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Abstract: Vehicle integrated thermal management system (VTMS) is an important technology used
for improving the energy efficiency of vehicles. Physics-based modeling is widely used to predict
the energy flow in such systems. However, physics-based modeling requires several experimental
approaches to get the required parameters. The experimental approach to obtain these parameters
is expensive and requires great effort to configure a separate experimental device and conduct the
experiment. Therefore, in this study, a neural network (NN) approach is applied to reduce the cost and
effort necessary to develop a VTMS. The physics-based modeling is also analyzed and compared with
recent NN techniques, such as ConvLSTM and temporal convolutional network (TCN), to confirm the
feasibility of the NN approach at EPA Federal Test Procedure (FTP-75), Highway Fuel Economy Test
cycle (HWFET), Worldwide harmonized Light duty driving Test Cycle (WLTC) and actual on-road
driving conditions. TCN performed the best among the tested models and was easier to build than
physics-based modeling. For validating the two different approaches, the physical properties of a
1 L class passenger car with an electric control valve are measured. The NN model proved to be
effective in predicting the characteristics of a vehicle cooling system. The proposed method will
reduce research costs in the field of predictive control and VTMS design.

Keywords: neural network; recurrent neural network; convolutional neural network; temporal
convolutional network; deep learning; time series forecasting; vehicle integrated thermal management
system; electric control valve; physical modeling; cooling system

1. Introduction

Vehicle integrated thermal management system (VTMS) technologies have demonstrated their
potential in a variety of fields, including powertrains, electrical systems such as motors and batteries,
passenger comfort systems, and implementation of new powertrain technologies and emission control
systems [1,2]. Among the numerous technologies related to improving fuel economy, when efficiency
and improvement in fuel economy are considered compared to the increase in production cost of a
vehicle, VTMS technologies are expected to cost less than $50 per 1% reduction in fuel consumption [3];
therefore, automakers are showing significant interest in the technology and are actively applying it to
their products [4].

Despite the interests of manufacturers and the demands of the market, there are several challenges
in the application of this technology. For optimal operation of VTMS, it is necessary to analyze and
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predict the system behavior. However, adding sensors for system behavior analysis increases the cost.
Therefore, manufacturers use several methods to minimize the number of sensors required. For example,
CFD-based analysis for prediction [5,6], simplified model-based prediction [7,8], and model-based
analysis for optimization by relocating the sensor [9] have been utilized.

Modeling a thermal management system requires considerable time for experimental parameter
studies, as well as manpower in various fields, such as heat transfer, combustion engineering, and fluid
mechanics, to construct the model and expensive systems such as environmental chambers. This trend
will become more complex with the gradual evolution of thermal management systems.

The vehicle’s control system requires a heavy software. Passenger vehicles use four times as
many lines of code as a commercial aircraft [10]. Software development costs have gradually increased
and have risen to the same level as hardware development costs [11]. While model-based software
development is being implemented to reduce development time and cost [3], automakers are still
looking for opportunities to increase the flexibility of their workforce or gradually reduce the use of
their own resources [12,13]. Along with this trend, there is a need for a simplified development method
that can further reduce time, manpower, and costs from conventional thermal management system
modeling techniques.

The physics-based method is conventionally used for predicting the energy flow. However,
it requires several experimental approaches to obtain the required parameters; thus, the cost is high.
Neural networks have been proposed to address this limitation of physics-based modeling.

Instead of figuring out the laws of physics as in the physics-based prediction method, the neural
network (NN) method determines the causal relationship between the input and the output. Hence,
the intermediate experimental parameter study processes can be omitted. The NN method has excellent
generalization performance and shows robust results even with noisy or incomplete data, and is also
durable against model defects [14–17]. Since the NN method has many processing nodes, defects in
several nodes or connections do not cause serious defects in the entire system [18,19]. Therefore, it is
suitable for complex models with many variables and auto-regression problems [20]. It can also be a
powerful solution to the problem of coupling data with a variety of inputs [21].

VTMS modeling can be defined as a multivariate time series forecasting problem. Traditionally,
time series prediction has been dominated by linear methods such as autoregressive integrated moving
average (ARIMA) and vector auto-regression (VAR), which are intuitive for variant problems [22].
However, these classical methods have several limitations, such as problems when data are missing
or corrupted and difficulties with multi-step prediction [23]. Furthermore, they predict from a linear
relationship to a generalized relationship rather than a complex relationship and, because of the temporal
dependence problem, it is necessary to diagnose and specify the number of delayed observations.

Multilayer perceptron (MLP) can overcome some of the disadvantages of ARIMA and VAR.
The same simple neural network approximates a mapping function from an input variable to an output
variable. This general capability is useful for time series because it can solve various problems such
as noise, non-linearity, multivariate input, multi-step inputs, and lack of robustness. Feedforward
neural networks do offer great capability but still have the limitation of having to specify the temporal
dependence during the model design step [24].

In recent time series prediction research, several studies have proposed variants of recurrent
neural network (RNN) and convolutional neural network (CNN) [25]. CNN learns by automatically
extracting features from raw data using a method known as expression learning. CNN guarantees
shift and distortion invariance with local acceptance, shared or replication weight, and spatial and
temporal subsampling [26,27]. These CNN characteristics are useful for preprocessing in time series
prediction [28].

RNN is a dedicated sequence model that keeps hidden activation vectors propagating through
time [27] (pp. 3–7). Long short-term memory (LSTM), a variant of RNN, explicitly handles the ordering
between observations when learning the input-to-output mapping function not provided by MLP or
CNN. LSTM natively supports sequences and the persistence of state can learn temporal dependence.
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LSTM networks eliminate the need for predefined time windows and can accurately model complex
multivariate sequences [29].

The most recent studies present a modified architecture of RNNs and CNNs. Convolutional
long short-term memory (ConvLSTM) was developed for reading two-dimensional spatial-temporal
data [30], but it can be adapted for use with multivariate time series forecasting [27] (pp. 367–393).
Temporal convolutional network (TCN) is more robust in learning and memory conservation than
reference iterative architectures such as LSTM, GRU, and RNN in a wide range of sequence modeling
tasks [31]. TCN is an architecture that was developed for video-based action segmentation in 2017 [32]
and the scope of its application has started to expand recently. The tasks in which it has been applied
so far have been limited to areas such as traffic flow forecasting [31], the text to speech (TTS) field
represented by Google Deepmind’s Wavenet architecture [33], and a wide range of areas with variant
transform models.

