Multi-Horizon Dependence between Crude Oil and East Asian Stock Markets and Implications in Risk Management
Abstract
:1. Introduction
2. Model Specification
2.1. Marginal Distribution Models
2.2. Maximal Overlap Discrete Wavelet Transform (MODWT)
2.2.1. Discrete Wavelet Transform (DWT) and DWT-Based Multi-Resolution Analysis
2.2.2. MODWT and MODWT-Based Multi-Resolution Analysis
2.3. Copula Functions
2.4. Estimation Method
3. Data
4. Empirical Results
5. Risk Management Analysis
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Copula Functions
References
- Arouri, M.H.; Hammoudeh, S.; Lahiani, A.; Nguyen, D.K. On the Short- and Long-run Efficiency of Energy and Precious Metal Markets. Energy Econ. 2013, 40, 832–844. [Google Scholar] [CrossRef] [Green Version]
- Daskalaki, C.; Skiadopoulos, G. Should Investors Include Commodities in Their Portfolios After All? New Evidence. J. Bank. Financ. 2011, 35, 2606–2626. [Google Scholar] [CrossRef]
- Arouri, M.H.; Nguyen, D.K. Oil prices, stock markets and portfolio investment: Evidence from sector analysis in Europe over the last decade. Energy Policy 2010, 38, 4528–4539. [Google Scholar] [CrossRef] [Green Version]
- Avdulaj, K.; Barunik, J. Are benefits from oil-stocks diversification gone? New evidence from a dynamic copula and high frequency data. Energy Econ. 2015, 51, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Balcilar, M.; Ozdemir, Z.A. The causal nexus between oil prices and equity market in the U.S.: A regime switching model. Energy Econ. 2013, 39, 271–282. [Google Scholar] [CrossRef]
- Hayate, G. Linking the gas and oil markets with the stock market: Investigating the U.S. relationship. Energy Econ. 2016, 53, 5–15. [Google Scholar]
- Huang, S.; Haizhong, A.; Gao, X.; Sun, X. Do oil price asymmetric effects on the stock market persist in multiple time horizons? Appl. Energy 2017, 185, 1799. [Google Scholar] [CrossRef]
- Sadorsky, P. The macroeconomic determinants of technology stock price volatility. Rev. Financ. Econ. 2003, 12, 191–205. [Google Scholar] [CrossRef]
- Sadorsky, P. Correlations and volatility spillovers between oil prices and the stock prices of clean energy and technology companies. Energy Econ. 2012, 1, 248–255. [Google Scholar] [CrossRef]
- Dent, C.M. Paths ahead for East Asia and Asia-Pacific regionalism. Int. Aff. 2013, 89, 963–985. [Google Scholar] [CrossRef]
- Cai, X.J.; Hamori, S. Business cycle volatility and hot money in emerging east Asian markets. In Financial Linkages, Remittances, and Resource Dependence in East Asia; WSPC: Albemarle, NC, USA, 2015; pp. 59–80. [Google Scholar]
- Cai, X.J.; Tian, S.; Yuan, N.; Hamori, S. Interdependence between oil and East Asian stock markets: Evidence from wavelet coherence analysis. J. Int. Financ. Mark. Inst. Money 2001, 48, 206–223. [Google Scholar] [CrossRef]
