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Abstract: In this study, we designed a feedback linearization control strategy for linear permanent
magnet synchronous motors (LPMSMs) as well as a robust control mechanism. First, the highly
nonlinear system was transformed into an exact linear system by the feedback linearization technique.
Then, we designed a robust controller to mitigate the impact of system parameter disturbances
on system performance. This novel robust feedback controller can be applied to electromagnetic
force, speed and position control loops in linear motors, correct the errors created by uncertainty
factors in the entire system in real time, and set the system’s settling time based on the application
environment of the plant. Finally, we performed simulations and experiments using a PC-based
motor control system, which demonstrated that the proposed robust feedback controller can achieve
good performance in the controlled system with robust anti-disturbance control.

Keywords: linear permanent magnet synchronous motor; feedback linearization; robust control

1. Introduction

Recent advances in electronics and microprocessor technology have enabled the realization of
high-performance motor control. Linear permanent magnet synchronous motors (LPMSMs) are capable
of greater torque (both steady-state and transient) than linear induction motors (LIMs) of the same size,
while providing superior efficiency. This has led to their widespread application in situations where
very fast torque-response and high-performance control are required [1]. Space vector modulation
(SVM) control theory is increasingly being applied to LPMSMs [2]. Proportional Integral (PI) controllers
are generally used to control the speed and two-axis current control loops of permanent magnet
synchronous motors with vector control due to its simplicity and effectiveness. PI controller parameters
can be adjusted using the root locus method and pole placement method. However, changes in the
parameters and in the load of the controlled system may vary; a conventional PI controller may not
perform well over a wide range of operating conditions. Researchers have developed a few methods
to produce stable closed-loop systems. In 2015, Huikuri used feedforward compensation to reduce
the influence of thrust friction and thrust ripples in linear motors with the aim of improving system
tracking performance [3]. In 2009, Ghafari-Kashani applied H-infinity robustness control theory in
designing the K value of the transition matrix in a closed loop system to ensure stability in compliance
with existing standards [4]. In 2012, 2013 and 2018, Choi, Ananthamoorthy and Pei used fuzzy control
logic to tune the PI controllers of LPMSMs online [5–7].

In recent years, feedback linearization has been an active research area [8,9], and its related
results for motor control have become the focus of attention [10–15]. Feedback linearization requires
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extremely precise measurements of system parameters to eliminate the effect of nonlinearity from
the system and thereby achieve the anticipated effects [11,12,16]. In 2010, Vittek applied feedback
linearization to LPMSM; however, he does not consider the issue of parameter fluctuations [17].
In 2015 and 2018, Tang and Lin used robust and adaptive optimal control that can suppress parameter
disturbances [12,18]. In 2011 and 2018, Ibtissem, Asseu and Song used sliding model controllers to
mediate uncertainties in LIM system parameters [19–21]. In 2010, Wang used Grey system theory to
perform relational analysis in uncertain systems with incomplete data and modeling for feedback
linearization [22]. The slip model observer and Grey theory was shown to stabilize nonlinear states;
however, the methods used in [18–22] are too complicated for most industrial applications.

The main purposes of this thesis are to investigate the feedback linearization control application
strategies of linear permanent magnet synchronous motor (LPMSM) and to develop a robust controller
to improve the drawbacks of the traditional feedback linearization control scheme due to parameter
uncertainties. Then, the highly nonlinear system is transformed to an exact linear system by the
feedback linearization technique. Additionally, a robust controller is designed to reduce the control
performance degradation due to system parameter variation. Moreover, the newly designed robust
feedback linearization control system is implemented for a LPMSM drive to track electromagnetic
force, speed and position commands. Finally, MATLAB/SIMULINK software and PC-based hardware
are used to verify the feasibilities of this scheme. The experimentation results prove the excellent
characteristics of the proposed system. A simple and robust controller design that does not require
complex calculations is needed for feedback linearization when the ultimate objective is to enhance the
precision of the motor speed and position in a wide range of industrial applications.