Although time series forecasting for temperature using NNs is widely used in many other fields,
attempts to approach NNs are rare in the VTMS field. The reason for this is that several VTMS devices
are being applied to commercial vehicles in recent years and are still expanding [34], and the existing
physics-based modeling has not yet emphasized the need for other methods. Most of the NN studies
are only partially applied to the state of charge [35,36] or temperature-related studies [37] of battery
electric vehicles (BEVs), and their application to other VTMS fields such as cooling system has not
been considered.

In this study, the cooling system of a 1 L class gasoline vehicle equipped with an electric control
valve (ECV) was modeled using physics-based modeling and NN approach, and the prediction results
were compared. Through this comparison, we validate the applicability of NN modeling.

2. Physics-Based Modeling

There are various methods of physics-based modeling. We use the model-based method,
a simplified model that can be embedded in a controller for establishing a control strategy or for
model-based predictive control.

2.1. Model Structure

In this study, a small 1 L gasoline vehicle with separate cooling was selected as the target vehicle.
Table 1 is a brief specification of the vehicle used in the study. The manual transmission vehicle is
equipped with a 98 horsepower gasoline engine, mechanical thermostat, and mechanical coolant pump.
However, the mechanical thermostat was replaced with an ECV.

Table 1. Specifications of the vehicle used in the experiment.

Powertrain

Engine

Displacement (cc) 998

Max Power (PS/RPM) 77/6500

Max Torque (kg·m/RPM) 9.7/4800

Cooling System Thermostat ECV

Injector Solenoid

Water Pump type Mechanical

Engine Oil 0W-20

Transmission

Number of Gear Stages 5th

FGR×TOP Gear Ratio 3.3074

ATF Warmer/Cooler X

Weight ETW (kg) 1215
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ECV is an electrically operated valve that replaces the thermostat to measure the temperature
and ensure coolant flow to the desired part. Because mechanical thermostats operate only at a set
temperature by opening the valve using the force of the expansion of the wax inside, we used ECV that
can variably determine the coolant flow rate according to the desired control temperature and strategy.

Figure 1 shows the schematic of the vehicle cooling system used in this study. The cooling system
of a car works as follows. The heat generated by fuel combustion in the engine is cooled by the radiator
to keep the engine oil at a high temperature to maintain optimum viscosity. It also regulates the coolant
temperature to optimize the operation of emission control devices such as exhaust gas recirculation
(EGR). The coolant from EGR is then passed through the heater core (H/C) to heat the air supplied to
the vehicle interior, because the heating, ventilation, and air conditioning (HVAC) was not operated,
and the influencing factor was ignored in this study.
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Figure 1. Cooling system schematic comparison. (a) Conventional cooling circuit. Conventional
cooling system using a mechanical thermostat with separate cooling. Low-temperature Thermostat
(LTS) starts opening at 88 ◦C; high-temperature thermostat (HTS) starts opening at 105 ◦C. (b). Modified
cooling circuit. Electric control valve system with both the mechanical thermostats (LTS, HTS) removed.
The flow through Exhaust gas recirculation (EGR) and Heater core (H/C) is combined in the bypass.

HVAC is based on the premise that it does not work according to regulations in mode tests (FTP-75,
HWFET, WLTC) to measure fuel economy. Therefore, the mode results used in the verification data in
this study are not related to the HVAC operation.

The vehicle used in this study has a manual transmission system. In general, manual transmissions
do not have a heat exchanger for oil transmission so that modeling can be done in terms of coolant and
engine oil.

According to previous studies, energy in vehicles is distributed as follows: About 25–28% of
the heat generated inside the engine is transferred to power the spark ignition engine; 17–26% is
transferred to the cooling system, and 3–10% in cooling the heat rejected or convection with oil. The rest
is exhausted in the form of thermal energy or kinetic energy through the exhaust or converted into
enthalpy loss [38]. This is expressed as an energy balance equation as follows:

ηc
.

m f QLHV =
.

Qcool +
.

Wb +
.

Qoil +
.

Hexhaust +
.

Qmisc (1)

Here the expression on the left refers to the energy generated by the fuel combustion. ηc is the
combustion efficiency of fuel;

.
m f is the fuel consumption; QLHV is the low heating value of gasoline.

The expression on the right refers to the energy conversion into engine heat transfer rate to the coolant
.

Qcool, brake power
.

Wb, exhaust energy loss
.

Hexhaust, engine oil heat transfer
.

Qoil, and other minor
miscellaneous losses

.
Qmisc.
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2.1.1. Engine Oil Temperature

The engine oil bulk temperature in oil pan can be simulated by the effect of heat generated inside
the engine by fuel combustion (

.
Qoil), heat exchange with coolant to cool it at engine oil cooler (

.
QEOC,oil),

and heat exchange with ambient at oil pan and oil filter (
.

Qair). The energy flow in the engine oil can be
expressed as an energy balance equation as follows:

dUoil
dt

=
.

Qoil +
.

QEOC,oil +
.

Qair (2)

Each factor in Equation (2) is expressed in detail by the heat transfer equation as follows:

(mc)oil
dToil

dt
= koil × Pgen +

( .
mc

)
EOC,oil

∆TEOC,oil + (hA)air(Tair − Toil) (3)

Some of the heat generated by combustion and mechanical friction in the cylinder contributes to
the temperature rise in the coolant and engine oil. The amount of heat transferred by combustion inside
the engine, which is a turbulent flow, should be analyzed for combustion. Rather than a complicated
analysis, it is assumed that the ratio of the transfer function koil due to engine heat generation Pgen

contributes to the temperature rise in coolant and engine oil, according to Equation (1) [39].
To use Equation (3), both the inlet/outlet temperature when passing through the heat exchanger

(engine oil cooler) must be known, but this measurement is difficult under actual conditions. Therefore,
in this study, the model was modified using the Effectiveness-NTU method, which expresses
effectiveness ε as

ε =
Ch

(
Th,in − Th,out

)
Cmin

(
Th,in − Tc,in

) or, ε =
Cc(Tc,in − Tc,out)

Cmin
(
Th,in − Tc,in

) (4)

Equation (3) can be expressed as follows by Equation (4).