- Shin, E.; Savage, T. Joint stockpiling and emergency sharing of oil: Arrangements for regional cooperation in East Asia. Energy Policy 2011, 39, 2817–2823. [Google Scholar] [CrossRef]
- Ciner, C. Energy shocks and financial markets: Nonlinear linkages. Stud. Nonlinear Dyn. Econom. 2017, 5, 1–11. [Google Scholar]
- Fratzscher, M.; Schneider, D.; Van Robays, I. Oil Prices, Exchange Rates and Asset Prices; ECB Working Paper Series (1689) (July); European Central Bank: Frankfurt, Germany, 2014. [Google Scholar]
- Bjørnland, H.C. Oil price shocks and stock market booms in an oil exporting country. Scott. J. Political Econ. 2009, 56, 232–254. [Google Scholar] [CrossRef] [Green Version]
- Jammazi, R.; Reboredo, J.C. Dependence and risk management in oil and stock markets. A wavelet-copula analysis. Energy 2016, 107, 866–888. [Google Scholar] [CrossRef]
- Jia, X.; An, H.; Fang, W.; Sun, X.; Huang, X. How do correlations of crude oil prices co-move? A grey correlation-based wavelet perspective. Energy Econ. 2015, 49, 588–598. [Google Scholar] [CrossRef]
- Glosten, L.R.; Jagannathan, R.; Runkle, D.E. On the relation between the expected values and the volatility of the nominal excess return on stocks. J. Financ. 1993, 48, 1779–1801. [Google Scholar] [CrossRef]
- Hansen, B.E. Autoregressive conditional density estimation. Int. Econ. Rev. 1994, 35, 705–730. [Google Scholar] [CrossRef]
- Percival, D.B.; Mofjeld, H. Analysis of subtidal coastal sea level fluctuations using wavelets. J. Am. Stat. Assoc. 1997, 92, 868–880. [Google Scholar] [CrossRef]
- Percival, D.B.; Walden, A.T. Wavelet Methods for Time Series Analysis; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Serroukh, A.; Walden, A.T.; Percival, D.B. Statistical properties and uses of the wavelet variance estimator for the scale analysis of time series. J. Am. Stat. Assoc. 2000, 95, 184–196. [Google Scholar] [CrossRef]
- Daubechies, I. Ten Lectures on Wavelets; SIAM: Philadelphia, PA, USA, 1992. [Google Scholar]
- Barnes, J.A.; Chi, A.R.; Cutler, L.S.; Healey, D.J.; Leeson, D.B.; Mcgunigal, T.E.; Mullen, J.A.; Smith, W.L.; Sydnor, R.L.; Vessot, R.F.C.; et al. Characterization of frequency stability. IEEE Trans. Instrum. Meas. 1971, 20, 105–120. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Parks, T.W. A translation-invariant wavelet representation algorithm with applications. IEEE Trans. Signal Porcess. 1996, 44, 225–232. [Google Scholar] [CrossRef]
- Martín-Barragán, B.; Ramos, S.B.; Veiga, H. Correlations between oil and stock markets: A wavelet-based approach. Econ. Model. 2015, 50, 212–227. [Google Scholar] [CrossRef]
- Shensa, M.J. The discrete wavelet transform: Wedding the àtrous and mallat algorithms. IEEE Trans. Signal Process. 1992, 40, 2464–2482. [Google Scholar] [CrossRef] [Green Version]