The rest of this paper is organized as follows. Section 2 is the dynamic model of linear permanent
synchronous motors. Section 3 describes the planning and design of feedback linearization and robust
control mechanisms, mainly describing the theory, framework and the design of the robustness control
mechanism of feedback linearization. The simulation and testing of software and hardware modules
and control software designed in Section 4 and uses vector control as the basis to realize a LPMSM
thrust, speed and position control system with feedback linearization and robust control mechanisms.
Section 5 presents the results and discussion. Finally, Section 6 presents conclusions for this work.

2. Dynamic Model of Linear Permanent Synchronous Motors

In this chapter, we describe the coordinate transformation of the three-phase AC expression of the
LPMSM circuit formula into a two-axis DC expression and the application of this formula to vector
control. The resulting coordinate transformation method can be used to rewrite the three-phase circuit
dynamic equation of LPMSMs as a two-axis dynamic mathematical model in order to elucidate the
control characteristics and lay down a foundation for the control method.

The complexity of the three-phase coordinate mathematical expression of LPMSMs makes them
unsuitable for motor control. To simplify the mathematical model of the motor, we established a system
within a vector control framework based on principles of coordinate transformation. By changing the
three-phase variable to a two-phase variable using a power-invariant transformation, the three-phase
coordinate system is presented as an easily controllable two-phase d-q axis coordinate system, and the
excitation of the stator-side permanent magnet of the LPMSM falls on the d-axis. If the stator current
is zero, then the mover current of the motor falls on the q axis, which means that it can be used to
control the electromagnetic force of the LPMSM in a simplified motor control system. Assuming a
uniform air gap on the surface of the secondary stator excited by the permanent magnet of the motor,
then Ld = Lq = Ls and the dynamic equation of the synchronous rotating coordinate system of the
LPMSM is as follows:[ d

dt id
d
dt iq

]
=

 −Rs
Ls

π
τ

.
xp

−
π
τ

.
xp −
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iq
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√
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The mechanical equation of the LPMSM under the d − q axis synchronous rotating coordinate
system is

F =
dWabcs

dx
= M

d2x
dt2 + B

dx
dt

+ FL (2)

where M denotes the mass of the mover, B is the viscous friction coefficient and FL is the load of the
motor. The total energy of the motor is derived as follows:

Wabcs =
1
2

[
Iabcs

T(Ls − LlsI)Iabcs + Iabcs
Tϕm

]
(3)

where I is the operation unit matrix. The electromagnetic force equation of the LPMSM is

F =

√
2
3
π
τ

ieqsλm (4)

3. Planning and Design of Feedback Linearization and Robust Control Mechanisms

The proposed feedback linearization and robust control system for LPMSM is shown in Figure 1.
This scheme involves the concept of feedback linearization in the design of a controller based on
electromagnetic force, speed and position to correct for errors in tracking control. As shown in Figure 1,
the output Y and input R can be expressed as the feedback and command values of electromagnetic
force, speed and position, respectively. Firstly, the complex and nonlinear status items of linear motors
can be converted into a simple linear loop via a feedback linearization control loop. Then, in order to
avoid uncertainties in parameters such as temperature or instability of the load is in motion, a strong
self-adjuster is needed to increase the stability of the control system. We designed a robust self-tuning
controller to increase the stability of the system, so that the error of electromagnetic force command
error, speed command error and position command error can be reduced to zero. The advantage is
that the entire derivation process is mathematically verified, and the calculations are not complex,
providing an alternative approach to motor servo control. The details of system component design are
described below.
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Figure 1. Block diagram of the linear permanent magnet synchronous motors (LPMSM) control system.