(mc)oil
dToil

dt
= koil × Pgen + εEOC,oil ×Cmin∆TEOC,oil + (hA)air(Tair − Toil) (5)

Toil =

∫ koil × Pgen + εEOC,oil ×Cmin∆TEOC,oil + (hA)air(Tair − Toil)

(mc)oil
dt (6)

2.1.2. Coolant Temperature

The behavior of coolant temperature is similar to that of engine oil but is more complex due to the
influence of ECV, radiator, and bypass. However, when several variables are considered, the parameter
determination becomes very complex and difficult; thus, the factors with minority influence were
ignored. As shown in Equation (2), the factors that affect the coolant temperature can be expressed as:

.
QEOC,oil = −

.
QEOC,coolant (7)

dUcoolant
dt

=
.

Qcool +
.

QEOC,coolant +
.

Qrad +
.

QEGR +
.

QH/C +
.

Qbypass (8)

One of the most difficult parts in expressing the coolant temperature behavior is expressing the
heat exchanger of the radiator. The radiator can be expressed using the NTU-effectiveness method,
similar to a general heat exchanger, but it is difficult to measure the coolant and ambient flow rate.
The effectiveness of the radiator εrad, expressed in Equation (4), can also be expressed as a function of
temperature because the ambient temperature is colder than the coolant temperature.

εrad =
Ccoolant

(
Tcoolant,in − Tcoolant,out

)
Cmin

(
Tcoolant,in − Tair,in

) (9)
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The coolant flow rate is affected by the ECV’s opening area in the radiator direction and the
operating speed of the water pump (Npump). Since the water pump is directly connected to the engine’s
shaft, its operation is proportional to the engine speed (N). The opening area on the radiator side of
the ECV (Aecv,rad) is proportional to the defined valve shape and angle of the ECV motor (θecv) which
is an actuator that operates the valve. Therefore, the flow rate of coolant can be expressed as a function
of the ECV’s operating angle and engine speed.

.
mrad,coolant = f

(
Aecv,rad, Npump

)
= f (θecv, N) (10)

The flow rate of air reaching the front of the radiator can be expressed as the sum of the flow rate
that reaches the radiator when the vehicle is running and flow rate generated when the radiator electric
fan operates. It can be assumed that the running wind is proportional to the vehicle speed (vspd),
and the electric fan generates a flow rate proportional to the amount of current supplied (Irad, f an).

.
mrad,air = f

(
vspd, Irad, f an

)
(11)

The equation related to coolant can also be summarized as follows:

(mc)coolant
dTcoolant

dt
=


kcoolant × Pgen + εEOC,coolant ×Cmin∆TEOC,coolant
+εrad ×Cmin,rad∆Trad + εEGR ×Cmin,EGR∆TEGR

+εH/C ×Cmin,H/C∆TH/C + (hA)air

(
Tair − Tbypass

)
 (12)

Tcoolant =

∫ 
kcoolant × Pgen + εEOC,coolant ×Cmin∆TEOC,coolant
+εrad ×Cmin,rad∆Trad + εEGR ×Cmin,EGR∆TEGR

+εH
C
×Cmin,H/C∆T H

C
+ (hA)air

(
Tair − Tbypass

)
 dt
(mc)coolant

(13)

Using these equations, we design the simulation to predict the coolant and engine oil temperatures.

2.2. Experimental Parameter Study

Physics-based modeling requires identifying the parameters of the simulation. Each part must
be individually tested to study the experimental parameters. Therefore, in this section, we describe
examples of a single unit experimental process for parameter selection of the key factors.

The radiator is the most influential part of the vehicle cooling system. The factors that affect the
cooling amount of the radiator are the temperature and flow rate of the coolant, temperature of the
surrounding air, flow rate (in proportion to the vehicle running speed), and cooling fan operation.

For experimenting with such a radiator, an environmental chamber is required that can determine
the ambient temperature and flow rate. Figure 2 shows the system and measurement device that
simulates the cooling system located inside an environmental chamber. The engine, replaced by a
heater, determines the radiator inlet coolant temperature, and the external turbofan determines the
air flow rate. The air conditioner inside the chamber determines the ambient temperature, and the
electric water pump determines the coolant flow rate. Based on the NTU-effectiveness method, the heat
exchange in the radiator can be calculated by changing the conditions in response to changes in inlet
and outlet temperature and flow rate.

Calculating the engine’s heat generation requires more complex tests. Figure 3 shows the actual
vehicle engine installed in the engine cell. The engine cell contains a device to control the temperature
of the coolant; unlike a real engine, the coolant temperature is controlled through this device instead of
a radiator.
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Figure 3. Engine cell test system. Engine generated heat is calculated under various conditions, and the
difference in temperature before and after the coolant can be measured.

The heat generated by the engine is affected by many factors, including combustion and turbulent
flow. Therefore, it is difficult to predict accurately. In this study, the heat generated by the engine
is based on the assumption that a certain portion of the indicated work is transferred to the coolant.
The engine measured the operating point according to the engine speed and load (brake torque), and the
experiments were conducted while maintaining the steady-state to reduce the influence of control
variables such as ignition timing. The heat generated by the engine was calculated by measuring the
difference between the coolant temperature and the inlet and outlet flow rate of the engine.
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In addition to the experiments mentioned above, physics-based modeling requires further
experiments such as the change in coolant flow rate according to the opening amount of the ECV,
and engine speed, heat dissipation from each pipe to the atmosphere, heat exchange in EGR, and heat
exchange between oil and coolant.

Table 2 lists some typical parameter values that need to be obtained from experimental parameter
studies to complete the physics-based model. There is no need to obtain these values in the neural
network technique.

Table 2. Parameters necessary for physical models.

