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Abstract: Overheating in residential building is a challenging problem that causes thermal discomfort,
productivity reduction, and health problems. This paper aims to assess the climate change impact
on thermal comfort in a Belgian reference case. The case study represents a nearly zero energy
building that operates without active cooling during summer. The study quantifies the impact
of climate change on overheating risks using three representative concentration pathway (RCP)
trajectories for greenhouse gas concentration adopted by the Intergovernmental Panel on Climate
Change (IPCC). Building performance analysis is carried out using a multizone dynamic simulation
program EnergyPlus. The results show that bioclimatic and thermal adaptation strategies, including
adaptive thermal comfort models, cannot suppress the effect of global warming. By 2050, zero energy
buildings will be vulnerable to overheating.

Keywords: future weather files; climate scenarios; thermal comfort; overheating; building simulation;
global warming

1. Introduction

Characterizing future trends in climate and their uncertainty is crucial to understanding how
climate change will influence people’s well-being in dwellings. The frequency of extreme weather
events’ intensity is critical information to assess and develop mitigation strategies facing climate
change. The characterization of trends and uncertainty in climate extremes is missing in many
existing publications [1,2]. Moreover, the frequency and intensity of heatwaves during summers have
an increasing impact on society [3]. The projected rise in temperatures will make dwellings more
uncomfortable to live in and potentially will not allow working from home. The poorly ventilated and
overheated sleeping and living rooms can become dangerous to occupants’ health and their thermal
comfort, in particular older people. With newly and well-insulated buildings, there is a high risk of
overheating [4,5] when exposed to large amounts of solar radiation and internal heat gains.

In nearly Zero Energy Buildings (nZEB) and Net Zero Energy Buildings (NZEB), we expect that
overheating increases because of climate change. Therefore, it is essential to estimate the thermal
comfort and overheating risks in high-performance buildings. Several studies investigated the impact
of climate change on the building stock’s cooling energy demand [6–8]. However, a very few studies
investigated the overheating implications for high-performance buildings. Therefore, this paper aims
to quantify the impact of climate change on overheating hours according to static and adaptive comfort
models. The methodology is applied to a Belgian residential reference building using future climate
change weather files for the years 2050 and 2100. Research focusing on future climate scenarios using
building performance simulations in the Belgian context is rare [9]. At the same time, Belgium faces
a remarkable increase in both extreme temperatures and air conditioning and refrigeration systems
sales (see Figure 1) [10,11]. For example, 2018 was an unusually warm year: the average annual
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temperature was, according to the Royal Meteorological Institute of Belgium (RMI), 11.85 ◦C (against
10.5 ◦C standard), almost equaling the record of 2014 (11.93 ◦C). The year 2018 was the second warmest
year since measurements started in Uccle (Brussels) in 1833, followed by 2011 and 2007, with annual
averages of 11.6 and 11.5 ◦C, respectively.
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100 km. International frameworks such as CORDEX (Coordinated Regional Climate Downscaling 
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2. Future Weather Data for Building Performance Simulation

Research about future weather data for building energy modeling is typically based on
mathematical models named “General Circulation Models” (GCMs) [12]. GCMs represent physical
phenomena in the atmosphere and land surface [12]. They are used for simulating the global
climate system response to the increasing greenhouse gas concentrations [13]. GCMs provide climate
information on a worldwide scale with a typical spatial resolution of 150–600 km. However, GCMs
have bias concerning absolute meteorological values for a given year [14] and are much more skillful
at predicting a temporal delta between meteorological values [15]. Therefore, they need to be nested
with regional models to provide consistent approximations of regional climate change. GCMs can
be downscaled to regional climate models (RCMs) to obtain climate information at a resolution of
10–100 km. International frameworks such as CORDEX (Coordinated Regional Climate Downscaling
Experiments) evaluate RCM performances and aim at producing regional climate projections over
various regions of the world such as Europe (EURO-CORDEX) [16]. For the dynamic downscaling,
physics-based models are used to downscale global climate model results [17].

Therefore, this article uses the RCMs for climate change scenarios developed at the Laboratory
of Climatology and Topoclimatology of the University of Liège [18]. The RCM MAR (for “Modèle
Atmosphérique Régional” in French) characterizes the current and future evolution of hydroclimatic
conditions and also global radiation. For this purpose, historical simulations were performed over
1958–2016. Future projections (2020–2100) were then achieved under different IPCC future scenarios.
The covered period ranges from 1976 to 2050 and 2100 (from 1976 to 2005 with the historical scenario
+ 2020 to 2100 with Representative Concentration Pathway (RCPs) of RCP2.6, RCP4.5, RCP6, and
RCP8.5 scenarios. The RCPs are greenhouse gas concentration trajectories adopted by the IPCC [16].
The horizontal resolution used for both historical and future simulations is 5 km.

