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Abstract: Ground thermal energy is a sustainable source that can substantially reduce our dependency
on conventional fuels for heating and cooling of buildings. To exploit this source, foundation
sub-structures with embedded heat exchanger pipes are employed. Diaphragm wall heat exchangers
are one such form of ground heat exchangers, where part of the wall is exposed to the basement area
of the building on one side, while the other side and the further depth of the wall face the surrounding
ground. To assess the thermal performance of diaphragm wall heat exchangers, a model that takes
the wall geometry and boundary conditions at the pipe, basement, and ground surfaces into account
is required. This paper describes the development of such a model using a weighting factor approach,
known as Dynamic Thermal Networks (DTN), that allows representation of the three-dimensional
geometry, required boundary conditions, and heterogeneous material properties. The model is
validated using data from an extended series of thermal response test measurements at two full-scale
diaphragm wall heat exchanger installations in Barcelona, Spain. Validation studies are presented
in terms of comparisons between the predicted and measured fluid temperatures and heat transfer
rates. The model was found to predict the dynamics of thermal response over a range of operating
conditions with good accuracy and using very modest computational resources.
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1. Introduction

Exploiting sustainable sources of energy with the potential to contribute to the heating and cooling
of buildings—the major contributing factor to energy consumption in developed countries [1]—is
one of the major challenges of the world today, so reduction in such demands is a key element
of most national emission reduction strategies. Building thermal energy systems that rely on heat
pumps and some form of ground heat exchanger is one of the most effective means of implementing
energy-efficient building thermal systems [1–3]. Of the various types of ground heat exchangers that
are in use, making use of building sub-structure (foundation) elements is one of the most attractive
options for larger buildings [4,5]. A number of types of sub-structural building elements have been
used as the bases of ground heat exchangers, including piles, diaphragm walls, and ground-coupled
slabs [6]. Using substructures as heat exchangers dates back to the 1980s, when ground-bearing
slabs were employed to exchange heat with the ground, followed by further advancements until

Energies 2020, 13, 300; doi:10.3390/en13020300 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0003-4869-1632
http://dx.doi.org/10.3390/en13020300
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/13/2/300?type=check_update&version=3


Energies 2020, 13, 300 2 of 23

1996, when the first diaphragm walls equipped with heat exchanger pipes were examined in
Austria and Switzerland [7].

Although various studies have been conducted to investigate the performance of thermally
activated piles [8–11], diaphragm wall heat exchangers (DWHE) have received less interest [5]. One of
the first studies that focused on heat transfer in diaphragm walls corresponds to the work of Brandl [7].
In this work, diaphragm walls were applied in three main pilot projects, including a rehabilitation
centre, a railway tunnel, and metro stations. Brandl [7] also reported further smaller projects.
Later in 2009, Adam and Markiewicz [4] carried out finite element analysis to investigate the
heating and cooling performance of diaphragm walls with differing heat exchanger pipe spacings.
They summarised that the thermal power tends to decrease with larger distances, with the installation
cost tending to an optimum. Nevertheless, they pointed out that although the method is applicable
to any geothermal system installed in foundation elements, these findings are only rational for the
studied case and may vary remarkably for others. The first experimental explorations of heat transfer
characteristics of DWHEs were carried out by Xia et al. [12] using borehole heat exchangers (BHE) as
benchmarks. Xia et al. [12] highlighted the factors influencing heat exchange rate in such geostructures.
A model for two-dimensional heat transfer in DWHEs validated against numerical solutions and
measured data was proposed by Sun et al. [13] based on the structural features of the wall, i.e., over and
under the excavation line. Although the temperature profiles predicated by their model show limited
consistency with the experimental data, it was considered as adequate by the authors.

A numerical method to investigate thermal performance of DWHEs was presented
by Kürten et al. [14], and was validated against laboratory results. The authors of
Bourne-Webb et al. [15] compared the methods used for evaluating BHEs and energy geostructures,
and outlined their commonalities and differences. In a different research, Bourne-Webb et al. [16]
carried out numerical studies to demonstrate the heat transfer procedure in DWHEs, and reported that
the key process is the one between the the air-void and the wall rather than the ground. A coupled
thermo-mechanical analysis was employed by Coletto and Sterpi [17] to investigate how the heat
transfer affects the soil temperatures, the wall internal actions, and the soil–structure interaction.
Di Donna et al. [18] detailed the key parameters controlling the energy efficiency in DWHEs through
numerical investigations and statistical analysis.

Soga and Rui [5] summarised the status of the understanding of the thermal conduct of
energy geostructures and discussed some design considerations. It was recommended that further
investigations need to be carried out to increase the reliance on using such substructure heat exchangers.
Sterpi et al. [19] investigated the energy performance as well as short and long term influence on the
soil temperatures using finite element thermal analysis. Furthermore, they carried out finite element
thermo-mechanical analysis to highlight the wall’s geotechnical and structural response. In a more
recent research, Sterpi et al. [20] explored different factors influencing the performances of DWHEs,
which include the pipe arrangements in the wall, the ratio between exposed and fully immersed parts
of the wall, and the variable thermal condition on the excavation side. To that end, they employed
finite volume analysis using a full-scale monitored diaphragm wall as a reference. Their findings
detailed an improved layout for the pipe so that the heat exchange rate could be enhanced by 15.8%
for their studied case. Moreover, they showed that other factors which contribute to improving heat
transfer characteristics of the wall include limiting the thermal interference between pipe branches
that carry fluid at different temperatures and using both faces in the fully immersed part of the wall
that are in direct contact with the soil.