Parameter Description

#1 hradiator Heat transfer coefficient of radiator

#2 hoil pan Heat transfer coefficient of oil pan

#3 hengine block Heat transfer coefficient of engine block

#4 kengine block Thermal conductivity of engine block

#5 koil-coolant
Thermal conductivity of wall surface where heat exchange occurs
between engine oil and coolant

#6 Cp,engine oil Specific heat capacity of engine oil

#7 Cp,coolant Specific heat capacity of coolant

#8 Cp,engine crank shaft Specific heat capacity of engine crank shaft

#9 Cp,engine block Specific heat capacity of engine block

#10 Cp,radiator Specific heat capacity of radiator

#12 Aradiator Surface area where convective heat transfer of radiator occurs

#12 Aoil pan Surface area where convective heat transfer of oil pan occurs

#13 Aengine block Surface area where convective heat transfer of engine block occurs

#14 Lbolck
Wall thickness where heat conduction occurs between coolant
and engine block

#15 Loil-coolant
Wall thickness where heat conduction occurs between coolant
and engine oil

#16 εradiator Effectiveness for predicting radiator outlet temperature

#17 εEOC Effectiveness for engine oil cooler

#18 ηth
Efficiency at which fuel is converted from fuel energy to indicated
power when internal combustion engine is operated

#19 ηengine heat transfer
Ratio of the amount of heat transferred to cooling system from
heat loss

#20 Aoil-coolant Area of heat conduction between oil and coolant at oil cooler

#21 Aengine block-coolant Area of heat conduction between engine block and coolant

2.3. Simulation Implementation of Coolant and Oil Temperature

We used MATLAB/Simulink® (MathWorks Inc., Natick, MA, USA) to perform the simulations
in this study. The system was divided into several sub-systems, each simulating the behavior of the
cooling system through the same flow path and calculation structure as the components in the actual
vehicle, as shown in Figure 4:
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Figure 4. Flowchart of the computational simulation for prediction by physics-based model.

1. Pre-determined parameters: among the values obtained from experimental parameter studies,
a fixed variable that is not a value that changes in real time. It consists of the surface area (A),
specific heat (c), and thickness of the cylinder wall (L) of various heat exchangers.

2. Real-time measured input data: input data that changes every moment while the actual vehicle is
driving. It is obtained by data acquisition device, and consists of engine speed (N ), vehicle speed
(vspd), ambient temperature (Tambient), etc.

3. Cooling fan, ECV control model: a model that calculates the control target value using real-time
input data to determine what effect it will have if the control logic is changed, or to verify that the
existing control is working well.
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4. Correlation parameter model: a model that calculates parameters that change according to the
value of real-time input data. Such as Heat transfer coefficient (h ), Effectiveness (ε), power
generation (Pgen), etc. are calculated.

5. Overall heat transfer model: a model that integrates the amount of heat transferred by each unit
to calculate the temperature of engine oil and coolant, which are the prediction targets.

6. Calculation of coolant temperature and engine oil temperature: a model that predicts the next
stage temperature by using the heat quantity calculated in the integrated heat transfer model.

7. Next step inputs: send the final calculated output to the next step input.

The completed simulation predicts coolant and engine oil temperatures under given operating
conditions. The results of this step, including coolant and engine oil temperatures, form the inputs of
the next step.

3. Neural Network-Based Modeling

The Neural Network method directly learns the relationship between the input and the output.
Therefore, the time-consuming study process in most physics-based modeling can be eliminated,
and collecting vehicle data should be sufficient to obtain necessary input for the NN models.

The main input and output elements used for prediction of both physics-based and neural network
models are shown in Table 3:

Table 3. Main input and output elements for physics-based and neural network (NN) models.

Parameter Description I/O Classification

#1 Vehicle speed Vehicle speed for calculating wind
speed Input

#2 Engine speed Engine rotating speed Input

#3 Ambient temperature Air temperature outside the vehicle Input

#4 Indicated torque Indicated torque/maximum torque ratio Input

#5 ECV current angle Angle at which ECV is currently
operating Input

#6 Radiator cooling fan
current

Electric current for cooling fan
operation (A) Input

#7 Sampling rate Data acquisition interval time Input

#8 Coolant temperature Predicted coolant temperature Output

#9 Engine oil temperature Predicted engine oil temperature Output

Figure 5 is a graph showing some of the training data for a neural network-based model. Some
of the input and output signals presented in Table 3 were acquired by mounting only the Controller
Area Network (CAN) and a simple temperature sensor. The learning data were obtained by driving
repeatedly on the actual road. The acquired data were obtained through repetitive operations by
non-professional personnel. The acquired data were used for training and verification via several
neural network models.
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3.1. Model Framework Determination

The VTMS modeling problem can be defined as a time series forecasting problem. The model
calculates the desired output by inferring the sequence and physical association of several measured
input variables. Traditionally, a variety of methods for predicting time-series have been developed,
ranging from statistically-based modeling methods such as ARIMA, VAR, and exponential smoothing
to the more recent NN deformation models.

The NN model used in this study aims to minimize the type of input variable. Sophisticated and
complex models guarantee high accuracy, but it is difficult to collect input data. This study aims to set
up an unsophisticated predictive model by using known physical causal relationships as inputs, rather
than including elements with subtle influences. Hence, this problem can be defined as a problem with
endogenous variables.

The input variable used is obtained from the Controller Area Network (CAN) given by the vehicle,
assuming that the installation of additional sensors is avoided as much as possible. The output variable
uses engine oil and coolant temperatures as in physics-based modeling. However, due to resolution
problems, the temperature of the coolant is measured using the installed thermocouple.

The given problem is a typical regression problem and corresponds to time series forecasting.
In addition, since the objective is to find a physical correlation, it is an unstructured problem (without
seasonality) and a multivariate problem that predicts two outputs by finding correlations from multiple
input variables. Following recent trends, we applied ConvLSTM—a variant of RNN, and TCN—a
variant of CNN, as the NN architecture that fits the study characteristics.

To assess the model’s prediction efficiency, the differences between the actual and predicted model
values were compared statistically using two performance metrics: mean absolute error (MAE) and
mean square error (MSE).



Energies 2020, 13, 5301 12 of 24

3.2. Convolutional LSTM

RNN has several variants, but recently LSTM, a variant in which a gate structure is added to the
RNN to solve the long-term dependency problem, has been gaining popularity. In general, the time series
forecasting that requires sequence processing was considered in RNN and its variants [40]. However,
recent research reveals the shortcomings of the RNN method [41,42]. There are several challenges in
predicting the temperature in this study. First, various operating conditions or control changes affect the
temperature, with a time delay of about 3–10 s for this output to change. The data sampling rate is about
10–100 ms, and the change is relatively fast compared to the time delay. Hence, it takes about 1000 or
more sequences of data for changes in the input data to affect the output. However, recent studies have
shown that RNN variants such as LSTM may not be suitable for training very long sequences of 1000 or
more [43]. Hence, we need other methods to deal with long sequence time-series data.