3.1. Feedback Linearization Controller

Feedback linearization control is based on the use of additional control commands, such that
all the dynamic components (including nonlinear components) in a nonlinear system are replaced
with linear components. The objective is for the controller to obtain a linear system from a nonlinear
one. Conventional linear control theory is easily applied to the processing of linear control problems.
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In the following, we give a brief description of the relevant theory. Suppose there is a nonlinear system
whose equation of state is written as:

dnx
dtn = x(n) = f (x) + b(x) u (5)

where u is a scalar input; x is a scalar output and a state variable equaling x =
[
x

.
x · · · x(n−1)

]T
;

f (x) and b(x) are both nonlinear equations of state. As shown in Equation (5), the differential term of x
appears in the equation, but the differential term of input u does not. Thus, Equation (5) can be written
in the standard form below:

d
dt


x1

· · ·

xn−1

xn

 =


x2

· · ·

xn

f (x) + b(x) u

 (6)

With the following input (assuming 1
b is a nonzero term), a single control command can be

designed for feedback linearization.

u =
1
b
{
v− f

}
(7)

Substituting Equation (5) into Equation (6) gives us

x(n) = v (8)

Clearly, the nonlinear terms in Equation (5) of the original nonlinear system can be eliminated
using Equation (6), resulting in the simple input–output relationship in Equation (8), as shown in
Figure 2.
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Thus, let the control law be written as follows:

v = −k0x− k1
.
x− · · · − kn−1x(n−1) (9)

where the k1 value can be used to place all of the roots of polynomial Pn + kn−1Pn−1 + · · ·+ k0 = 0 on
the left side of the complex plane and create exponential stability for the dynamics of the differential
equation below so that x(t)→ 0 :

x(n) + kn−1x(n−1) + · · ·+ k0x = 0 (10)

If the output includes a tracking task, and the target output is kd(t), then the control law can be
changed to

v = xd
(n)
− k0e− k1

.
e− · · · − kn−1e(n−1) (11)

where e(t) = x(t) − xd(t) is the tracking error, and exponential convergence can be achieved.
Note that the condition necessary for our control law to hold true is that the control in Equation (7)

must hold true. In areas where 1
b does not exist, the controller will fail. Thus, the characteristics of

feedback linearization control theory must also be taken into consideration to prevent them affecting
the final response characteristics of the motor system.
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3.2. Electromagnetic Force Loop Design Based on Feedback Linearization

3.2.1. Tracking Error Analysis in Electromagnetic Force Control

The proposed feedback linearization loop uses electromagnetic force commands for the tracking
control of reference commands, so that the electromagnetic force error converges to zero with time.
Therefore, we focused on the electromagnetic force, ηF, and based the design of the controller on this
error to achieve our tracking objectives.

ηF = uF −

√
2
3
π
τ
ϕ′′F iqs (12)

where uF is the electromagnetic force command.
Differentiation of the electromagnetic force error in Equation (12) results in

.
ηF =

.
uF −

d
dt


√

2
3
π
τ
ϕ′′F iqs

 (13)

.
ηF =

.
uF +

√
2
3
π2

τ2 ϕ
′′

F
.
xpids +

√
2
3
π
τ
ϕ′′F

Rs

Ls
iqs −

√
2
3
π
τ
ϕ′′F

vgs

Ls
+

2
3
π2

τ2 ϕ
′′

F
2 .
xp

1
Ls

(14)

which can be rewritten as
.
ηF = Ω1 +Ω2 −


√

2
3
π
τ
ϕ′′F

1
Ls

vqs

 (15)

Here, we set two variables Ω1 and Ω2, defined as

Ω1 =
.
uF

Ω2 =
√

2
3
π2

τ2 ϕ
′′

F
.
xpids +

√
2
3
π
τϕ

′′

F
Rs
Ls

iqs +
2
3
π2

τ2 ϕ
′′

F
2 .
xp

1
Ls

In Equation (15), if the controller design is√
2
3
π
τ
ϕ′′F

1
Ls

vqs = KPηF +Ω1 +Ω2 (16)

where KP is a positive number, then the closed-loop dynamic equation of electromagnetic force error
can be expressed as

.
ηF = −KPηF (17)

The dynamic error equation becomes a simple differential equation. With
√

2
3
π
τϕ

′′

F
1
Ls

vqs, the
electromagnetic force error becomes an increasingly stable dynamic system.

Analysis of tracking error in electromagnetic force control eliminates the unknowns from the
equation once the only parameter KP in Equation (17) is established, thereby rendering the entire
system equivalent to a linear system. Conventional control theory can be used to set this parameter.
If settling time is the only design condition, then the relationship between settling time ts and parameter
KP with steady state error less than 1% can be written as follows:

KP =
4.6
ts

(18)

where KP is a positive number.