Rammal et al. [21] reported that presence of major groundwater flow and having the whole
length of diaphragm wall activated have a positive impact on the heat exchange rate, while the
thermal performances of the walls are directly affected by the amount of thermal load. Barla et al. [22]
investigated the energy efficiency of DWHEs using finite element thermo–hydro coupled analyses
in addition to the effects of the thermal activation on the surrounding soil. Furthermore, they
employed finite difference thermo-mechanical analyses to study the mechanical effects induced by the
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thermal activation. They reported that horizontal pipe layout will maximise the heat exchange rates.
Kürten et al. [23] presented a thermal resistance model based on rotational symmetry, number of pipes,
and the spatial separation, and implemented it into a finite difference code; however, their model does
not take seasonal fluctuation of the near-surface temperature and the groundwater into account.

In modelling the thermal conditions of DWHE, review of the literature highlights that a
number of different assumptions can be made about the boundary conditions, geometric complexity,
fluid flow, and heterogeneity of properties. In developing a new model, the objectives were to:
(i) Facilitate adequate boundary conditions, (ii) represent geometric complexity, and (iii) achieve
computational efficiency. The advantages of ground heat exchange are often stated in terms of
the stability of the ground temperatures and decoupling from varying atmospheric conditions.
This is arguably true of deeper ground heat exchangers such as borehole heat exchangers, but is
questionable in the case of diaphragm walls. Kasuda and Archenbach [24] demonstrated that ground
temperature variations driven by seasonal variation in environmental conditions at the ground surface
penetrate in an observable way as much as 10 m below the surface. In view of this, we sought to
incorporate time-varying boundary conditions at the upper ground surface. A further consideration
included thermal conditions related to the building basement surfaces. As these are sheltered from
environmental conditions (e.g., solar irradiation) and air temperatures are moderated, conditions are
likely to be different from those at the ground surface. Furthermore, the basement conditions are rather
different from ground conditions, so significant temperature differences can exist where the DWHE
is exposed to the basement on one side and coupled to the ground on the other. Consequently, three
different surface conditions are considered: Outside the building where the ground is exposed to solar
irradiation and precipitation, adjacent basement spaces where there is isolation from such effects but
exposure to the internal air temperatures, and finally, the pipe/fluid interface surfaces where heat is
exchanged with the heating and cooling system.

In developing an energy-pile-based heating and cooling system with respect to thermal
performance, response to the time-varying heat transfer rates imposed by the building system is
the chief concern. To understand minimum and maximum fluid temperatures requires calculation
of short timescale effects (hourly or sub-hourly variations); understanding long-term sustainability
requires calculation over very long timescales. Calculation methods that can deal with this difference
in timescales with sufficient computational efficiency to allow design calculations and optimisation are
needed. This tends to preclude direct application of three-dimensional numerical models.

Widely adopted approaches to the thermal design and simulation of ground heat exchange
systems of the borehole type include applying reduced-order or response-factor methods.
Reduced-order approaches include one- or two-dimensional numerical models and lumped
capacitance–resistance networks [25] or hybrid approaches that also use response-factor methods [26].
The approaches that can be classified as response-factor methods all rely on spatial and temporal
superposition of responses to some form of heat flux or temperature pulse. The definition of unit
heat flux step pulse responses in so-called ’g-functions’ [27] has been applied to energy-pile design
calculations [28,29]. However, this form of response factor is less appealing in the case of DWHE, as it
only allows consideration of one time-varying boundary condition (at the borehole wall or pipes) and
assumes that the upper ground surface has a constant temperature.

In order to meet the modelling objectives identified above, the proposed DWHE model is based
on a response-factor approach known as a Dynamic Thermal Network (DTN). This allows for multiple
boundary condition surfaces, arbitrary geometries, and heterogeneous thermal properties. The basis of
the method is summarised in the following section of the paper; further details are available in reports
of earlier work [30,31]. In order to validate the model, experimental heat transfer data was collected
from two full-scale DWHE installations in a range of conditions representative of realistic operation.
This validation study is presented later in this paper.
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2. Model Development and Dynamic Thermal Network Representation

The concept of representing heat transfer as a network of nodal temperatures and resistances
is extended in the Dynamic Thermal Network (DTN) approach to deal with transient conduction in
heterogenous solid bodies where the heat fluxes are driven by time-varying boundary temperatures.
The concept and the underlying mathematical principles were developed by Claesson [32–34] and
Wentzel [35], and were demonstrated through application to building and ground heat transfer
modelling applications. The heat conduction problem for this class of problems can be formulated
according to Fourier’s Law with constant properties and a set of N mixed boundary conditions with
constant surface heat transfer coefficients, h, as follows:

∇ (λ∇T) = ρC
∂T
∂t

(1a)

hi
[
Ti(t)− T|Si

]
= λ

∂T
∂n

, [i = 1 . . . N]. (1b)

In this form of conduction problem, the primary interest is in the relationship between boundary
fluxes and temperatures rather than internal body temperatures. Once the differential equation has been
solved to find the temperatures, the boundary heat fluxes of interest can be calculated, simply using

Qi(t) = Sihi
[
Ti(t)− T|Si

]
(2)

2.1. Model Description

The network representation of a body with three boundary surfaces is illustrated in Figure 1.
One of the essential features of the DTN method is that heat fluxes at each surface are separated into
admittive (or absorptive) and transmittive components. Admittive fluxes are associated with variations
in temperature at that boundary. In the case of an adiabatic surface, the only fluxes are the variations
brought about by variations in boundary temperature at that surface. In this case, the fluxes are entirely
admittive in nature, and the transmittive component is zero. Where there is heat transfer with another
surface, an additional component is superimposed depending on the difference between the boundary
temperatures. This is the transmittive component and is the flux observed at the opposing surface.
In general, both components of the heat flux are present. In steady-state conditions, the admittive
component is zero and the fluxes at all of the surfaces are transmittive in nature.