3. Materials and Methods

The analysis presented in this paper builds on the study [19,20] that investigated the energy
performance of a single-family freestanding house in East Belgium [19,20]. For the study, an integrated
modeling approach was developed to analyze the building energy use and thermal comfort conditions,
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including overheating hours, in a naturally ventilated nearly zero energy building. Figure 2 illustrates
the used methodology and the conceptual study framework.
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3.1. Future Weather Data

The overheating risks of residential buildings are assessed under different climate scenarios.
Four climate scenarios are selected to represent historical data (i) 1959–2014 global-warming
observations and (ii) for 2006–2100 under diverse Representative Concentration Pathways (RCP)
scenarios. The resolution used for both historical and future simulations is 5 km. The regional
climate model MAR outputs, developed by Belgian climatologists, are compared with ground-based
measurements from 20 Belgian weather stations over 2008–2014 [21]. For this study, we use three
different RCP scenarios that have been assessed in IPCC (2014) [22]:

• RCP 4.5: Strategies for reducing greenhouse gas emissions cause radiative forcing to stabilize at
4.5 W/m2 before the year 2100.

• RCP 6: emissions peak and radiative forcing will reach 6 W/m2 around 2080 and then decline.
• RCP 8.5: Increased greenhouse gas emissions mean that radiative forcing will reach 8.5 W/m2 by

the year 2100.

The results show that MAR allows downscaling of the spatial and temporal variability of the
Belgian climate with a low range of error [23]. The biases found in the MAR results are non-significant,
and the correlation coefficients are satisfying concerning temperature, humidity, wind speed, global
radiation, and cloudiness. Weather data were extracted for Liege Bierset, located at 50.6412◦ N, 5.4479◦

E, and 201 m above sea level). The climate file of Liege Bierset represents the closest weather station to
our case study in Kettenis, Belgium. Our case study is located 45 km east of Liege Bierset weather
station. The weather in Kettenis, Belgium, is known as a temperate oceanic climate based on the
climatic classification of Köppen-Geiger [24].

3.2. Case Study

The case study is a freestanding single-family house constructed in 2008 in Belgium [19]. The house
participated as an exemplary project under the “Construire avec energie” project to stimulate the design
and construction of high-performance buildings. The building was chosen as a special project by
the regional government of Wallonia. Besides, the project is an example of sustainable construction
advocating for energy neutrality and low embodied carbon. The project is well documented, and its
performance is monitored. Moreover, the building complies with the Belgian Passive House standard
requirements [25] and has photovoltaic units mounted on the roof, which qualifies it as a nearly
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zero energy building. The building is located in Kettenis (Belgium) and is designed by the architect
Léo Michaelis (50.6473◦ N, 6.0469◦ E) [26,27]. To obtain the Passive House label, the external wall
conductivity (u-value) is 0.132 W/m2K with 30 cm insulation and net energy requirements for the
heating below 150 MJ/m2/year. The triple glazing has a u-value of 0.5 W/m2K. The triple glazing is
composed of three panes of 4 mm separated from each other by 12 mm of a mixture of Argon-Krypton.
The measured total energy use is 25 kWh/m2/year. The airtightness has been verified through an
airtightness test and is 0.5 (n50) at 50 Pa. The house is a timber construction with a timber truss frame.
Its wider geometrical side is oriented perpendicular to the North-South axis, as shown in Figure 2.
The roof is gabled with a 35◦ slope and rises on two floors with the daily activities areas (kitchen, living
room, and dining room) on the ground floor and night activities (bedrooms and bathroom) are located
upstairs (see Figure 2). A nonheated garage is annexed to the house.

A detailed energy audit and building characterization took place by De Meester de Betzenbroeck [19].
Windows have internal solar protection. The house occupies an area of 174 m2 for a heated volume of
536 m3. The house is highly insulated, i.e., is heated by a pellet heating system. Domestic hot water
is produced by a gas water heater, assisted by preheating by solar collectors (6 m2). This house is
equipped with a double-flow mechanical ventilation system (System D) with a heat recovery unit
(90%). Further details on the building energy efficiency characteristics can be found in the study of De
Meester de Betzenbroeck (2008) [19].