3.2.2. Robust Control Mechanisms for Electromagnetic Force

If the system parameters in a linear feedback controller can be determined with a high degree
of precision, then the characteristics of the system will approximate those of the simplified model
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in Equation (17). If researchers are unable to obtain precise parameter values, then there will be
discrepancies between the actual system and the simplified model, resulting in unexpected (unstable)
responses in the system. Thus, we added a robust controller to the linear feedback controller to
compensate (Tang et al., 2015).

To correct for error in the feedback controller, the error between the simplified model and the
actual system must first be quantified. Here, we make the correction using an increment and revise
Equation (16) as follows: √

2
3
π
τ
ϕ′′F

1
Ls

(
vqs + ∆vqs

)
= KpηF +Ω1 +Ω2 (19)

Thus, we can substitute Equations (13) and (17) into Equation (19) to derive ∆vqs:

∆vqs = −vqs + iqeRs +
.
xPide

π
τ

Ls +
.
xP

√
2
3
π
τ
ϕ′′F + iqe

√
2
3
π
τ
ϕ′′F (20)

In Equation (19), we use the increment correction method and add an error correction term ∆vqs to
the stator voltage command variable in the simplified model. The composition of this correction term
is based on disturbances to the linear feedback controller caused by parameter identification errors.
The design of the error correction term ∆vqs is based on discrete time state. After calculating the robust
control mechanism, the vqs value calculated from the electromagnetic force error input into the system
control block serves as the next error correction term to be input into the linear feedback controller.

Figure 3 presents block diagrams showing the design of the robust controller and the feedback
linearization controller for electromagnetic force. Experiments and simulations have validated their
real-time control performance, as described in Section 4.
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3.3. Speed and Position Control Loop Design Based on Feedback Linearization

In this study, we used the electromagnetic force control method derived from feedback linearization
theory for the design of the internal loop. In terms of speed and position control, performance standards



Energies 2020, 13, 5242 7 of 17

for the control performance of high-performance LPMSM-driven systems are rising. This has imposed
the two following requirements:

(1) The steady state error of input and output commands in the system must remain zero.
(2) The output responses of the control system must be insensitive to changes in LPMSM parameters.

Thus, we also added a robust self-tuner to the position controller to enable automatic self-tuning
by the controller based on the input and output signals of the system to make it robust. This mitigates
the influence of fluctuations in system parameters, while overcoming the shortcomings of conventional
PI controllers, which gives the resulting LPMSM-driven system robust position control performance.

3.3.1. Tracking Error in Speed Control

First, the mechanical mathematical model of LPMSMs can be expressed as

F = M
d

.
xp

dt
+ β

.
xp + FL (21)

where M is the mass of the mover (kg), β denotes the viscous friction coefficient, FL is the load of
the LPMSM,

.
xP indicates the speed of the LPMSM mover (m/s) and xP is the position of the primary

mover platform.
To obtain the tracking error in position control, we first define the speed error as ηV and design a

controller based on this error to achieve our tracking objective.

ηV = uV −
.
xp (22)

where uV is the speed command.
Differentiation of the speed error in Equation (22) results in

.
ηV =

.
uV −

d
.
xp

dt
=

.
uV −

F− β
.
xp

M
(23)

which can be rewritten as
.
ηV =

.
uV +

β
.
xp

M
−

F
M

(24)

In Equation (24), if the controller design is written as

F
M

=
.
uV +

β
.
xp

M
+

(
KP +

Ki
s

)
ηV (25)

where KP and Ki are positive numbers, then the closed-loop dynamic equation of speed error can be
expressed as

.
ηV = −

(
KP +

Ki
s

)
ηV (26)

As shown in Equation (26), the dynamic equation for speed error becomes a simple differential
equation. With F

M , the speed error becomes an increasingly stable dynamic system.