Σ

Σ

Σ

Σ
Σ Σ

Σ

ΣΣ
Q (t)2Q (t)1

Q (t)3

K12

K13 K23
K3

K2K1

T (t)1 T (t)2

T (t)3

Figure 1. The dynamic thermal network representation of a body with three boundaries (after Rees
and Fan, 2013).

The conductances in the admittive path of the network are denoted with a single subscript Ki
and are equal to the surface area multiplied by a constant heat transfer coefficient, e.g., K1 = S1h1.
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There are constant conductances between each pair of surfaces, denoted with double subscripts Kij,
along the transmittive path. These conductances are the overall steady-state conductances between
the boundaries, and include the surface conductances Ki and Kj. The reversed summation symbols
(Σ) adjacent to the conductances in Figure 1 indicate that the driving temperatures are averages of the
current and previous temperatures. In the single-ended admittive path, the single summation sign
indicates that the driving temperature is a function of the average temperature at that boundary alone.

Another feature of the DTN approach is that the temperatures (Ti(t)) and fluxes (Qi(t)) of the
dynamic network are defined at boundary (or environmental) temperature nodes rather than at the
surfaces themselves. We accordingly make a distinction between the terms ’boundary’ and ’surface’ in
the following discussion. For a model of a diaphragm wall heat exchanger, we define three surfaces at
which different time-varying boundary conditions are applied. It is sufficient to represent the pipe
system as a single boundary surface. For this application, the ground is thought to have a more
significant influence on thermal conditions—at least at longer time scales—and so we define this as
one boundary. The other boundary of interest is that at which the wall is exposed to conditions in the
associated building basement. This concept is illustrated in Figure 2.

Q3 (t) ground

Q2 (t) 
basementQ1 (t)

pipe

Figure 2. Definition of the three boundary surfaces and corresponding time-varying heat fluxes in
a Dynamic Thermal Network (DTN) representation of a diaphragm wall ground heat exchanger.

The nodal heat balance equations set out the relationship between the total flux at each boundary
and the admittive and transmittive components. For a three-surface problem, the heat balance
equations are:

Q1(t) = Q1a(t) + Q12(t) + Q13(t)

Q2(t) = Q2a(t) + Q21(t) + Q23(t) (3)

Q3(t) = Q3a(t) + Q31(t) + Q32(t).

It is helpful to understand the relationship between the admittive and transmittive fluxes by
considering the responses to a step change in boundary temperature at one of the surfaces. The response
for a three-surface body excited in this way is illustrated in Figure 3. At the beginning of the step
change, the flux at the surface being excited is entirely admittive in nature and is limited by the surface
conductance (hiSi). At any time, the admittive component is given by the difference between the total
surface flux and the sum of the transmittive fluxes at the other surfaces. As steady-state is approached,
the admittive flux approaches zero and the transmittive flux to the other two surfaces approaches the
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steady-state value. The specific case of fluxes in a diaphragm wall with the step change applied at
the pipe surface is shown in Figure 4. The steady-state pipe flux can be seen to be balanced by the
combination of basement and ground fluxes.

Q (τ)33

Q (τ)3a Q (τ)23

Q (τ)13

Time (τ)

Q (τ) + Q (τ)13 23

K13

K +K13  23

K3

Heat transfer
rate

Figure 3. Typical responses to a nominal step change at surface 3 of a three-surface DTN network.
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Figure 4. Calculated fluxes for a diaphragm wall with a 1 K step change in temperature at the
pipe surface.

Claesson [33] showed that the temperature differences driving the absorptive and transmittive
fluxes can be defined in an exact manner by the current and weighted averages of the boundary
temperatures. The absorptive and transmittive fluxes at a given boundary can be written in terms of
the conductances and these temperatures, as follows:

Qia(t) = Ki

Ti(t)−
∞∫

0

κia(τ)Ti(t− τ) dτ

 (4)

Qij(t) = Kij

∞∫
0

κij(τ)
[
Ti(t− τ)− Tj(t− τ)

]
dτ. (5)
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These weighted average temperatures are those associated with the points in the network
indicated by a reversed summation symbol (Figure 1). The temperatures are averaged according to
weighting functions, κia and κij for the admittive flux at the surface and the transmittive flux between
surfaces, respectively. A shorthand notation is used to denote these weighted average temperaturesS
as follows:

T̄ia(t) =
∞∫

0

κia(τ)Ti(t− τ) dτ (6)

T̄ij(t) =
∞∫

0

κij(τ)Ti(t− τ)dτ. (7)

Using this notation and substituting Equations (4) and (5) into Equation (3) allows the heat balance
equations for each surface to be expressed as:

Q1(t) = K1 [T1(t)− T̄1a(t)] + K12 [T̄12(t)− T̄21(t)]

+ K13 [T̄13(t)− T̄31(t)]

Q2(t) = K2 [T2(t)− T̄2a(t)] + K12 [T̄21(t)− T̄12(t)]

+ K23 [T̄23(t)− T̄32(t)] (8)

Q3(t) = K3 [T3(t)− T̄3a(t)] + K13 [T̄31(t)− T̄13(t)]

+ K23 [T̄32(t)− T̄31(t)] .

It can be seen that in the steady-state, Equation (8) reduces to the usual expression for flux in
terms of overall conductance and boundary temperatures (Q1 = K12(T1 − T2) + K13(T1 − T3) , etc.).