- Gourène, G.A.Z.; Mendy, P.; Ake, G.M.N. Multiple time-scales analysis of global stock markets spillovers effects in African stock markets. Int. Econ. 2019, 157, 82–98. [Google Scholar] [CrossRef]
- Patton, A.J. Modeling asymmetric exchange rate dependence. Int. Econ. Rev. 2006, 47, 527–556. [Google Scholar] [CrossRef]
- Sklar, A. Fonctions de Repartition à n Dimensions et Leurs Marges; Publications de l’Institut de Statistique de l’Universite de Paris: Paris, France, 1959; Volume 8, pp. 229–231. [Google Scholar]
- Hong, H.G.; Stein, J. A unified theory of underreaction, momentum trading and overreaction in asset markets. J. Financ. 1999, 54, 2143–2148. [Google Scholar] [CrossRef] [Green Version]
Mean | Std.dev. | Skewness | Kurtosis | Jarque-Bera | |
---|---|---|---|---|---|
Oil | 01 | 0.0109 | −0.0434 | 7.0412 | 2804.1 *** |
Japan | 00 | 0.0063 | −0.3540 | 9.2208 | 6727.7 *** |
China | 01 | 0.0081 | −0.1059 | 9.5531 | 7377.8 *** |
South Korea | 01 | 0.0074 | −0.3795 | 9.3222 | 6958.8 *** |
Crude Oil | Japan | China | South Korea | |
---|---|---|---|---|
0 | 0 | 0 | 0 | |
(0) | (0) | (0) | (0) | |
−0.041 | 0.032 | 0.043 | −0.004 | |
(0.016) | (0.016) | (0.015) | (0.015) | |
0 | 0 | 0 | 0 | |
(0) | (0) | (0) | (0) | |
0.023 | 0.021 | 0.029 | 0.014 | |
(0.004) | (0.009) | (0.003) | (0.004) | |
0.953 | 0.890 | 0.922 | 0.943 | |
(0.007) | (0.015) | (0.008) | (0.004) | |
0.041 | 0.124 | 0.076 | 0.075 | |
(0.009) | (0.022) | (0.009) | (0.010) | |
0.924 | 0.929 | 0.979 | 0.931 | |
(0.020) | (0.020) | (0.020) | (0.018) | |
8.256 | 8.651 | 6.816 | 6.521 | |
(0.491) | (1.196) | (0.643) | (0.642) | |
(30) | 0.791 | 0.973 | 0.190 | 0.682 |
(30) | 0.138 | 0.768 | 0.184 | 0.545 |
Japan | China | South Korea | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Raw | D1 | D2 | D3 | D4 | D5 | D6 | Raw | D1 | D2 | D3 | D4 | D5 | D6 | Raw | D1 | D2 | D3 | D4 | D5 | D6 | |
Normal | |||||||||||||||||||||
0.069 | 0.008 | 0.111 | 0.142 | 0.085 | 0.176 | 0.234 | 0.112 | 0.039 | 0.155 | 0.175 | 0.212 | 0.283 | 0.277 | 0.115 | 0.057 | 0.148 | 0.185 | 0.159 | 0.170 | 0.285 | |
(0.015) | (0.020) | (0.019) | (0.019) | (0.025) | (0.030) | (0.019) | (0.015) | (0.019) | (0.019) | (0.019) | (0.025) | (0.028) | (0.019) | (0.015) | (0.019) | (0.019) | (0.019) | (0.026) | (0.030) | (0.018) | |
log | 9.807 | 0.129 | 25.350 | 41.659 | 14.810 | 64.622 | 116.356 | 25.884 | 3.160 | 50.066 | 63.891 | 95.053 | 171.456 | 164.292 | 27.293 | 6.608 | 45.477 | 71.346 | 52.904 | 60.130 | 174.298 |
GOF | 0.640 | 0.920 | 0.890 | 0.130 | 0.350 | 0.540 | 0.100 | 0.340 | 0.540 | 0.420 | 0.140 | 0.290 | 0.680 | 0 | 0.670 | 0.940 | 0.710 | 0.820 | 0.110 | 0.070 | 0.280 |
Clayton | |||||||||||||||||||||
0.067 | 0.015 | 0.185 | 0.252 | 0.243 | 1.118 | 2.413 | 0.130 | 0.076 | 0.257 | 0.338 | 0.576 | 1.415 | 2.359 | 0.120 | 0.100 | 0.234 | 0.344 | 0.440 | 1.108 | 2.502 | |