3.3. Building Energy Modeling and Calibration

The building energy model was constructed in DesignBuilder (v6.1.5.002) [28]. The simulation
took place in the dynamic energy simulation program EnergyPlus v9.0. The multizone model included
the ground and first floor as heating space. The garage and the atrium were modeled as nonheated
spaces (see Figures 3 and 4). We synthesized several scenarios to represent future weather conditions in
the sleeping room and living room, each containing a time series of 8760-time steps. The schedules for
occupancy, lighting, and equipment in the sleeping and living rooms are modeled based on the audit
of De Meester de Betzenbroeck [19]. The number of household occupants is four people. Mechanical
ventilation has a minimum flow rate of 110 m3/h. The air changes correspond to approximately
30 m3/h/person. This flow rate depends on the function of the room and its surface. Windows are open
at night if the indoor temperature is higher than 22 ◦C, allowing for ventilative cooling. The operative
temperature is used to control the ideal air loads system. Active heating is assumed all year long.
The heating setpoint is set at 21 ◦C during occupancy and 16 ◦C for other moments. The summer
comfort conditions are explained in the following section. The calibration of the building simulation
model is described in the results section.
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3.4. Thermal Comfort Modeling

Thermal comfort temperature boundaries reflect within which temperature range the indoor
environment is assumed to be comfortable for occupants [29]. In this study, several thermal comfort
models were tested, similar to the study of Attia et al. (2015) [30]. We used the Passive House Standard
static comfort model to set reference conditions. Then, we tested the building against ISO 17772,
EN 15251, and ASHRAE 55. To calculate the optimal comfort condition according to the Fanger comfort
model, we assume that the dry-bulb air temperature is equal to the mean radiant temperature (hence
equal to the operative temperature), indoor air relative humidity is equal to 50%, air velocity amounts
to 0.1 m/s, metabolic activity is 1.3 met (normally sedentary activities), and clothing resistance is 0.4 clo
in summer and 1.0 clo in winter.

4. Results

4.1. Climate Change Impact on Thermal Comfort

The results of the building performance simulation are presented in Figures 5 and 6. Figure 5
illustrates the effects of climate change on overheating hours under the static comfort conditions of
the Passive House Standard. Under the current (reference/TDY) climate conditions, the operative
temperature in the sleeping room (355 h) and living room (399 h) remain under the acceptable 5%
(of all (8760) hours) range mandated by the Passive House standard (max. 438 h). In 2050, the number
of hours with the indoor operative temperature that exceeds 25 ◦C increases up to 474 h (5.4%), 697 h
(7.9%), and 1102 h (12.5%) under the RCP 4.5, RCP 6, and RCP 8.5, respectively. In 2050, the worst
thermal comfort scenario is found in living rooms, where overheating hours can reach 1195 h (13.6%)
under RCP 8.5.Energies 2020, 13, x FOR PEER REVIEW 6 of 12 
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Figure 6. Results of climate and building thermal performance modeling under the European adaptive
comfort model.

Figure 5 illustrates the impact of climate change on overheating hours under static comfort in 2100.
In 2100, the number of hours with the indoor operative temperature that exceeds 25 ◦C increases up to
790 h (9%), 1268 h (14.4%), and 1598 h (18.2%) under the RCP 4.5, RCP 6, and RCP 8.5, respectively.
In 2100, the worst thermal comfort scenario is found in living rooms, where overheating hours can
reach 1732 h (19.7%) under RCP 8.5.

Figure 6 illustrates the impact of climate change on overheating hours under the adaptive comfort
conditions of EN 15,251 Standard. Under the current (reference/TDY) climate conditions, the operative
temperature in the sleeping room (285 h) and living room (355 h) remain under the acceptable 5%
(of all (8760) hours) range. In 2050, the number of hours with the indoor operative temperature that
exceeds the upper comfort threshold reaches 400 h (4.5%), 610 h (6.9%), and 950 h (9.7%) under the
RCP 4.5, RCP 6, and RCP 8.5, respectively. In 2050, the worst thermal comfort scenario is found in
living rooms, where overheating hours can reach 1028 h (11.7%) under RCP 8.5.

Figure 6 illustrates the impact of climate change on overheating hours under adaptive comfort
in 2100. In 2100, the number of hours with the indoor operative temperature that exceeds the upper
comfort thresholds reaches 675 h (7.7%), 1120 h (12.7%), and 1395 h (15.9%) under the RCP 4.5, RCP 6,
and RCP 8.5, respectively. In 2100, the worst thermal comfort scenario is found in living rooms, where
overheating hours can reach 1489 h (16.9%) under RCP 8.5.

