π8 and Π9, are strongly
correlated (co-dependent) in the analyzed experiments. As a consequence, only two of them (Π6 and
Π8) are taken into account in the dependency analysis below.

6. Experimental Parameters

The basic experimental characteristics are given in Table 4.

Table 4. Basic characteristics of individual experiments.

Parameter Symbol Parameter Description
Experiment Number

1 2 3 4 5

L (cm) total length of the core
assembly 20.18 21.78 20.15 20.11 22.2

t (s) final time 33.480 35.940 34.200 34.740 61.920
kwro (mD) water phase permeability at Sor 31.500 29.227 26.576 27.523 128.905
korw (mD) oil phase permeability at Swr 17.331 16.081 14.622 15.143 70.922
Po,ini (bar) initial oil pressure 424.62 424.62 424.62 424.62 424.62
Pw,ini (bar) initial water pressure 422.77 422.77 422.77 422.77 422.77
µw (g/(cm·s)) water viscosity * 0.0025 0.0025 0.0025 0.0025 0.0025
µo (g/(cm·s)) oil viscosity ** 0.006 0.006 0.006 0.006 0.006
ρo (g/cm3) oil density 0.833 0.833 0.833 0.833 0.833
ρw (g/cm3) water density 1.04 1.04 1.04 1.04 1.04

vw,inj (10−4 cm/s) water injection velocity 1.72 1.74 1.74 1.78 63.3
σ (dyne/cm) interfacial tension *** 45 45 45 45 45

φ (-) average core porosity 0.251 0.249 0.248 0.243 0.247
k (mD) average core permeability 49.9 46.3 42.1 43.6 204.2

Winj (fraction of PV) water injected as fraction of
pore volume 1.06 1.06 1.09 1.10 1.08

RF (%) displacement coefficient 56.1 56.7 56.9 56.9 52.8

* Viscosity from standard correlations under reservoir conditions: T = 119 ◦C and P = 424 bar [20]. ** Viscosity
measured under reservoir conditions: T = 119 ◦C and P = 424 bar [16]. *** Interfacial tension determined from
measurements and standard correlations [21].

Two types of experimental results are used for the quantitative analysis below:

− The relative oil outflow velocity, vr = (qo/A)/vw,inj, where qo is the oil outflow rate, and A is the
cross section area of the cores;

− The relative total oil outflow, N = Np/Np,max, where Np is the current total oil outflow, and Np,max is
the maximum total oil outflow.

The former quantity is used to analyze the results’ dependence upon the temporary parameters
(Π6, Π7, Π8, Π9, and Π10), while the latter is a natural quantity for cumulative parameters (e.g., Π2).

7. Dependence Analysis

The conventional regression analysis is used to study dependencies of experimental results
(vr and N) upon the dimensionless parameters (Π2, Π6, Π8, and Π10). As regression diagnostic tests,
the distributions of both dependent (vr and N) and independent quantities (Π2, Π6, Π8, and Π10) are
determined as their histograms (shown in Figures 2–7) and checked against their normal-like form.
The appropriate sets of experimental data points are restricted by rejecting of outliers. In the case
of N and Π2, the residuals of their distributions were shown after subtracting the fitted trends of
these quantities.
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It is concluded that all the analyzed quantities except Π10 satisfy the requirement of their
distribution, being appropriate for the conventional linear regression analysis applied to vr versus Π6

and Π8, as well as N versus Π2.
The analyses of adjusted R square and residual distributions for various models of the regression

fitting result in the selection of a bilinear model of vr vs. Π8 and Π6 and a quadratic model of N vs.
1/Π2 (the reversal of Π2). Detailed results of the regression analysis are presented in Tables 5 and 6 for
vr and N, respectively. Note that the format and entries of these tables follow the generally accepted
convention of the regression results. The quality of regression fittings is shown as vr vs. Π8 and Π6,
and N vs. Π2 in Figure 8, Figure 9, and Figure 10, respectively.
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Table 5. Regression analysis summary for vr vs. Π8 and Π6.

Regression Statistics

Multiply R 0.8829
R square 0.7796

Adjusted R square 0.7638
Standard error 0.0513

Data points 31

Analysis of variance
Df SS MS F Significance F

Regression 2 0.2611 0.1305 49.5125 6.39 × 10−10

Residual 28 0.0738 0.0026
Total 30 0.3349

Coefficients SE t Stat p-Values Lower 97% Upper 97%

Intersect 0.5516 0.2452 2.2494 0.0325 −0.0091 1.1122
Π8 −0.0614 0.0282 −2.1800 0.0378 −0.1258 0.0030
Π6 0.1460 0.0547 2.6698 0.0125 0.0210 0.2709

Table 6. Regression analysis summary for N vs. Π2.