(0.017) | (0.021) | (0.027) | (0.028) | (0.033) | (0.044) | (0.056) | (0.019) | (0.025) | (0.027) | (0.028) | (0.033) | (0.045) | (0.056) | (0.019) | (0.026) | (0.027) | (0.028) | (0.033) | (0.044) | (0.057) | |
0 | 0 | 0.023 | 0.064 | 0.057 | 0.538 | 0.750 | 0.005 | 0 | 0.067 | 0.128 | 0.294 | 0.613 | 0.745 | 0.003 | 0.001 | 0.052 | 0.133 | 0.207 | 0.535 | 0.758 | |
log | 8.871 | 0.195 | 26.195 | 42.014 | 25.222 | 266.924 | 818.850 | 29.088 | 4.892 | 48.171 | 76.385 | 142.574 | 438.961 | 806.460 | 24.742 | 8.244 | 40.391 | 77.834 | 83.290 | 260.970 | 886.425 |
GOF | 0.480 | 0.210 | 0.040 | 0 | 0.010 | 0 | 0 | 0.640 | 0 | 0 | 0.010 | 0 | 0 | 0 | 0.450 | 0.630 | 0.050 | 0 | 0.020 | 0 | 0 |
Rotated Gumbel | |||||||||||||||||||||
1.034 | 1.018 | 1.099 | 1.139 | 1.132 | 1.673 | 2.473 | 1.071 | 1.047 | 1.139 | 1.177 | 1.296 | 1.862 | 2.471 | 1.066 | 1.061 | 1.130 | 1.187 | 1.229 | 1.668 | 2.539 | |
(0.009) | (0.012) | (0.013) | (0.014) | (0.016) | (0.027) | (0.035) | (0.011) | (0.013) | (0.014) | (0.015) | (0.019) | (0.028) | (0.035) | (0.011) | (0.013) | (0.014) | (0.015) | (0.018) | (0.027) | (0.036) | |
0.045 | 0.025 | 0.121 | 0.162 | 0.155 | 0.487 | 0.677 | 0.090 | 0.062 | 0.162 | 0.198 | 0.293 | 0.549 | 0.676 | 0.085 | 0.079 | 0.154 | 0.207 | 0.242 | 0.485 | 0.686 | |
log | 8.446 | 1.338 | 31.604 | 54.808 | 37.146 | 325.876 | 973.632 | 32.569 | 7.968 | 59.365 | 87.819 | 156.087 | 517.525 | 981.967 | 27.484 | 13.357 | 51.723 | 95.710 | 97.195 | 319.391 | 1.053E03 |
GOF | 0.250 | 0.150 | 0.050 | 0 | 0.050 | 0 | 0 | 0.840 | 0.380 | 0 | 0.150 | 0 | 0 | 0 | 0.240 | 0.690 | 0.030 | 0 | 0.080 | 0 | 0 |
Student’s t | |||||||||||||||||||||
0.069 | 0.006 | 0.122 | 0.157 | 0.112 | 0.381 | 0.614 | 0.112 | 0.048 | 0.174 | 0.199 | 0.256 | 0.518 | 0.639 | 0.115 | 0.068 | 0.170 | 0.207 | 0.201 | 0.372 | 0.653 | |
(0.016) | (0.019) | (0.019) | (0.018) | (0.020) | (0.029) | (0.052) | (0.016) | (0.019) | (0.018) | (0.018) | (0.020) | (0.027) | (0.096) | (0.016) | (0.019) | (0.018) | (0.018) | (0.020) | (0.030) | (0.066) | |
0 | 0.166 | 0.206 | 0.363 | 0.488 | 0.667 | 0.909 | 0.030 | 0.196 | 0.217 | 0.350 | 0.501 | 0.667 | 0.909 | 0.026 | 0.188 | 0.241 | 0.407 | 0.467 | 0.667 | 0.909 | |
(0) | (0.035) | (0.036) | (0.032) | (0.032) | (0.047) | (0.149) | (0.016) | (0.033) | (0.035) | (0.032) | (0.033) | (0.062) | (0.315) | (0.029) | (0.034) | (0.034) | (0.031) | (0.033) | (0.047) | (0.223) | |
0.005 | 0.034 | 0.077 | 0.178 | 0.215 | 0.381 | 0.549 | 0 | 0.056 | 0.097 | 0.186 | 0.275 | 0.450 | 0.563 | 0 | 0.055 | 0.111 | 0.217 | 0.240 | 0.377 | 0.572 | |
log | 9.806 | 8.438 | 37.583 | 86.714 | 101.237 | 522.136 | 1.107E03 | 27.916 | 17.577 | 66.303 | 109.867 | 204.256 | 687.731 | 1.143E03 | 28.597 | 18.521 | 65.776 | 140.545 | 143.103 | 524.385 | 1.180E03 |