To reduce the cost of LSTM or utilize pretreatment, variants of LSTM are being developed,
including using CNN for down-sampling. CNNs have excellent performance in extracting features
from large data volumes, and several modified CNN-LSTM techniques have been studied. A further
extension of the CNN-LSTM approach is the ConvLSTM that performs convolution of the CNN as
part of the LSTM for each time step. Similar to CNN-LSTM, ConvLSTM is used for spatiotemporal
data. ConvLSTM was developed for reading two-dimensional space-time data, but can be tuned for
use with multivariate time series forecasting [27] (pp. 367–393) and is expressed as follows, where ‘◦’
denotes the Hadamard product [44,45]:

it = σ(Wxixt + Whiht−1 + Wci ◦ ct−1 + bi)

ft = σ
(
Wx f xt + Wh f ht−1 + Wc f ◦ ct−1 + b f

)
ct = ft ◦ ct−1 + it ◦ tanh(Wxcxt + Whcht−1 + bc)

ot = σ(Wxoxt + Whoht−1 + Wco ◦ ct + bo)

ht = ot ◦ tanh(ct)

(14)

This is quite similar to the LSTM, but with the matrix multiplication replaced with the convolution
operations. This means that the number of weights present in every W in each cell can be extremely
small than the fully-connected LSTM. This is similar to replacing the fully connected layer with the
convolutional layer, thereby reducing the overall number of model weights [46].

The structure of the ConvLSTM is shown in Figure 6. Bi-directional LSTMs consistently perform
better than unidirectional layers, reducing the weakness of convolutional LSTMs’ vulnerability to
overfitting [47]. Therefore, in this study, a layer of bidirectional LSTM was added after the layer of
convolutional LSTM.Energies 2020, 13, x FOR PEER REVIEW 12 of 23 
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3.3. Temporal Convolutional Network

Temporal Convolutional Network is a specialized architecture developed for time-series forecasting.
TCN can extract long-term patterns using dilated causal convolutions and residual blocks, and can also
be more efficient in terms of accuracy and calculation speed than variants of LSTMs that are treated as
modern architectures in the field [48]. TCN is more robust in learning and memory conservation than
reference iterative architectures such as LSTM, GRU, and RNN in a wide range of sequence modeling
tasks [30,31].

Unlike RNNs, TCN has no explicit time dependency between predictions for adjacent time steps.
Hence, TCN can perform convolutions in parallel to process long inputs as a whole sequence for
training and evaluation. In TCN, the sequence information learned in the local layer is propagated to
the upper layer through the temporal layer. This is due to the introduction of a temporal convolutional
filter layer called a temporal layer structure; because of this characteristic, TCN can capture long
sequence patterns [49].

The extended causal convolution used by TCN was more effective in capturing temporal
dependencies than repetitive LSTM units. Additionally, TCN was less sensitive to parameter selection
than LSTM models, providing more stable performance.

Figure 7 shows the structure of the dilated causal convolutional layers. The complete dilated
causal convolution operation over consecutive layers can be formulated as follows [50]:

xt
l = g

K−1∑
k=0

wk
l x(t−k×d)

(l−1)
+ bl

 (15)

where xt
l is the output of the neuron at position; (t) in the layer number l; K is the width of the

convolutional kernel; wk
l stands for the weight of position (k); d is the dilation factor of the convolution,

and bl is the bias term.
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TCN has fewer trainable parameters than RNN but takes longer to train. However, the prediction
time after training is much faster than that of conventional RNNs. Despite parameter tuning, large
models need not always give good results owing to overfitting. Deep networks lose generalization
capacity when trained using large models since they often converge to sharp minimizers; hence,
choosing a smaller model can be beneficial. For TCNs, a smaller kernel was able to extract the
underlying patterns more accurately [51].

4. Comparison of Predicted Results and Actual Measurements

For verifying the prediction accuracy of the system, we compared the predicted value with the
actual values obtained by driving the vehicle under different driving conditions.

Figure 8 shows the actual vehicle installed on the chassis dynamometer to test the fuel efficiency
authentication mode. The verification of the entire system consisted of the model experiment, a vehicle
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fuel economy measurement experiment on chassis dynamometer, and an on-road driving of the vehicle.
The vehicle’s verification mode was tested with EPA Federal Test Procedure (FTP-75), Highway Fuel
Economy Test cycle (HWFET), and Worldwide harmonized Light duty driving Test Cycle (WLTC).

Energies 2020, 13, x FOR PEER REVIEW 13 of 23 

 

Figure 7. Architecture of a stack of dilated causal convolutional layers [33]. 

TCN has fewer trainable parameters than RNN but takes longer to train. However, the 
prediction time after training is much faster than that of conventional RNNs. Despite parameter 
tuning, large models need not always give good results owing to overfitting. Deep networks lose 
generalization capacity when trained using large models since they often converge to sharp 
minimizers; hence, choosing a smaller model can be beneficial. For TCNs, a smaller kernel was able 
to extract the underlying patterns more accurately [51]. 

4. Comparison of Predicted Results and Actual Measurements 

For verifying the prediction accuracy of the system, we compared the predicted value with the 
actual values obtained by driving the vehicle under different driving conditions. 

Figure 8 shows the actual vehicle installed on the chassis dynamometer to test the fuel efficiency 
authentication mode. The verification of the entire system consisted of the model experiment, a 
vehicle fuel economy measurement experiment on chassis dynamometer, and an on-road driving of 
the vehicle. The vehicle’s verification mode was tested with EPA Federal Test Procedure (FTP-75), 
Highway Fuel Economy Test cycle (HWFET), and Worldwide harmonized Light duty driving Test 
Cycle (WLTC). 

 
Figure 8. Test on the chassis dynamometer for verification. By comparing the experimental and 
simulation results the feasibility of the modeling method can be determined. 

Most of the chassis dynamometer fuel economy authentication models are good structures to 
judge whether simulations are well made. The driving pattern of the fuel economy authentication 
model is designed to reflect the driving conditions of various vehicles that are not monotonous within 
a short time. 

FTP-75 is a model designed to test urban driving conditions. The test procedure measures 
emissions and fuel economy as defined by the US Environmental Protection Agency (EPA). Phases 1 
and 2 of the FTP-75 simulate the traffic conditions during rush hour in downtown LA in 1972 [52]. 

HWFET is part of FTP-75 and simulates highway driving conditions [53]. Most of them are high-
speed areas and do not stop while driving. 

Figure 8. Test on the chassis dynamometer for verification. By comparing the experimental and
simulation results the feasibility of the modeling method can be determined.