2.2. Discretisation

A convenient way to derive suitable weighting functions is to consider the fluxes resulting
from step changes in boundary temperatures. All of the required weighting functions can be found
by applying the step boundary condition at one of the surfaces and holding the other boundary
temperatures at zero, and repeating this for each surface (as in Figure 3). Claesson [33,34] showed
that the calculation method could be expressed in discrete form, in an exact way, for piecewise linear
variations in boundary conditions. The weighting factors can be obtained using the admittive and
transmittive fluxes calculated from the step responses averaged over each step (size ∆t). The discrete
weighting factors are then obtained from the differences in these average time step fluxes as follows:

κia, ρ =
Q̄ia(ϕ)− Q̄ia(ω)

K̄i

κij, ρ =
Q̄ij(ω)− Q̄ij(ϕ)

Kij
, (9)

where the time differences are between ϕ = (ρ∆t− ∆t) and ω = ρ∆t. In the case of the admittive
weighting factors, a modified surface conductance (K̄i) is defined which is equal to the initial admittive
flux, K̄i = Q̄ia(0).

When the boundary temperatures are defined by a discrete time series, the average temperatures
are calculated by the summation of weighting factor sequences multiplied by boundary temperature
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sequences that represent the state at previous time steps. The discrete form of Equations (6) and (7) is,
for current time step n,

T̄ia,n =
∞

∑
ρ=1

κia,ρTi,n−ρ (10)

T̄ij,n =
∞

∑
ρ=0

κij,ρTi,n−ρ (11)

This process of updating the temperature history can be implemented in a very computationally
efficient manner. For a given set of boundary temperatures, the fluxes can then be calculated using
Equation (8). Again, these are very simple algebraic equations that are efficiently calculated.

2.3. Boundary Conditions

The DTN is formulated and the step response data are calculated assuming that surface heat
transfer coefficients (hi) are constant. The general approach we took to work around this assumption
was to define a boundary temperature that is an ‘effective temperature’ (Te) that, when applied using
the predefined constant heat transfer coefficient, gives the same expected surface heat flux as that of
applying a more complex boundary condition model. This effective temperature (or environmental
temperature) does not correspond directly to a physical boundary temperature, but is applied in
the DTN heat balance equations and when the weighted average temperature is updated. In this
application, we do this using slightly different formulations for the pipe, ground, and basement
boundaries. The initial values of hi used for calculating the weighting factors were chosen as mid-range
values in comparison with those expected in the simulations: 1000 W m−2 K−1 for the pipe surface
and 10.0 W m−2 K−1 for the other surfaces exposed to the external environment. These values are
somewhat arbitrary, as we modify the simulation values as described below.

At surfaces exposed to the external environment, convection processes act in combination with
short-wave and long-wave radiant fluxes. A surface heat balance defining such a boundary condition is

Qi
Si

= Rsw + Rlw + hca (Ta − TSi) . (12)

The effective boundary temperature is intended to give the equivalent heat flux and is hence
defined by,

Qi
Si

= hi (Te − TSi) . (13)

Hence, the equivalent or environmental temperature must be

Te = [Rsw + Rlw + hcaTa + (hca − hi) TSi]/hi. (14)

A correlation for convection over a flat surface has been used to find the value for the ground
surface in this case: hca = 11.58 + 5.89Uw, where Uw is the wind speed [36].

This external surface boundary condition formulation can be expanded to deal with
evapotransporation [31]. At the basement surface, we apply a reduced form of this expression,
which ignores solar and long-wave radiation. This simplification was made to deal with the limitations
of the validation tests—described later—that were carried out during the construction process,
i.e., before a building over the foundations was finished.

In geometries with embedded pipes like a diaphragm wall, it is necessary to define the relationship
between the boundary temperature and both the pipe fluid inlet and outlet temperatures. Our approach
is—similarly to that of Strand [37]—to assume that the pipe surface temperature does not vary along
its length and make an analogy with an evaporating–condensing heat exchanger, and so to define



Energies 2020, 13, 300 9 of 23

a characteristic effectiveness parameter. The pipe fluid heat balance is then defined by the maximum
possible temperature difference and the effectiveness, as follows:

Qp(t) = ε ṁC
(
Tin(t)− Tp(t)

)
, (15)

where the subscript p refers to the pipe. For such a heat exchanger, ε = 1 − e−NTU ; this is
related to the total pipe area and fluid heat transfer coefficient by the Number of Transfer Units
(NTU = (2πrHhp)/(ṁC)), where H is the length of the pipe. The pipe convection coefficient, hp,
is modelled using the well-known Dittus–Boelter equation such that

hp =
0.023Re4/5Prnk f

2πrp
, (16)

where the exponent, n, is 0.4 or 0.3, according to the heat transfer being by heating or cooling.
In the implementation of the diaphragm wall model, we use the outside of the pipe

(i.e., the concrete cylindrical surface) as the boundary and calculate an equivalent heat transfer
coefficient to take account of the thermal resistances of the fluid and pipe materials. This is possible
by rearranging the heat balance equations to calculate the effective pipe boundary temperature
in a way that avoids iteration using only the inlet temperature as the time-varying input data.
The outlet temperature can then be found from the fluid heat balance: Tout(t) = Tin(t)−QP(t)/(ṁC).
This approach to the treatment of pipe boundary conditions was tested and validated in a different
form of ground heat exchanger application reported in [31].