GOF | 0.680 | 0.350 | 0.790 | 0.870 | 0.760 | 0.100 | 0.150 | 0.170 | 0.550 | 0.760 | 0.230 | 0.330 | 0.720 | 0 | 0.770 | 0.840 | 0.710 | 0.900 | 0.360 | 0.110 | 0.390 |
SJC | |||||||||||||||||||||
0 | 0 | 0.049 | 0.113 | 0.080 | 0.507 | 0.718 | 0 | 0 | 0.098 | 0.078 | 0.180 | 0.578 | 0.740 | 0.001 | 0 | 0.121 | 0.130 | 0.143 | 0.515 | 0.737 | |
(0) | (0) | (0.029) | (0.030) | (0.037) | (0.016) | (0.008) | (0.002) | (0) | (0.029) | (0.032) | (0.033) | (0.013) | (0.007) | (0.003) | (0) | (0.029) | (0.030) | (0.034) | (0.016) | (0.007) | |
0.002 | 0 | 0.026 | 0.041 | 0.080 | 0.477 | 0.703 | 0.035 | 0.011 | 0.059 | 0.142 | 0.280 | 0.549 | 0.686 | 0.020 | 0.024 | 0.023 | 0.119 | 0.208 | 0.473 | 0.709 | |
(0.003) | (0) | (0.026) | (0.028) | (0.037) | (0.018) | (0.010) | (0.070) | (0.011) | (0.028) | (0.030) | (0.025) | (0.015) | (0.010) | (0.012) | (0.004) | (0.026) | (0.031) | (0.029) | (0.019) | (0.009) | |
log | 9.817 | 0.196 | 34.121 | 61.196 | 37.787 | 433.488 | 1.163E03 | 31.686 | 5.736 | 66.539 | 90.553 | 171.933 | 650.844 | 1.203E03 | 29.012 | 10.434 | 62.106 | 102.417 | 106.582 | 435.570 | 1.251E03 |
GOF | 0.970 | 0.920 | 0.960 | 1 | 1 | 1 | 1 | 1 | 0.950 | 0.990 | 1 | 1 | 1 | 0.980 | 0.920 | 0.940 | 0.950 | 1 | 0.910 | 1 | 1 |
Japan | China | South Korea | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Raw | D1 | D2 | D3 | D4 | D5 | D6 | Raw | D1 | D2 | D3 | D4 | D5 | D6 | Raw | D1 | D2 | D3 | D4 | D5 | D6 | |
−12.81 | −13.47 | 1.57 | 4.69 | 5.91 | 3.64 | 7.78 | −11.74 | −20.69 | 1.29 | 4.30 | 5.88 | 7.96 | 2.44 | −9.87 | −14.31 | 1.88 | 4.44 | 6.22 | 7.24 | 2.20 | |
(2.35) | (0.57) | (0.49) | (0.48) | (0.39) | (0.10) | (0.14) | (2.55) | (0.40) | (0.43) | (0.37) | (0.37) | (0.18) | (0.34) | (8.59) | (0.63) | (0.49) | (0.30) | (0.27) | (0.07) | (0) | |
0.03 | 0 | −16.29 | −23.51 | −25.15 | −15.96 | −21.41 | 0.08 | 0 | −12.25 | −21.78 | −25.48 | −28.01 | −11.45 | −3.38 | 0.01 | −14.12 | −20.81 | −26.98 | −24.57 | −14.06 | |
(0.29) | (0) | (2.97) | (2.50) | (1.64) | (0.24) | (0.36) | (0.72) | (0) | (1.97) | (1.81) | (2.16) | (1.80) | (1.35) | (10.93) | (0) | (2.46) | (1.63) | (2.20) | (0.86) | (0) | |
0 | 0 | 0.32 | −3.47 | −3.97 | 0.98 | −4.61 | 0 | 0 | 0.52 | −3.53 | −4.06 | −4.67 | 0.68 | −0.01 | 0 | 0.93 | −3.51 | −3.99 | −4.37 | 1.07 | |
(0) | (0) | (0.80) | (0.13) | (0.12) | (0.01) | (0.05) | (0.30) | (0.01) | (0.45) | (0.18) | (0.11) | (0.07) | (0.24) | (0) | (0) | (0.44) | (0.14) | (0.12) | (0.07) | (0) | |
−10.01 | −14.08 | 2.09 | 4.79 | 6.89 | 6.92 | 8.10 | 0.23 | 3.45 | 1.32 | 5.11 | 6.62 | 6.93 | 2.30 | 2.45 | 2.54 | 2.40 | 4.19 | 6.29 | 7.20 | 2.03 | |
(7.62) | (0.51) | (0.58) | (0.38) | (0.28) | (0.12) | (0.04) | (0.87) | (0.80) | (0.49) | (0.28) | (0.27) | (0.23) | (0.47) | (1.06) | (0.66) | (0.65) | (0.27) | (0.26) | (0.23) | (0) | |