3.3.2. Tracking Error in Position Control

In the position control loop, the Ki
s ηV term in Equation (25) can be directly measured by the system

and replaced with KiηX. The result can then be rewritten as follows:

F
M

=
.
uV +

β
.
xp

M
+ KPηV + KiηX (27)
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where KP and Ki are positive numbers, and ηX is the position error. The closed-loop dynamic equation
of speed error can then be expressed as

.
ηV = −KPηV −KiηX (28)

3.3.3. Pole Placement Method

The mechanical equation in Equation (21) shows that if the load of the LPMSM is zero (FL = 0),
then a simple second-order system can be used to place the two poles in the position control loop.
Furthermore, a suitable settling time can be set for the position controller based on the response speed
of the electromagnetic force controller. Suppose that the settling time of the electromagnetic force
controller is 0.01 s, then we set the settling time of the position controller between 0.2 and 0.4 s to avoid
system instability. For the sake of convenience, we adopted the conventional linear control theory to
design the two poles of the second-order system and set them as a pair of conjugate complex poles,
as shown in Figure 4.Energies 2020, 13, 5242 8 of 17 
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Figure 4. Poles placed on the s-plane.

The positions of the two poles are expressed as

s1, s2 = α± jβ = α(1± j tan θs) (29)

where α is associated with the settling time of the system’s transient responses; angle θs is associated
with system oscillations and can be set between 30◦ and 45◦ based on experience. According to
Equations (28) and (29), it can be rewritten as

[s− α(1 + j tan θs)] [s− α(1− j tan θs)] = s2 + Kps + Ki (30)

By expanding Equation (30), we obtain the following formulas:

Kp = −2α
Ki = α2

(
1 + tan2 θs

) (31)

If settling time is the only design condition, then the relationship among settling time ts and
parameters α, Kp and Ki with θs = 30

◦

and steady state error less than 1% can be written as

α = −
4.6
tS

, Kp =
9.2
tS

, Ki =
28.2133

t2
S

(32)

where Kp and Ki are positive numbers.
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The nonlinear equation in Equation (23) has already been replaced with linear Equations (26)
and (28) using the linear feedback control tracking error command; therefore, parameters Kp and
Ki have nothing to do with the operating points of the system itself. This controlled system can be
regarded as a system with global stability. At the same time, all the variables in the control tracking
error commands in Equations (23) and (26) can be measured using a PC-based control architecture
system, thereby expanding the applicability of the controller.

3.3.4. Robust Control Mechanisms for Position

Although the two poles established using the pole placement method can be proven based on
conventional linear control theory, they do not meet the two requirements established in academia and
industry with regard to the control performance of LPMSM-driven systems. Thus, we added a robust
control mechanism to the position control loop to produce a controller with good speed performance.
Correcting for errors in state feedback from the controller requires that we first quantify the error
and then make the correction using an incremental approach. Equations (25) and (27) can be revised
as follows:

F + ∆F
M

=
.
uV +

β
.
xp

M
+

(
KP +

Ki
s

)
ηV (33)

F + ∆F
M

=
.
uV +

β
.
xp

M
+ KPηV + KiηX (34)

Thus, substituting Equations (23), (26) and (28) into Equations (33) and (34) gives us the following:

∆F =

[
d

.
xP

dt
−

(
F− β

.
xP

M

)]
×M (35)

In Equation (23), we use the increment correction method and add an error correction term ∆F
to the electromagnetic force command variable in the position controller. The composition of this
correction term is determined by disturbance associated with the linear feedback controller caused by
parameter identification errors. The design of the error correction term ∆F is based on a discrete time
state. The F value input into the system control block (calculated from the speed and position error)
serves as the next error correction term input into the linear feedback controller.