Most of the chassis dynamometer fuel economy authentication models are good structures to
judge whether simulations are well made. The driving pattern of the fuel economy authentication
model is designed to reflect the driving conditions of various vehicles that are not monotonous within
a short time.

FTP-75 is a model designed to test urban driving conditions. The test procedure measures
emissions and fuel economy as defined by the US Environmental Protection Agency (EPA). Phases 1
and 2 of the FTP-75 simulate the traffic conditions during rush hour in downtown LA in 1972 [52].

HWFET is part of FTP-75 and simulates highway driving conditions [53]. Most of them are
high-speed areas and do not stop while driving.

WLTC is a European standard driving model [54]. After the low-speed zone that simulates
urban driving, the high-speed zone that simulates highway driving appears. This model covers a
large driving range, which is good for determining whether predictions are well made in the neural
network method.

Actual on-road driving generated random inputs that were not repeated when driving in a
laboratory setup. These random driving conditions prevent overfitting in both physics-based and NN
approaches and, in some cases, also help to secure additional training data.

5. Results

This section presents and discusses the experimental results of the physics-based modeling and
NN approaches presented in the previous section. The predicted results were compared to actual
experimental data (ground truth) to determine their suitability.
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5.1. Comparison Between Prediction and Actual Measurement

The comparison between the simulated prediction results and actual data in different driving
conditions is shown in Figure 9.

Physics-based simulation results show substantially similar behavior to actual measured data
under similar operating conditions. Using physical-based modeling, the vehicle performance can
be predicted even in areas or conditions that are otherwise difficult to experiment with real vehicles.
It can be used to establish a control strategy such as model-based predictive control of controllable
VTMS devices.

Table 4 lists some of the parameter tuning values for optimizing ConvLSTM. The activation
functions ReLU and SoftPlus show excellent performance in terms of accuracy [52]. In all cases,
the dropout and recurrent dropout were set to 0.2. Based on the results, Model #9 is determined to
have the least error and better computational speed.

Energies 2020, 13, x FOR PEER REVIEW 14 of 23 

 

WLTC is a European standard driving model [54]. After the low-speed zone that simulates urban 
driving, the high-speed zone that simulates highway driving appears. This model covers a large 
driving range, which is good for determining whether predictions are well made in the neural 
network method. 

Actual on-road driving generated random inputs that were not repeated when driving in a 
laboratory setup. These random driving conditions prevent overfitting in both physics-based and NN 
approaches and, in some cases, also help to secure additional training data. 

5. Results 

This section presents and discusses the experimental results of the physics-based modeling and 
NN approaches presented in the previous section. The predicted results were compared to actual 
experimental data (ground truth) to determine their suitability. 

5.1. Comparison Between Prediction and Actual Measurement 

The comparison between the simulated prediction results and actual data in different driving 
conditions is shown in Figure 9. 

0 250 500 750 1000 1250 1500
Time [s]

0

2000

4000

6000

8000

En
gi

ne
 S

pe
ed

[r
pm

]

0

20

40

60

80

100

120

Te
m

pe
ra

tu
re

[o C
]

0

40

80

120

160

200

V
eh

ic
le

 S
pe

ed
[ k

m
/h

]

Engine Speed
Vehicle Speed

Coolant Measured (Ground Truth)
Coolant Predicted (Physics-based)
Engine Oil Measured (Ground Truth)
Engine Oil Predicted (Physics-based)

 
(a) 

0 250 500 750 1000 1250 1500 1750 2000
Time [s]

0

2000

4000

6000

8000

En
gi

ne
 S

pe
ed

[r
pm

]

0

20

40

60

80

100

120

Te
m

pe
ra

tu
re

[o C
]

0

40

80

120

160

200

V
eh

ic
le

 S
pe

ed
[k

m
/h

]

Engine Speed
Vehicle Speed

Coolant Measured (Ground Truth)
Coolant Predicted (Physics-based)
Engine Oil Measured (Ground Truth)
Engine Oil Predicted (Physics-based)

 
(b) 

Figure 9. Cont.



Energies 2020, 13, 5301 16 of 24

Energies 2020, 13, x FOR PEER REVIEW 15 of 23 

 

0 250 500 750 1000 1250 1500 1750
Time [s]

0

2000

4000

6000

8000

En
gi

ne
 S

pe
ed

[r
pm

]

0

20

40

60

80

100

120
Te

m
pe

ra
tu

re
[o C

]

0

40

80

120

160

200

V
eh

ic
le

 S
pe

ed
[k

m
/h

]

Engine Speed
Vehicle Speed

Coolant Measured (Ground Truth)
Coolant Predicted (Physics-based)
Engine Oil Measured (Ground Truth)
Engine Oil Predicted (Physics-based)

 
(c) 

0 250 500 750 1000
Time [s]

0

2000

4000

6000

8000

En
gi

ne
 S

pe
ed

[r
pm

]

0

20

40

60

80

100

120

Te
m

pe
ra

tu
re

[o C
]

0

40

80

120

160

200

V
eh

ic
le

 S
pe

ed
[k

m
/h

]

Engine Speed
Vehicle Speed

Coolant Measured (Ground Truth)
Coolant Predicted (Physics-based)
Engine Oil Measured (Ground Truth)
Engine Oil Predicted (Physics-based)

 
(d) 

Figure 9. Coolant and engine oil temperatures for various driving conditions predicted by physics-
based modeling. (a) EPA Federal Test Procedure (FTP-75) Phase 1,2; (b) Worldwide harmonized Light 
duty driving Test Cycle (WLTC); (c) Highway Fuel Economy Test cycle (HWFET); (d) On-road test.  
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Figure 9. Coolant and engine oil temperatures for various driving conditions predicted by physics-based
modeling. (a) EPA Federal Test Procedure (FTP-75) Phase 1,2; (b) Worldwide harmonized Light duty
driving Test Cycle (WLTC); (c) Highway Fuel Economy Test cycle (HWFET); (d) On-road test.

For comparing the prediction performance of NN-based model, the training model is divided into
four driving conditions (FTP-75 Phase 1, 2, HWFET, WLTC, and on-road) similar to physics-based
modeling in the previous section. An on-road example of the result predicted by ConvLSTM is
presented in Figure 10 with similar ground truth as in Figure 9d. The reason for choosing an actual
on-road experiment as an example is that it has the most fluctuations and disturbances, making it
difficult to predict the randomness.
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Table 4. Parameter optimization for ConvLSTM models.