−2.27 | 0 | −18.63 | −22.96 | −29.38 | −24.34 | −22.88 | −12.78 | −23.62 | −13.33 | −21.91 | −23.85 | −23.88 | −12.16 | −20.54 | −17.67 | −19.17 | −19.95 | −24.93 | −27.22 | −14.07 | |
(2.64) | (0) | (3.15) | (1.86) | (2.12) | (0.26) | (0.25) | (3.62) | (3.91) | (2.21) | (1.51) | (1.47) | (2.02) | (1.71) | (5.34) | (2.77) | (3.64) | (1.51) | (1.88) | (1.05) | (0) | |
0.01 | 0 | 0.24 | −3.37 | −4.05 | −4.13 | −4.97 | 1.66 | −4.61 | 0.71 | −3.51 | −4.09 | −4.33 | 0.82 | −11.62 | −5.95 | −1.81 | −3.42 | −4.04 | −4.31 | 1.43 | |
(0.01) | (0) | (0.72) | (0.17) | (0.08) | (0.09) | (0.03) | (1.41) | (1.36) | (0.85) | (0.14) | (0.11) | (0.06) | (0.34) | (3.75) | (2.31) | (1.30) | (0.14) | (0.10) | (0.17) | (0) | |
log | 9.02 | −2.840 | 64.32 | 227.79 | 469.93 | 985.88 | 1939 | 35.97 | 12.72 | 101.49 | 300.78 | 586.14 | 1252 | 2083 | 33.03 | 21.60 | 105.82 | 289.50 | 478.24 | 1011 | 1966 |
Raw | D1 | D2 | D3 | D4 | D5 | D6 | |
---|---|---|---|---|---|---|---|
Panel A. Portfolio variance | |||||||
Japan | 0.295 | 0.296 | 0.262 | 0.222 | 0.200 | 0.104 | 0.063 |
(0.048) | (0.042) | (0.055) | (0.081) | (0.100) | (0.089) | (0.065) | |
China | 0.295 | 0.296 | 0.265 | 0.206 | 0.120 | 0.088 | 0.121 |
(0.047) | (0.044) | (0.055) | (0.080) | (0.093) | (0.098) | (0.072) | |
South Korea | 0.280 | 0.272 | 0.265 | 0.203 | 0.152 | 0.106 | 0.112 |
(0.048) | (0.045) | (0.060) | (0.071) | (0.100) | (0.102) | (0.085) | |
Panel B. Expected shortfall | |||||||
Japan | 0.176 | 0.159 | 0.125 | 0.084 | 0.075 | 0.044 | 0.043 |
(0.053) | (0.049) | (0.052) | (0.065) | (0.071) | (0.055) | (0.036) | |
China | 0.152 | 0.135 | 0.119 | 0.069 | 0.025 | −0.002 | 0.031 |
(0.052) | (0.052) | (0.050) | (0.063) | (0.062) | (0.059) | (0.039) | |
South Korea | 0.164 | 0.128 | 0.130 | 0.081 | 0.048 | 0.056 | 0.063 |
(0.050) | (0.051) | (0.054) | (0.055) | (0.067) | (0.065) | (0.047) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, X.; Hamori, S.; Yang, L.; Tian, S. Multi-Horizon Dependence between Crude Oil and East Asian Stock Markets and Implications in Risk Management. Energies 2020, 13, 294. https://doi.org/10.3390/en13020294
Cai X, Hamori S, Yang L, Tian S. Multi-Horizon Dependence between Crude Oil and East Asian Stock Markets and Implications in Risk Management. Energies. 2020; 13(2):294. https://doi.org/10.3390/en13020294
Chicago/Turabian StyleCai, Xiaojing, Shigeyuki Hamori, Lu Yang, and Shuairu Tian. 2020. "Multi-Horizon Dependence between Crude Oil and East Asian Stock Markets and Implications in Risk Management" Energies 13, no. 2: 294. https://doi.org/10.3390/en13020294
APA StyleCai, X., Hamori, S., Yang, L., & Tian, S. (2020). Multi-Horizon Dependence between Crude Oil and East Asian Stock Markets and Implications in Risk Management. Energies, 13(2), 294. https://doi.org/10.3390/en13020294