Figures 5 and 6 display block diagrams showing the design of the robust controller and the
feedback linearization controller for speed and position. Experiments and simulations verify their
real-time control performance in the next section.
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4. Experiment System and Realization

4.1. Experiment System

This section outlines the hardware and methods required to realize an LPMSM with feedback
linearization. We adopted a PC-based control architecture and 83W 220V three-phase two-pole LPMSM
(∆ connection). The LPMSM experiment system includes the LPMSM itself, an incremental encoder,
an amplifier (power stage), a motor control driver interface card and a control platform (personal
computer). The motor control driver interface card was connected to an ISA bus, the input/output
ports and IRQ which were used for data and signal communication. Figure 7 displays the PC-based
LPMSM experiment system. The LPMSM parameters used in the simulation and experiment are listed
in the Appendix A.
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4.2. Results of Simulations and Experiments on Feedback Linearization and Robust Control Mechanisms

We simulated the proposed electromagnetic force, speed and position control mechanisms for
LPMSMs using MATLAB/SIMULINK and a PC-based motor control system. The parameters of the
LPMSM used in the experiment were identical to those of the motor in the computer simulation.
To avoid instabilities caused by errors in the response speeds during the experiment, we employed
conventional linear control theory and robust controllers for electromagnetic force and position control
in the feedback linearization control architecture to enable self-error correction.
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The proposed robust controllers input electromagnetic force, speed and position command errors
into the feedback linear controllers, which calculate the voltage vectors that are required. Once the
linear motor system is working, feedback current measurements are sent back to the feedback controller
via the robust self-tuning mechanism to execute operation control. In the following, we discuss
the simulations and experiments based on the control law derived from feedback linearization and
robust control.

4.2.1. Electromagnetic Force Control Loop Experiment Top View

• Accuracy test of feedback linearization controller

The purpose of this experiment was to verify the accuracy of the feedback linearization controller
and its effects on the system. We used sinusoidal and trapezoidal waves as electromagnetic force
commands (period: 2 s, amplitude: 20 N). Using accurate control system parameters (electrical and
mechanical), we compared the responses of the system in simulations and experiments, as shown in
Figures 8 and 9. The dashed lines (—) represent the input electromagnetic force command curves,
and the bold lines (—) represent the electromagnetic force response curves: (a) displays the responses
of the system, whereas (b) presents the responses of the system in experiments. Our simulation and
experiment results both show that when using accurate motor parameters, the system can achieve the
expected control results.Energies 2020, 13, 5242 11 of 17 
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Figure 8. Feedback linearization control experiment—simulated (a) and measured (b) responses from
3 (sine wave) commands.
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Figure 9. Feedback linearization control experiment—simulated (a) and measured (b) responses from
electromagnetic force (trapezoidal wave) commands.

• Robust control test under parameter disturbance

Our objective in this test was to verify that the robust controller is capable of self-tuning (to achieve
good control performance) in the event of disturbances in the parameters of the controlled system.
Trapezoidal waves were used as electromagnetic force commands (period: 2 s, amplitude: 20 N),
and the stator flux was set at 1.5 times the original setting, as shown in Figure 10. Among the system
parameters, the stator flux and resistivity were both set at 1.5 times the original settings, as shown
in Figure 11. The two Figures, respectively, compare the actual responses in the system when only
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a feedback linearization controller was used and when an additional robust controller was used.
The dashed lines (—) represent the input electromagnetic force command curves, and the bold lines
(—) represent the electromagnetic force response curves: (a) displays the responses of the system in the
experiment when only a feedback linearization controller was used; (b) displays the responses of the
system in the experiment when an additional robust controller was used. These experiment results
show that even in the event of disturbances in the motor parameters, the self-tuning function of the
additional robust controller is able to maintain good system performance.
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Figure 10. Measured responses from electromagnetic force (trapezoidal wave) commands with stator
flux set to 1.5 times the original setting: (a) feedback linearization controller only; (b) robust control
mechanism added.Energies 2020, 13, 5242 12 of 17 
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Figure 11. Measured responses from electromagnetic force (trapezoidal wave) commands with stator
flux and resistivity changed to 1.5 times the original settings: (a) feedback linearization controller only;
(b) robust control mechanism added.