2.4. Derivation of Discrete Weighting Factors

Derivation of the weighting factors for the DTN method can be done by analysis of step responses
at each boundary in turn. The method used to calculate the step response can vary: Both analytical
and numerical methods were used. In this case, we used a numerical model for this task. To make
this efficient, we implemented a parametric method of mesh generation for simple diaphragm wall
geometries and used the OpenFOAM library [38] to calculate conduction heat transfer over long
timescales. The solver was adapted to use increasing time steps to make the process efficient.

The parametric mesh generation tool generates the required geometry and mesh definition given
basic heat exchanger design parameters (pipe diameter and depth, wall depth and thickness, pipe
spacing, and basement depth). The mesh is generated assuming that the wall has symmetry planes
between the vertical pipes. An example of the mesh showing the definitions of the three surfaces
used to apply the boundary conditions is shown in Figure 5. The number of cells in the meshes is of
the order of one million. The overall domain size is three times the depth of the wall to ensure that
sufficient ground material is considered.

It is assumed that some symmetry to the geometry is representative of most wall sections, except
those at the corner of the plot, where three-dimensional effects can be expected and may become more
important at long time scales. In the validation studies,wall sections were tested that were not thought
to be influenced by conditions near the corners of the plot. This is not a limitation of the modelling
approach per se; corner effects could be dealt with by using a more complex mesh generation method.
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Figure 5. An example of a parametrically generated numerical mesh of a diaphragm wall section.
Material domains and boundary surfaces are highlighted. The front and back planes in this view are
symmetry planes halfway between the pipes.

Having generated three sets of response data in the form of heat flux time series (as in the example
shown in Figure 4), discrete weighting factors were calculated for the chosen time step size using
Equation (9). The details of this process and how the weighting factors were reduced to a compact
data set are described by Wentzel [35] and Rees and Fan [30]. An illustration of the weighting factor
series for the admittive flux of a diaphragm wall is shown in Figure 6.
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Figure 6. An example of a discrete weighting factor data series for the admittive flux (κia,ρ) at
a diaphragm wall pipe boundary. Note that the steps in the response arise from aggregating values at
longer time steps.

2.5. Model Implementation

Generation of the discrete weighting factor series values is a preliminary step in the modelling
process that only has to be executed once. A library of such data can be developed for particular
geometry and thermal property variations for repeated application in modelling exercises. Conducting
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a modelling exercise (i.e., making long-term predictions of fluid temperatures and heat transfer rates
for given inlet temperatures and flow rates) is carried out in relatively simple coding that reads the
weighting factors and implements the heat balance Equations (4) and (5), along with the boundary
conditions Equations (14) and (15). This was implemented as a stand-alone application and also in the
form of a component model in the TRNSYS simulation environment [39]. A flow chart describing the
DTN modelling process is shown in Figure 7.

Figure 7. A flow diagram illustrating the process of deriving the DTN weighting factors, data library,
and simulation.

3. In-Situ Thermal Response Measurements

In order to both test the capabilities of a prototypical diaphragm wall heat exchanger design and
generate validation data for the model, a series of thermal response measurements were made on a total
of four wall sections at two sites in Barcelona, Spain. The objective was to activate the heat exchanger
using a series of heat pulses and to measure flow rates and fluid temperature responses. The apparatus
used to apply the heat pulses and record the data was similar to that used for in-situ estimation
of ground thermal properties. However, the objective was to simulate operating conditions rather
than to indirectly measure ground thermal properties. Ground thermal properties were measured
independently, as described below.

3.1. Test Site Installations

The first series of response tests were carried out at a full-scale prototype installation at a road
construction project (Gran Via de les Corts Catalanes) in the Glorias (Glòries) district; we denote this
‘Site A’ hereafter. At this site, two screen walls of 40 m depth were activated. The tests were performed
from September 2016 to November 2016. In this case, as the diaphragm wall did not form part of
a building system, tests were carried out during the road construction project with ground material on
both sides of the wall, i.e., before final excavation.
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The second and larger test site was at a complex of four office buildings of 12,700 m2 floor area
located in the 22@ district of Barcelona; we denote this ‘Site B’ hereafter. A total of 37 diaphragm
walls (around 770 m2 active area) were installed in this building project—19 of which are conventional
diaphragm walls around the perimeter, and 18 of which are below the lowest basement floor,
supporting a central section of the building. The perimeter wall sections are exposed to two levels
of basement parking space in their upper section, whereas the basement sections are (like piles)
surrounded by ground material on all sides and covered by the lower basement slab. The depths of
the wall sections vary between 15 and 17.5 m for those under the basement and 14.5–18 m for those at
the perimeter of the basement. Testing of individual wall sections began in July 2017 and lasted until
April 2018. The monitoring of whole system’s performance has continued into 2019.

Two different arrangements of heat exchanger piping were used at the test sites. At Site A, the pipe
was attached to the outside of the reinforcement in a parallel vertical pattern. At Site B, a different
arrangement was tested, which used a horizontal parallel arrangement. In all cases, the pipe was a
nominal 25 mm diameter cross-linked polyethylene (PEX) material. The general arrangement of the
walls and heat exchange elements at both sites are shown in Figure 8. The geometric parameters for
each installation are given in Tables 2 and 3. At Site A, there are accordingly six vertical pipes in the
lower half of the wall, giving a total pipe circuit length of 82 m. This is a practical length that can be
achieved without pipe joints in the wall.
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Figure 8. Cross-sectional diagrams of the typical diaphragm wall heat exchangers at Site A and Site B
demonstrating the thermal boundaries involved.