4.2. Future Scenarios against Different Comfort Models

The findings presented in Figures 5 and 6 indicate that the RCP 8.5 scenario has the worst
impact of thermal comfort in sleeping and living rooms. To put those findings under more profound
scrutiny, Figure 7 compares the future weather file of 2050 under the RCP 8.5 scenario against three
comfort models, namely, the European adaptive comfort model as stated in EN 15251-2:2018, American
adaptive comfort model as reported in ASHRAE 55, and the Passive House comfort model, using the
climate data of Liege. Figure 7 confirms that the adaptive comfort model EN 15251 will stretch the
comfort zone compared to the Passive House Standard and will absorb most overheating hours due to
climate change. However, the figure presents a frequent presence of heatwaves with higher outdoor
temperatures intensity and longer duration. Based on Figure 7, we identified more than six heatwaves
during the summer season.

Further, Figure 8 compares the future weather file of 2100 under the RCP 8.5 scenario against the
four comfort models using Liege’s climate data. Figure 8 shows that the adaptive comfort model EN
15,251 will fail to absorb most overheating hours. By 2100, the overheating hours will be significantly
high. Based on Figure 8, we identified more than 10 heatwaves during the summer season.
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4.3. Models Validation

The validation procedure involved the weather model validation and the building model validation.
For the weather files, four types of parameters, with significant volatility and no standard distribution,
are selected as uncertain parameters, i.e., temperature, relative humidity, wind speed, and global
solar radiation. A simple probability distribution calculation of these parameters is performed.
The Kumaraswamy distribution was used, which is considered a fast simulation of random variables
from the distribution to reduce computational time and reduce computational time [31,32]. The hourly
and summer seasonal variations were only modeled for the 2050 and 2010 RCP 8.5 scenarios of Liege,
Belgium. In Figure 5, the aggregated range of uncertainty of the estimated annual overheating hours,
by 2050 due to weather variations, ranges from −6.0% to +22.7%. Moreover, the aggregated range of
uncertainty by 2100 ranges from −16.8.0% to +37.7%. Under the adaptive comfort model (see Figure 6),
the aggregated range of uncertainty of the estimated annual overheating hours, by 2050 due to weather
variations, ranges from −7.3% to +26.8%. Moreover, the aggregated range of uncertainty by 2100 ranges
from −18.9.0% to +43.5%.

The building simulation model monthly energy use consumption and the hourly indoor air
temperature were calibrated against measured data (2015–2018) to verify the models’ accuracy.
The calibration included several iterations and is based on the ASHRAE Standard 140-2017 [33,34].
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The calibration was based on calculating the normalized mean bias error (NMBE) and the coefficient
of variation of root square mean error (CV (RMSE)) between the observed and simulation building
performance, see Equations (1) and (2).

NMBE (normalized mean bias error)

NMBE =

∑Np
i=1(Mi− Si)∑Np

i=1 Mi
(%). (1)

CV (RMSE) (coefficient of variation of root square mean error)

CV (RMSE) =
1
M

√√∑Np
i=1(Mi− Si)2

Np
.(%) (2)

In Equations (1) and (2), Np is the total number of data values, Mi (where i = 1, 2 . . . Np)
represents the mean measured data, and Si (where i = 1, 2 . . . Np) represents the mean simulated data.
The simulated model is considered calibrated because NMBE is not larger than 10% and CV (RMSE) is
not larger than 30%, based on the hourly data (air temperature). Further details on the calibration
outcomes can be found in the work of Gobin [20].

5. Discussion

Climate change will increase the overheating hours in freestanding houses significantly.
The challenge of defining a relevant climate data source, including climate change and heatwaves,
clearly is crucial. Without adaptive thermal comfort models to estimate overheating, existing, nearly
zero energy buildings will suffer from low comfort. The use of adaptive thermal comfort models
to evaluate and quantify overheating hours might be helpful and objective. By 2050 and under the
most optimistic climate change scenario, nZEB will be hot during summers. External solar protection,
ventilative cooling, and thermal mass are essential to avoid solar heat gains and dissipate the internal
heat. The intensive use of mechanical ventilation for air displacement during the night is another
critical design strategy. Ventilative air displacement of 4–8 air changes per hour offers excellent results
to reduce the overheating hours. However, overestimating the effects of ventilative cooling and thermal
mass can further increase thermal discomfort. The construction of residential houses is historically
dominated by concrete and materials with high thermal storage [35]. Under the increasing cost of
high-performance buildings, timber constructions form 15% of all new constructions in Belgium
(2009–2019) [36]. The market transformation towards low-carbon construction is accelerating, and the
European Union will push the national regulations in this direction. Even though the presented case
study is an example of a timber construction with medium thermal mass, increasing thermal mass
will not always provide an ideal solution, especially in dense urban cities where the urban heat island
effects will alter the microclimate. Besides, counting on the occupants’ thermal adaptation by wearing
more relaxed clothes and reducing their level of activity is not helpful to keep the daily mean indoor
temperature below 28 ◦C during summer.