4.2.2. Position Control Loop Experiment

• Accuracy test of feedback linearization controller

Our objective in this experiment was to verify the accuracy of feedback linearization controller
and its effects on the system. Sine waves and trapezoidal waves were used as position input commands
(period: 2 s, amplitude: 0.03 m). Using accurate control system parameters (electrical and mechanical),
we compared the responses of the system in simulations and experiments, as shown in Figures 12 and 13.
The dashed lines (—) represent the input position command curves, and the bold lines (—) represent
the position response curves: (a) displays the response of the system in simulations; (b) displays the
responses of the system in experiments. These simulation and experiment results both show that when
using accurate motor parameters, the system can achieve the expected control results.
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Figure 12. Feedback linearization control experiment—(a) simulated and (b) measured responses from
position (sine wave) commands.
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Figure 13. Feedback linearization control experiment—(a) simulated and (b) measured responses from
position (trapezoidal wave) commands.

• Robust control tested under parameter disturbance

Our objective in this test was to verify that the controller is capable of self-tuning in the event of
disturbances in the parameters of the controlled system. Trapezoidal waves were used as position
input commands (period: 2 s, amplitude: 0.03 m), and among the parameters of the controlled system,
the stator flux was set at 1.5 times the original setting, as shown in Figure 14. Among the system
parameters, the stator flux and resistivity were both set at 1.5 times the original settings, as shown in
Figure 15. These two Figures compare the actual responses of the system when using only a feedback
linearization controller and when using an additional robust controller, respectively. The dashed
lines (—) represent the input position command curves, and the bold lines (—) represent the position
response curves: (a) displays the responses of the system in the experiment when only a feedback
linearization controller was used; (b) displays the responses of the system in the experiment when an
additional robust controller was used. These experiment results show that in the event of disturbances
in the motor parameters, the self-tuning function of the additional robust controller can achieve good
system performance.
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Figure 14. Measured responses from position (trapezoidal wave) commands with stator flux changed
to 1.5 times the original setting: (a) feedback linearization controller only; (b) robust control
mechanism added.
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Figure 15. Measured responses from position (trapezoidal wave) commands with stator flux and
resistivity changed to 1.5 times the original settings: (a) feedback linearization controller only; (b) robust
control mechanism added.

• Settling time test

Our objective in this experiment was to ensure that the proposed robust controller adapts to the
application environment and set the settling time of the system and the control performance of the
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anti-disturbance of motor parameter disturbance. Trapezoidal waves were used as input commands
(period: 2 s, amplitude: 0.03 m), as shown in Figures 16 and 17. In (a), the electrical and mechanical
parameters of the controlled system were accurate, whereas in (b), the stator flux and resistivity
were both set at 1.5 times the original settings. The dashed lines (—) represent the input position
command curves; (—�—�—), (—#—#—) and (—4—4—), show the speed and position response
curves with system settling times of 0.2, 0.3, and 0.4 s, respectively. Using Equation (32), we obtain the
following results:

ts = 0.2, Kp = 46, Kd = 705.3333
ts = 0.3, Kp = 30.6667, Kd = 313.4815
Zts = 0.4, Kp = 23, Kd = 176.3333
These experiment results demonstrate that the proposed robust controller is able to adjust the

settling time based on the application environment to meet the operating points required by the
various controllers. For instance, it is able to set the optimal efficiency point in system operations for
optimal control.Energies 2020, 13, 5242 14 of 17 
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Figure 16. Settling time tests of feedback linearization controller with robust control—measured
responses from speed (trapezoidal wave): (a) original parameter settings; (b) stator flux changed to
1.5 times the original settings.
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Figure 17. Settling time tests of feedback linearization controller with robust control—measured
responses from position (trapezoidal wave): (a) original parameter settings; (b) stator flux changed to
1.5 times the original settings.

5. Results and Discussion

Our experiment results show that our robust control law designed using feedback linearization
produces good electromagnetic force and position responses, regardless of whether it is transient or
steady state. In terms of response speed, the proposed control method uses parameters KP and Ki
to change the response speeds of electromagnetic force and position to achieve a suitable settling
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time to meet the operating points required by the various controllers. The inclusion of the robust
controller enables the system to remain within a stable range by removing interference from factors
that do not remain steady under all conditions. Table 1 displays the root mean square error (RMSE)
between measure and command value of electromagnetic force, speed and position. As shown in
the table, the addition of the robust controller to the feedback linearization control system resulted
in lower smaller root mean square error values than those in a conventional feedback linearization
control. This demonstrates the accuracy and effectiveness of the robust control strategy with feedback
linearization developed in this study.