Regression Statistics

Multiply R 0.9742
R square 0.9491

Adjusted R square 0.9438
Standard error 0.0091

Data points 22

Analysis of variance
Df SS MS F Significance F

Regression 2 0.0295 0.0147 177.2488 5.145 × 10−13

Residual 19 0.0016 0.0001
Total 21 0.0310

Coefficients SE t Stat p-Values Lower 97% Upper 97%

Intersect 0.9503 0.0350 27.1592 0.0000 1.0323 0.8682
1/Π2 0.0354 0.0141 2.5167 0.0210 0.0684 0.0024
1/Π2

2 −0.0061 0.0013 −4.5613 0.0002 −0.0030 −0.0093
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The main results of the regression analysis imply that the experimental results for the oil
output velocity, vr, depend in the significantly higher degree on Π6 (p-value = 0.0125) than on
Π8 (p-value = 0.0378). According to the physical meanings of the products given in Section 5,
the experimental results for the oil output velocity, vr, are determined mostly by the relationship
between interfacial tension and viscous forces, while they are weakly dependent upon the ratio of
inertial forces to the interfacial tension. The latter dependence results from both the low flow velocity
of the reservoir fluids observed in the displacement experiments (Π8 ∼ vw,inj

2) and a large value of Π1

(Π8 ∼
1
Π1

, Π1 ≈ 1× 106).
The analysis of N vs. Π2 shows the significant dependence of the total oil production upon the

quadratic function of 1/Π2 (with p-value = 0.0210 for linear term and p-value = 0.0002 for quadratic
term). Because Π2 has a direct meaning of the relative range of displacing fluid (injected water),
the above quadratic dependence of N vs. Π2 indicates dispersive effects of the displacement process.

The above results lead to the following conclusions:

- The experimental results are consistent with the model predictions, i.e., explicit dependence upon
the following:

(1) Model coefficients Π6 (and Π7);
(2) Model independent variables (experiment duration) Π2—linear dependence on Π2.

- The dependence of experimental results upon other parameters (such as Π8 and Π9) that do not
enter the model description are much weaker and may be explained by small effects from the
inertial forces under the conditions of small fluid velocities; in principle, including inertial effects
goes beyond the Darcy law of fluid flow in the porous media.
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- Non-linear dependence of the total oil outflow upon the displacement time cannot be taken into
account in a simple 1D flow model with no dispersion effects; a typical smoothing-out of the
displacement front obtained from such models results from a numerical dispersion defect of the
standard numerical solvers of the flow equations; the correct modelling of the physical dispersion
effect, responsible for the above mentioned non-linear dependence of the total oil outflow upon
the displacement time, can be achieved by applying 3D model of non-uniform transport properties
of the porous media and by explicit modelling of the physical dispersion effects.

- The last two points indicate deficiency of the modelling approach analyzed in the paper.

8. Summary and Conclusions

Correctness of using numerical modelling to quantitatively characterize the immiscible
displacement phenomenon occurring in the water–oil system was discussed in the paper by studying
the results of experimental tests on core sets with scaling and dimensional analysis. To this end,
a complete procedure including generation of dimensionless Π products as of the Buckingham Π
theorem, identifying the dimensionless parameters of the models, and regression analyses of the
experimental results dependence upon the dimensionless Π products were applied.

The following conclusions were drawn from the obtained results:

- Using conventional mathematical flow description and 1D approximation, it is reasonable to
model laboratory tests of immiscible displacement in the water-oil system of bore-hole cores.

- The experimental results are consistent with the model predictions, i.e., they significantly depend
upon the following:

� Explicit model coefficients (Π6 and Π7) related with the ratio of the Reynolds number to
the Weber number that is a measure of the relationship between interfacial tension and
viscous forces;

� Model independent variables (experiment duration—Π2).

- The dependence of experimental results upon other parameters ((Π8 and Π9—corresponding to
the ratio of inertial forces to the interfacial tension—the Weber number) that do not explicitly
enter the model description is much weaker and results from both the low flow velocity of the
reservoir fluids observed in the displacement experiments (Π8/9 ∼ vw,inj

2) and a typically large
value of Π1 parameter (Π8/9 ∼

1
Π1

, Π1 ≈ 1× 106).

- Non-linear dependence of the total oil outflow upon the displacement time (Π2) cannot be taken
into account in a simple 1D flow model with no dispersion effects.

- The last two observations show the imperfection of the standard modelling approach used to
analyze the immiscible displacement of oil by water in porous media.

- The potential way of model improvements consists in including the following:

� Inertial effects beyond the Darcy law of fluid flow in the porous media;
� Physical dispersion effects by applying 3D model of non-uniform transport properties of

the porous media and by explicit modelling of the dispersion phenomena.
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Nomenclature

A cross-section area of the cores
g acceleration of gravity
J(S∗w) J-Leverette function
k absolute permeability
kw/o water/oil phase permeability
korw oil permeability at irreducible water saturation, Swr

kwro water permeability at residual oil saturation, Sor

L total length of the core assembly length dimension
M mass dimension
M1, M2, M3, M4, M5, M6, M7 dimensionless model parameters
N number of observations relative total oil outflow
n number of physical variables
Np current total oil outflow
Np,max maximum total oil outflow
Pc capillary pressure
Po/w oil/water phase pressure
Po/w,ini initial oil/water pressure
Po/w,out outflow oil/water pressure
P∗o/w dimensionless oil/water phase pressure
qo oil outflow rate
So/w oil/water saturation
S∗o/w reduced oil/water saturation
So/w,r residual oil/water saturation
t final time of experiment performance time independent variable
t∗ dimensionless time independent variable
T temperature
vr relative oil outflow velocity
vw,inj water injection velocity
x, y, z coordinates independent variables
x* dimensionless x-coordinate variables
Symbols
φ porosity
Φo/w oil/water potential
∆ρ difference of fluid densities
µo/w oil/water viscosity
Π1,Π2,Π3,Π4,Π5,Π6,Π7,Π8,Π9,Π10 dimensionless Π products
ρo/w oil/water density
σ oil–water interface tension
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