The wall sections are assembled from two sections of reinforcement cage with the pipe fixed in
a serpentine arrangement in the lower half only, as indicated by the active area in Figure 8. At Site B,
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this means that the activated area is below the bottom of the basement. Pairs of flow and return
connecting pipes pass vertically through the upper section and are terminated in a crown beam
structure. At Site A, the wall section was one section in a row of similar wall sections. At Site B, the
wall sections activated for thermal testing were mid-way along the perimeter, so that the complications
of 3D heat transfer that can occur at the corners of the plot at longer time scales could be avoided.

3.2. Thermal Response Test Equipment

A new thermal response test system was developed for this project. The design of the equipment
consists of a water tank with electric heaters and a circulation pump, along with instrumentation and
data logging equipment. During the tests, inlet temperature was measured, as well as the flow rate and
the return temperature, so thermal power exchanged with the ground and the evolution of the inlet
and outlet temperatures as the heat flow modifies thermal conditions could be measured. The system
is shown schematically in Figure 9.

TT

T

valve filter pumpvalve flow 
meter

expansion 
vessel

air vent

electric heater

flow 
switchvalve 

thermocouple

temperature 
switch

ground heat 
exchanger loop

tank

Figure 9. A schematic of the thermal response test system.

The test equipment was designed to be as robust and reliable as possible due to the weather
conditions faced during long periods at the construction sites and is shown in Figure 10. The system
was designed to operate with site power or generator electrical supplies and a heater capacity of 0.5,
2.0, 2.5, or 4.0 kW. After initial tests, it was decided to conduct tests on individual heat exchanger
sections (a single circuit of up to 100 m pipe length) with a constant heat input of 2.0 or 2.5 kW and
with the pump set for a constant flow. This ensured that the maximum temperatures were in the range
30–40 °C and the flow was in the turbulent regime (Re > 2000), with a fluid temperature difference of
4–5 °C in order to minimise uncertainties. Tests in Barcelona were conducted with plain water as the
heat transfer fluid. Heat input was arranged to automatically cycle between on and off conditions
over periods varying from 2 h to 1 wk in order to simulate a range of realistic operating conditions,
as elaborated below.
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Figure 10. The Thermal Response Test equipment: The trailer installation (above), operation at
Site A (below).

3.3. Material Characterisation

We sought to independently measure the relevant thermal properties of both the wall concrete
and ground materials. This was done through a series of laboratory tests using samples from Site A
and Site B. The primary properties of interest are the thermal conductivity and specific heat of the
materials. Both the Transient Plane Source Method (TPSM) [40] and Transient Line Source Method
(TLSM) [41] were used to measure thermal conductivity. It was found that the TPSM method was best
suited to testing the concrete sample (600 × 600 × 40 mm) and that the TLSM was best suited to testing
the porous ground material. In order to measure specific heats, the Differential Scanning Calorimetry
(DSC) method was applied [42]. Results from these tests are shown in Table 1.

Table 1. Ground material and concrete thermal property measurement results, Site A.

Material Method Property Value Units

Concrete TPSM thermal conductivity (λ) 1.90 W m−1 K−1

Concrete TLSM thermal conductivity (λ) 2.48 W m−1 K−1

Ground TPSM thermal conductivity (λ) 0.86–0.91 W m−1 K−1

Ground TLSM thermal conductivity (λ) 1.46 W m−1 K−1

Concrete DSC specific heat (C) 0.85 kJ kg−1 K−1

Ground DSC specific heat (C) 0.81 kJ kg−1 K−1

Concrete literature density (ρ) 19.5–24.0 kN m−3

Ground measured density (ρ) 19.5 kN m−3

Concrete calculated heat capacity (ρC) 1.69–2.08 MJ m−3 K−1

Ground calculated heat capacity (ρC) 1.61 MJ m−3 K−1
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At Site B, it was not possible to retrieve a suitable sample of ground material due to the
complexities of the ongoing construction process. Considering the closeness of Sites A and B (900 m)
and the reported similarity of the ground materials, the ground thermal properties for Site B were
taken to be the same as Site A. This assumption and the possibility of higher groundwater levels at
Site B introduce additional uncertainty in the effective property values, however.

The concrete samples tested did not include any reinforcement steel, so studies were performed
to obtain values of conductivity and heat capacity for the composite wall (treated as one homogeneous
material in the model) using rules of mixtures [43] and knowledge of the reinforcement design.
The density of the composite wall was given exactly by an arithmetic mean weighted by the volume
fraction of the wall material. A similar approach was used to obtain the value for heat capacity.
An exact value for thermal conductivity of a composite material can not be achieved, and such values
lie between those of its constituents. Therefore, for a diaphragm wall, the thermal conductivity
value is in the range between those of concrete and steel. To achieve an appropriate value of thermal
conductivity for the diaphragm wall in the model, various values between the upper and lower bounds
were tested, which also provided knowledge on the sensitivity of the DTN model to such values.

4. Validation Study Results

The validation of the model presented is firstly based on the study of Site A. This site has
well-defined independently measured thermal property values available. At Site B, we took a
slightly different approach, and parametrically investigate sensitivity to the more uncertain thermal
property values to show that the model is able to reproduce the experimental results given justifiable
assumptions about these values.

Validation calculations were performed for Site A using thermal conductivity values ranging
from 1.9–2.48 Wm−1 K−1 for concrete and 0.86–1.46 Wm−1 K−1 for ground. These values represent
the range measured in the lab tests of the site samples using the TLSM and TPSM approaches (Table 1).
As laboratory measurements of the concrete density were not available, density values of 19.50,
22.00, and 24.00 kNm−3 were applied, while one single density value of 19.50 kNm−3 was used for
the ground.