Therefore, we strongly recommend researchers and Belgian governments to act through policy
decisions and research projects to develop accurate overheating calculation methods and indicators
next to building adaptation and urban mitigation measures. There is a need for weather stations that
take into account the sky cover conditions and solar radiation. In addition, there is a need for urban
weather stations that can assess the urban heat island effect and the real potential of night cooling.
In densely populated cities, there is an overestimation of night cooling effects [37]. Therefore, there is
a need to measure apparent sky temperature and total downward radiant heat flux emitted by the
atmosphere and couple it to the indoor environmental performance assessment.

Existing and future dwellings will face an ever-increasing risk of overheating. Heat exhaustion is a
significant risk during heatwaves because people are exposed to prolonged heat. Extreme heat can affect
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people’s ability to fall asleep, stay asleep, and feel refreshed from sleep. With many non-air-conditioned
office buildings in Belgium, the use of active cooling systems in dwellings might be a counterbalance
necessary to avoid adverse health effects and maintain productivity. In the last century, building
professionals focused on inventing measures to keep Belgian households warm during winter [38].
However, until the need for this century, there will be a remarkably increasing need to keep buildings
fresh during summer in a sustainable way. There is a strong need to encourage passive design such as
solar protection, thermal mass, and ventilative cooling for summer-proof homes in Belgium. We are
aware that the proposed RCP scenarios (RCP2.6, RCP4.5, RCP6, and RCP8.5) will soon become obsolete
as the new ssp585 and ssp454 from CMIP6 project scenarios will replace them [39]. In addition, we are
aware that all future data are projections and not predictions. However, we warn from a surge in
cooling demand that would increase the electricity demand peaks during heatwaves on the Belgian
electricity grid. Besides, comfortable housing means fewer emergency hospital admissions during
heatwaves. The well-being of vulnerable persons during summer heat must be a quality requirement
for housing.

6. Conclusions

This study contributes to quantifying the impact of climate change on annual overheating hours
in newly constructed nZEB. The overheating hours of the 2050 and 2100 scenarios with static and
adaptive thermal comfort models exceed the acceptable upper thresholds of discomfort hours in
residential buildings. For a freestanding residential building model simulated in East of Belgium
under the Passive House Standard comfort model, the worst thermal comfort scenario (by 2050) is
found in living rooms. Overheating hours can reach 1195 h (13.6%) under RCP 8.5. Under the adaptive
comfort model (EN 15251:2018), the number of hours with the indoor operative temperature that
exceeds the upper comfort threshold reaches 400 h (4.5%), 610 h (6.9%), and 850 h (9.7%) under the
RCP 4.5, RCP 6, and RCP 8.5, respectively, in 2050. In 2100, the number of hours with the indoor
operative temperature that exceeds the upper comfort thresholds reaches 675 h (7.7%), 1120 h (12.7%),
and 1395 h (15.9%) under the RCP 4.5, RCP 6, and RCP 8.5, respectively. In 2100, the worst thermal
comfort scenario is found in living rooms, where overheating hours can reach 1489 h (16.9%) under
RCP 8.5. The study findings confirm that overheating in naturally ventilated nZEB cannot be avoided
using passive design measures. Without addressing overheating risks during design, active cooling
might be the most convenient choice for tenants and owners. The consequences will be catastrophic,
resulting in an increase in carbon emissions and hampering the energy transition [10]. Despite the
significant uncertainty of the study findings (−7.3% to +26.8% for the 2050 scenario and −18.9% to
+43.5% for the 2100 climate scenarios), we confirm the remarkable presence of overheating. Future
research should investigate the uncertainties derived from the regional weather file against a local
weather file, taking into account the urban heat island effect. More importantly, there is a need for a
Belgian climate change adaption strategy and plan for the building sector’s energy transition.
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