Model Description
MAE MSE

Filters Kernel Strides Trainable Parameters Activation

#1 256 20 5 22,194,737 SoftPlus 3.2889 20.0674

#2 256 3 5 17,581,617 ReLU 6.1641 61.4168

#3 256 1 5 17,038,807 ReLU 15.5647 355.0674

#4 128 5 5 8,925,489 ReLU 4.3266 34.8466

#5 128 10 1 42,044,209 SoftPlus 4.4020 37.5245

#6 128 20 3 15,507,249 SoftPlus 3.3207 19.8283

#7 128 40 5 16,910,129 ReLU 2.7086 15.2777

#8 64 20 3 7,616,945 SoftPlus 3.4380 25.7581

#9 64 20 3 7,616,945 ReLU 2.6124 13.3402

#10 32 20 3 3,917,553 ReLU 2.7728 15.7787
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Figure 10. On-road example of Neural Network (Convolutional LSTM) based coolant and engine oil
temperature prediction and comparison of actual measurements. Data used in the on-road experiment
of physics-based modeling are considered here.

In contrast, for the same input data, TCN shows better performance than ConvLSTM in extracting
the features.

The results of TCN show that, if the number of parameters is large, the accuracy is adversely
affected. This phenomenon is presumed to be due to overfitting caused by several learnable parameters.
Complex models with many parameters can be considered as insufficiently trained to make accurate
predictions, as they require more input data to find the physical correlation.

The TCN model shows the best result among parameter tuning of the ConvLSTM and TCN
models based on Tables 4 and 5, and model #3 shows the optimum performance. The final model TCN
#3 has 5 hidden layers because it consists of dilations of [1,2,4,8,16,32]. The dilated casual convolution
with TCN is better at capturing long-term dependencies than recurrent units. Hence, the TCN model
can outperform the prediction accuracy of ConvLSTM and physics-based models. TCN showed stable
performance as it was less affected by the selected architecture and parameters. ConvLSTM model is
found to be less accurate when the input is too large [44]. This indicates that the sequential processing
in the recurrent network is not optimal for handling very long input sequences. Conversely, TCN has
excellent results for handling long input sequences.
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Table 5. Parameter optimization for TCN models.

Model Description
MAE MSE

Filters Kernel Dilations Trainable Parameters

#1 128 2 [1, 2, 4, 8, 16, 32] 365,826 3.7536 23.8921

#2 64 2 [1, 2, 4, 8, 16, 32] 92,802 0.9148 2.8306

#3 32 2 [1, 2, 4, 8, 16, 32] 23,874 0.2269 0.7441

#4 32 4 [1, 2, 4, 8, 16, 32] 46,978 0.3325 0.9843

#5 32 3 [1, 2, 4, 8, 16, 32] 23,874 0.2885 0.9369

#6 32 2 [1, 2, 4, 8, 16] 19,714 0.3225 1.0207

#7 64 4 [1, 2, 4, 8, 16, 32] 184,066 1.0216 3.0262

#8 64 2 [1, 2, 4, 8, 16, 32, 64] 109,506 1.1830 3.7137

#9 81 3 [1, 3, 9, 27, 81] 181,118 2.0541 14.3222

In summarizing the results, the better performing TCN model was selected as the representative
NN model. The temperature change prediction result of TCN model is shown in Figure 11.

Energies 2020, 13, x FOR PEER REVIEW 17 of 23 

 

ConvLSTM model is found to be less accurate when the input is too large [44]. This indicates that the 
sequential processing in the recurrent network is not optimal for handling very long input sequences. 
Conversely, TCN has excellent results for handling long input sequences. 

Table 5. Parameter optimization for TCN models. 

Model Description 
MAE MSE 

 Filters Kernel Dilations Trainable Parameters 
#1 128 2 [1,2,4,8,16,32] 365,826 3.7536 23.8921 
#2 64 2 [1,2,4,8,16,32] 92,802 0.9148 2.8306 
#3 32 2 [1,2,4,8,16,32] 23,874 0.2269 0.7441 
#4 32 4 [1,2,4,8,16,32] 46,978 0.3325 0.9843 
#5 32 3 [1,2,4,8,16,32] 23,874 0.2885 0.9369 
#6 32 2 [1,2,4,8,16] 19,714 0.3225 1.0207 
#7 64 4 [1,2,4,8,16,32] 184,066 1.0216 3.0262 
#8 64 2 [1,2,4,8,16,32,64] 109,506 1.1830 3.7137 
#9 81 3 [1,3,9,27,81] 181,118 2.0541 14.3222 

In summarizing the results, the better performing TCN model was selected as the representative 
NN model. The temperature change prediction result of TCN model is shown in Figure 11. 

0 250 500 750 1000 1250 1500
Time [s]

0

2000

4000

6000

8000

En
gi

ne
 S

pe
ed

[r
pm

]

0

20

40

60

80

100

120

Te
m

pe
ra

tu
re

[o C
]

0

40

80

120

160

200

V
eh

ic
le

 S
pe

ed
[k

m
/h

]

Engine Speed
Vehicle Speed

Coolant Measured (Ground Truth)
Coolant Predicted (TCN)
Engine Oil Measured (Ground Truth)
Engine Oil Predicted (TCN)

 
(a) 

0 250 500 750 1000 1250 1500 1750 2000
Time [s]

0

2000

4000

6000

8000

En
gi

ne
 S

pe
ed

[r
pm

]

0

20

40

60

80

100

120

Te
m

pe
ra

tu
re

[o C
]

0

40

80

120

160

200

V
eh

ic
le

 S
pe

ed
[k

m
/h

]

Engine Speed
Vehicle Speed

Coolant Measured (Ground Truth)
Coolant Predicted (TCN)
Engine Oil Measured (Ground Truth)
Engine Oil Predicted (TCN)

 
(b) 

Figure 11. Cont.