The initial results indicated that there is sensitivity to both the concrete and the ground
thermal conductivities, and the closest agreement was found with a higher value of ground thermal
conductivity and lower value of concrete thermal conductivity. These are the values that correspond
to those obtained by the TPSM for concrete and TLSM for the ground. These are the test methods
expected to be the most appropriate for solid and porous materials, respectively, as noted earlier.
In addition, the best agreement was found at higher values of concrete density. Accordingly, a ground
conductivity of 1.46 Wm−1K−1, a reinforced concrete conductivity and volumetric heat capacity of
2.0 Wm−1K−1 and 2.1 MJm−3K−1, respectively, and a concrete density of 24.00 kNm−3 were applied
in the final validation study. The use of the higher value of density is justified given the presence of
steel reinforcement.

The time series showing measured and predicted outlet temperatures for the DTN screen
wall model are shown in Figure 11. These data correspond to a root mean square error (RMSE)
of less than 0.16 K between measured and calculated outlet temperatures, which represents a
more-than-satisfactory level of agreement for modelling purposes. In addition, climate data are
also presented, which are used along with fluid inlet temperature in the DTN model to simulate the
heat exchange behaviour of the wall.
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Figure 11. Predicted and measured fluid outlet temperatures and heat transfer rates from one week of
test cycles at Site A.

4.1. Results from Site B

Data from three different activated wall sections at Site B were used for model validation studies
(denoted B1–B3 hereafter). Details of the wall specifications are given in Table 2. The pipe and fluid
properties used in the model are the same as those detailed in Table 2.

Table 2. The model parameter values for the diaphragm wall heat exchangers (DWHEs) at Site B, walls
B1, B2, and B3.

Parameter Units Wall B1 Wall B2 Wall B3

Wall Depth m 17.0 17.0 18.2
Pipe Depth m 14.6 16.6 16.2

Basement Depth m 6.5 6.78 7.5
Pipe outer diameter mm 25 25 25
Pipe inner diameter mm 21 21 21

Pipe effective spacing m 0.40 0.43 0.34
Pipe circuit length m 89.0 90.0 87.0

The thermal property values of the diaphragm walls are expected to be higher than those of
concrete, owing to the presence of steel reinforcement. Accordingly, using information regarding
the mass and volume of steel reinforcing bars in the wall, properties for the composite construction
were calculated and used as initial estimates in the model. However, we found the best agreements
at values greater than those calculated this way. One reason that values may be higher than those
reported from laboratory tests is the presence of ground water reported at 5 m below the surface level,
which means that more than two thirds of the wall were below the water table. Since concrete is a
heterogeneous and permeable material, water absorption can significantly increase the values of its
thermal properties [44]. Thermal properties of concrete in saturation conditions can be approximately
50% higher than in dry conditions [45,46].

In view of the uncertainties relating to the effects of groundwater, calculations using the
DTN diaphragm wall model were performed using thermal conductivity values ranging from
1.6–2.3 Wm−1 K−1. In addition, volumetric heat capacity values of 2.2–3.5 MJm−3 K−1 were examined
for concrete. Data from the shortest cycle periods were used to guide the choice of effective concrete
properties, as heat transfer variations are mostly limited to within the concrete in such conditions.
Conversely, data from the longer cycles of heat rejection were more sensitive to ground thermal
properties. The following results represent the best fit with the experiments, for which corresponding
thermal properties of ground and concrete are shown in Table 3.
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Table 3. Ground material and concrete thermal property values used in model validation.

Material Property Value Units

Concrete thermal conductivity (λ) 2.25 W m−1 K−1

Ground thermal conductivity (λ) 1.60 W m−1 K−1

Concrete heat capacity (ρC) 3.50 MJ m−3 K−1

Ground heat capacity (ρC) 1.60 MJ m−3 K−1

Time series data used in the study of Wall B1 were collected over a period of six weeks from
18 September to 30 October, 2017 at 5 min intervals. During the experiments, the heat pump was
switched on and off intermittently while the circulating pump ran continuously. Three stages of
measurements can be identified during this test series, as shown in Figures 12–14, which correspond
to five-day, daily, and two-hour heating periods, respectively. These figures show the profile of the
inlet, outlet, and ambient temperatures measured during the test, as well as the measured heat transfer
rate. The predicated outlet temperature and heat transfer rate using the DTN DWHE model are
also presented.

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0
0

1 0

2 0

3 0

4 0

5 0

6 0

T i m e  ( h )

Te
mp

era
tur

e (º
C)

 I n l e t  T e m p e r a t u r e
 A m b i e n t  T e m p e r a t u r e
 O u t l e t  T e m p e r a t u r e
 C a l c u l a t e d  H e a t  T r a n s f e r  R a t e
 E x p e r i m e n t a l  H e a t  T r a n s f e r  R a t e
 C a l c u l a t e d  O u t l e t  T e m p e r a t u r e

0

2 0 0 0

4 0 0 0

6 0 0 0

8 0 0 0

1 0 0 0 0

1 2 0 0 0

He
at T

ran
sfe

r R
ate

 (W
)

Figure 12. Predicted and measured fluid outlet temperatures and heat transfer rates using five-day
heating periods at Wall B1.
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Figure 13. Predicted and measured fluid outlet temperatures and heat transfer rates using daily heating
cycles at Wall B1.
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Figure 14. Predicted and measured fluid outlet temperatures and heat transfer rates using two-hour
heating cycles at Wall B1.