Table 1. Root mean square error (RMSE) between measure and command value.

Experiment

Controller

Conventional Feedback
Linearization Controller

Robust Control
Mechanism Added

Command of Electromagnetic
thrust (20 N)

Original parameter settings 1.7183 0.3929

stator flux and resistivity
changed to 1.5 times the

original settings
2.6719 0.5095

Command of speed (0.1 m/s)

Original parameter settings 0.0089 0.0056

stator flux and resistivity
changed to 1.5 times the

original settings
0.022 0.0063

Command of position (0.03 m)

Original parameter settings 0.0033 0.000393

stator flux and resistivity
changed to 1.5 times the

original settings
0.0161 0.00048394

Root mean square formula :
[

1
N

N∑
i=1

(Measure value−Command value)2
] 1

2

, N = 1000

Table 2 shows the root mean square error (RMSE) between the simulation and measure value of
electromagnetic force, speed and position. As shown in the table, the inclusion of the robust controller
in the feedback linearization control system resulted in much lower root mean square error values
than those obtained using a conventional feedback linearization control system.

Table 2. Root mean square error (RMSE) between simulation and measure value.

Experiment

Controller

Conventional Feedback
Linearization Controller

Robust Control
Mechanism Added

Command of Electromagnetic
thrust (20 N)

Original parameter settings 1.6891 0.3833

stator flux and resistivity
changed to 1.5 times the

original settings
12.8633 0.4954

Command of speed (0.1 m/s)

Original parameter settings 0.0089 0.0027

stator flux and resistivity
changed to 1.5 times the

original settings
0.0262 0.0062

Command of position (0.03 m)

Original parameter settings 0.0033 0.000359

stator flux and resistivity
changed to 1.5 times the

original settings
0.0179 0.00048224

Root mean square formula :
[

1
N

N∑
i=1

(Measure value−Command value)2
] 1

2

, N = 1000
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Our simulation and experiment results indicate that the proposed robust control method based on
feedback linearization produces better responses than conventional feedback linearization control when
fluctuating factors produce disturbances in the system parameters. Furthermore, the expected settling
time values can be adjusted according to the application environment to maintain the operational
performance. The robustness of the proposed control method makes it suitable for a wider range
of operations. The proposed feedback linearization controller with robust performance offers the
following advantages:

(1) It is applicable to electromagnetic force as well as position control loop systems in motor control.
(2) It does not require complex mathematical formulas—i.e., the error correction term is added using

a simple increment correction method.
(3) It can establish an appropriate system settling time based on the application environment.

6. Conclusions

In this study, we designed a feedback linearization control strategy for LPMSMs with robust
control mechanism to overcome the shortcomings of conventional feedback linearization schemes.
The management of nonlinear controlled systems to achieve system linearity is based on feedback
linearization control theory. We also designed a robust controller to mitigate the impact of system
parameter disturbances on system performance. This novel robust feedback controller is applicable
to electromagnetic force, speed and position control loops in linear motors. It can also be used to
correct for errors caused by unpredictable fluctuations in real-time and establish an appropriate settling
time based on the application environment. In other words, a simple and robust controller design
that does not require complex calculations is needed for feedback linearization when the ultimate
objective is to enhance the precision of the motor speed and position in a wide range of industrial
applications. Owing to the validation of the optimization and effectiveness of the proposed scheme,
a feedback linearization based robust control simulation is constructed as an application paradigm.
The integration test results show that the proposed development scheme can certainly comply with the
design objectives.
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Appendix A

LPMSM Mechanical Parameters:M = 3.0513 kg, β = 46.0384 N
m.s , pole pitch = 0.06096 m.

Electrical Parameters: Rs =
17.7

3 Ω , Ls = Ld = Lq =
0.0063

3 H, ϕ = 0.4849 WB.
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