Energies 2020, 13, 5301 19 of 24

Energies 2020, 13, x FOR PEER REVIEW 18 of 23 

 

0 250 500 750 1000 1250 1500 1750
Time [s]

0

2000

4000

6000

8000

En
gi

ne
 S

pe
ed

[r
pm

]

0

20

40

60

80

100

120

Te
m

pe
ra

tu
re

[o C
]

0

40

80

120

160

200

V
eh

ic
le

 S
pe

ed
[k

m
/h

]

Engine Speed
Vehicle Speed

Coolant Measured (Ground Truth)
Coolant Predicted (TCN)
Engine Oil Measured (Ground Truth)
Engine Oil Predicted (TCN)

 
(c) 

0 250 500 750 1000
Time [s]

0

2000

4000

6000

8000

En
gi

ne
 S

pe
ed

[r
pm

]

0

20

40

60

80

100

120

Te
m

pe
ra

tu
re

[o C
]

0

40

80

120

160

200

V
eh

ic
le

 S
pe

ed
[k

m
/h

]

Engine Speed
Vehicle Speed

Coolant Measured (Ground Truth)
Coolant Predicted (TCN)
Engine Oil Measured (Ground Truth)
Engine Oil Predicted (TCN)

 
(d)  

Figure 11. Neural network method (TCN) prediction of coolant and engine oil temperature and 
comparison of actual measurements. (a) FTP-75 Phase 1,2; (b) WLTC; (c) HWFET; (d) On-road test. 

The NN model predicts the coolant temperature accurately. However, error can occur in 
predicting the engine oil temperature for specific sections, such as the section where the vehicle stops. 
This error is presumed to be due to insufficient training data for vehicle stopping conditions and is 
expected to decrease when various situations, such as the moment the vehicle stops, are known.  

5.2. Comparative Study 

Table 6 compares the prediction results of the physics-based and TCN models in terms of 
accuracy and working days. Overall, the TCN-based NN method is more accurate than the physics-
based modeling. The working days it takes to complete a model can make a big difference in 
developing time. The NN method can save a lot of time because it does not require experimental 
parameter studies and does not necessarily require an expert to perform the verification test and data 
acquisition. Comparing the results of the three models shows that TCN has sufficient potential to 
replace physics-based modeling.  

 

Figure 11. Neural network method (TCN) prediction of coolant and engine oil temperature and
comparison of actual measurements. (a) FTP-75 Phase 1,2; (b) WLTC; (c) HWFET; (d) On-road test.

The NN model predicts the coolant temperature accurately. However, error can occur in predicting
the engine oil temperature for specific sections, such as the section where the vehicle stops. This error
is presumed to be due to insufficient training data for vehicle stopping conditions and is expected to
decrease when various situations, such as the moment the vehicle stops, are known.

5.2. Comparative Study

Table 6 compares the prediction results of the physics-based and TCN models in terms of accuracy
and working days. Overall, the TCN-based NN method is more accurate than the physics-based
modeling. The working days it takes to complete a model can make a big difference in developing
time. The NN method can save a lot of time because it does not require experimental parameter
studies and does not necessarily require an expert to perform the verification test and data acquisition.
Comparing the results of the three models shows that TCN has sufficient potential to replace
physics-based modeling.
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Table 6. Comparison of the forecasting models.

Model MAE MSE

Working Days

Experimental
Parameter Study

Validation
Test

Model
Tuning Total

Physics-based 1.9697 6.6763 8 months 1 months 3 months 12 months

NN-based 0.2269 0.7441 N/A 2 months 1 month 3 months

Figure 12 shows the interquartile range of the predicted error values of the two modeling methods.
Because the physics-based model is based on integration, errors are accumulated when incorrect
calculations occur at some points. However, NN-based models are less susceptible to accumulation
errors because they are based on nonlinear models and use correlations between data. The NN model
predicts not only the value of the current step, but also the previous step as a weighted long sequence.
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(b) Engine oil temperature.

The NN methods appear to be sufficient to replace the conventional physics-based models in terms
of accuracy and speed under the following conditions. Physics-based modeling relies on assumptions
to represent a large part of the physical phenomena in simplified models for computational speed.
Extracting and simplifying features from these input data is one of the strong points of NN approaches.
However, NN modeling shows errors due to lack of training data from regions with difficult driving
conditions. The performance can be improved by collecting data from a few specific areas that are
difficult to experiment and performing additional experiments using physical relationships as inputs.

6. Discussion

Modeling for predicting the coolant temperature in VTMS is important in design and control, but
recently there has been a growing demand to reduce the software development costs. In this paper, we
proposed a deep learning framework based on NNs in place of conventional physics-based modeling.

For evaluating the prediction results, the experimental data of the physics- and NN-based models
(ConvLSTM, TCN) were compared. Our study shows that, among NN methods, TCN can be an
effective tool for predictive modeling in VTMS. The comparison results agree with those of recent
studies [48,49]. The optimized structure of TCN was superior to ConvLSTM in terms of performance
and cost and is sufficient to replace physics-based modeling under this study conditions.
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Rather than formulating all the systems as in physics-based modeling, the NN method learns the
causal relationship between input and output. The TCN-based modeling, which has dilated causal
convolutions and residual blocks, is less sensitive to parameter selection and can reduce the system
cost by replacing the multiple experiments needed for coefficient selection in physics-based modeling.
The TCN approach has the potential to further improve performance as better NN architectures
are developed.

Based on our research, NN and physical-based models are found to have their own advantages.
The NN modeling is error-resistant and useful for finding correlations and features between inputs and
outputs. Physics-based modeling is intuitive and computes faster than NN. Intuitive characteristics can
be beneficial for engineers to infer the changes in the system and understand the physical impact of each
change of element, unlike NNs that only grasp the relationship between inputs and outputs. In addition,
it will have some durability against the worst anomalous conditions in which data could not be acquired
by the NN method. These two qualities can complement each other. Physics-based modeling can be
used to refine some of the inputs, or hybrid models that use both NN and physical-based models in
parallel can offer robustness against unpredictable errors in NN model. The future study will consider
integrating both the models. In addition, predictive control can be attempted by applying NN-based
cooling system modeling to physical coolant flow control.

7. Conclusions

This paper proposed an NN model for a conventional cooling system modeling technique
for VTMS. The proposed model was compared with physics-based modeling and verified through
experimental results. The model conditions FTP-75, HWFET, WLTC, which express various driving
conditions, and the results of real road driving in difficult-to-predict random conditions show that
NN technology can be used successfully to predict temperature changes. Recent NN technologies
such as ConvLSTM and TCN were compared to physics-based modeling. The TCN’s performance
was the best of the models tested, and it was easier to build than physics-based models. Unlike
physics-based modeling, the NN method only learns the correlation between inputs and outputs,
excluding experimental parameter studies, so it can reduce the cost of the experimental equipment
required for experimental parameter research and the long time required for the study. The proposed
method is expected to reduce research cost and time in the field of predictive control and VTMS design.
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