The predicted outlet temperature and heat transfer rate for Wall B1 follow the experimental values
closely over the operation period. The RMSE between the calculated and measured outlet temperatures
over the six-week operation period is 0.4 K, which represents a good level of agreement for modelling
purposes. The data in Table 3 indicate that the closest agreement is found with higher values of ground
and concrete thermal conductivities and a relatively high value of concrete volumetric heat capacity.
We believe that using values that are higher than those for plain concrete is justifiable in view of the
significant level of reinforcement steel surrounding the pipes, as well as the presence of considerable
levels of groundwater. Thus, the values used in the model for concrete thermal properties also account
for the wall material and are thus effective or composite. The issue of the impact of the reinforcement
on the nature of short timescale responses is worthy of further investigation.

Validation studies of Walls B2 and B3 were also carried out using the same thermal property
values listed in Table 3. Temperature data for Wall B2 were collected at 5 min intervals over a period
of 14 weeks, from 31 October 2017 to 6 February, 2018. The time series for Wall B2 are shown in
Figures 15 and 16, corresponding to longer and shorter heat pump operation hours.

Figure 15. Predicted and measured fluid outlet temperatures and heat transfer rates using extended
heating periods at Wall B2.
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Figure 16. Predicted and measured fluid outlet temperatures and heat transfer rates using daily heating
periods at Wall B2.

At the end of some heating cycles in Figure 15, the circulation stops. In these periods, the outlet
temperature sensor tends to equilibrate with the environment and no longer reflects the fluid
temperature (after approximately 620, 960, and 1210 h). The comparisons are consequently only
meaningful when there is fluid flow.

The final validation study was carried out using temperature data from Wall B3, which
corresponds to a period of one week, from 1 to 8 March, 2018, the time series for which are given in
Figure 17. The calculated RMSEs between the predicted and measured outlet wall temperatures for
Walls B2 and B3 over the monitored period are 0.54 K and 0.51 K, respectively.
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Figure 17. Predicted and measured fluid outlet temperatures and heat transfer rates using extended
heating periods at Wall B3.

The validity of the DTN DWHE analogy to represent heat transfer at the wall in the proposed
model was investigated by examining the prediction of ground heat transfer integrated over the
operating periods. The measured heat rejection rate and the corresponding relative errors for Walls B1,
B2, and B3 over the monitored periods are given in Table 4. The corresponding relative errors are less
than 1.4% for all three walls; this seems to be an acceptable value.
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Table 4. Predicted and measured heat rejection rates.

Wall ID Heat Rejection Rate (kWh) Relative ErrorMeasured Calculated

B1 999.7 988.7 1.10%
B2 314.7 319.1 1.38%
B3 2128.3 2122.4 0.27%

A key advantage of the DTN formulation is its much better computational efficiency relative to
conventional finite volume or finite element modelling approaches. Completing calculations for the
whole experimental data series required of the order of one minute of computing time on a single
processor core.

5. Conclusions

A heat transfer model that combines a numerical finite volume representation of a diaphragm
wall heat exchanger and surrounding ground and basement boundaries based on a Dynamic Thermal
Network (DTN) representation was proposed. Weighting factor data were derived from numerical
models and calculations of step responses to excitation at each boundary. The model is able to deal
with the full geometric complexity of the substructure elements, pipes, and non-homogeneous material
properties. Boundary conditions can be applied at the ground and basement surfaces in addition to
the pipe surfaces. A parametric approach was taken to the implementation of the required numerical
meshes. This allows libraries of weighting factors to be generated in an automated non-interactive
manner and to be stored for later use in heat exchanger simulations.

The model validation testing was carried out by imposing series of heat rejection cycles using
thermal response test (TRT) equipment. A range of periods of cyclic operation that were representative
of realistic summer operating conditions was imposed. This was carried out firstly at a site where
the thermal properties of the concrete were independently measured. Given some allowance for
the reinforcement steel’s contribution to the density of the composite wall construction, very good
agreement with the measured responses was demonstrated.

Similar tests at a second site were conducted, and data were collected from three different heat
exchangers. In these cases, there was greater uncertainty in the ground and wall thermal properties;
ground materials were not independently measured, so values were estimated parametrically. Thermal
responses could be predicted with good levels of accuracy where values of effective thermal capacity
were chosen at the upper end of the usual range. This seems justifiable in view of the large amount
of reinforcement steel in the wall and the presence of ground water to a greater extent than the first
site. In addition, acceptable values for relative errors between predicted and measured heat rejection
rates were achieved. The model was shown to perform very efficiently when applied to a simulation
of wall response over the long timescales of interest. The levels of agreement in predicted dynamic
performance are concluded to be more than satisfactory for diaphragm wall heat exchanger design
and analysis purposes.
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Abbreviations

The following abbreviations are used in this manuscript:

DTN Dynamic Thermal Network
DWHE Diaphragm Wall heat Exchanger
TPSM Transient Plane Source Method
TLSM Transient Line Source Method
TRT Thermal Response Test

Nomenclature

C specific heat capacity, kJ kg−1 K−1

h heat transfer coefficient, W m−2 K
K conductance, W K−1

K̄ modified conductance, W K−1

N number of surfaces
Q heat transfer rate, W
Q̄ average heat transfer rate, W
r pipe radius, m
R thermal resistance, K m2 W−1

S surface area, m2

t time, s
∆t time step size, s
T temperature, °C
T̄ weighted average temperature, °C

Greek symbols
α thermal diffusivity, m2 s−1

ε heat exchanger effectiveness, -
ω, ϕ, ψ time step, s
κ weighting function
λ thermal conductivity, W m−1 K−1

ρ density, kg m−3

τ time (integration variable), s
θ hourly time variable, h

Subscripts
i, j surface number
n time step index
a admittive
t transmittive
ρ weighting factor index
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