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Abstract: Automatic peer-to-peer energy trading can be defined as a Markov decision process and
designed using deep reinforcement learning. We consider prosumer as an entity that consumes
and produces electric energy with an energy storage system, and define the prosumer’s objective
as maximizing the profit through participation in peer-to-peer energy trading, similar to that of the
agents in stock trading. In this paper, we propose an automatic peer-to-peer energy trading model
by adopting a deep Q-network-based automatic trading algorithm originally designed for stock
trading. Unlike in stock trading, the assets held by a prosumer may change owing to factors such as
the consumption and generation of energy by the prosumer in addition to the changes from trading
activities. Therefore, we propose a new trading evaluation criterion that considers these factors
by defining profit as the sum of the gains from four components: electricity bill, trading, electric
energy stored in the energy storage system, and virtual loss. For the proposed automatic peer-to-peer
energy trading algorithm, we adopt a long-term delayed reward method that evaluates the delayed
reward that occurs once per month by generating the termination point of an episode at each month
and propose a long short-term delayed reward method that compensates for the issue with the
long-term delayed reward method having only a single evaluation per month. This long short-term
delayed reward method enables effective learning of the monthly long-term trading patterns and the
short-term trading patterns at the same time, leading to a better trading strategy. The experimental
results showed that the long short-term delayed reward method-based energy trading model achieves
higher profits every month both in the progressive and fixed rate systems throughout the year and
that prosumer participating in the trading not only earns profits every month but also reduces loss
from over-generation of electric energy in the case of South Korea. Further experiments with various
progressive rate systems of Japan, Taiwan, and the United States as well as in different prosumer
environments indicate the general applicability of the proposed method.

Keywords: automatic P2P energy trading; Markov decision process; deep reinforcement learning;
deep Q-network; long short-term delayed reward

1. Introduction

In energy markets, the number of prosumers, i.e., the entities that generate and consume electric
energy, has been increasing owing to the proliferation of distributed energy resources (DERs), such as
photovoltaic (PV) systems, owned by traditional energy consumers. Accordingly, the proportion of
microgrids in the power system has been expanding. In response, the incorporation of information
and communication technology into existing power grids is becoming more important, and the
core technologies of smart grid systems such as energy storage systems (ESSs), power conversion
systems, mobility, and energy monitoring systems have advanced dramatically. In addition, studies on
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peer-to-peer (P2P) energy sharing or trading based on these core technologies between prosumers have
been increasing [1–11], among which studies on P2P trading based on reinforcement learning (RL) [12]
are actively being conducted [13–16]. Chen and Su [13] highlighted to the role of energy brokers in
the localized event-driven market (LEM) because small-scale electricity consumers and prosumers
typically take a long time to search for trading partners, and, therefore, pure P2P mode is not suitable.
Nevertheless, these brokers aim to maximize profits in the LEM and determine the optimal action by
using the Q-learning algorithm of RL [13]. In addition, it was suggested that the LEM participation
strategy for energy trading can be modeled as a Markov decision process (MDP) and solved through a
deep Q-network (DQN) [14]. Similarly, Chen and Bu [15] proposed a solution to the decision-making
problem of microgrids in the LEM through a DQN-based P2P energy trading model of deep RL (DRL),
and Liu et al. [16] applied a DQN for autonomous agents in the consumer-centric electricity market.

As such, recent studies on P2P energy trading define the strategy for participating in the trading
as an MDP and apply RL or DRL to find the optimal trading participation strategy. This is because it
is important to choose a reasonable and effective trading strategy in P2P energy trading. Therefore,
the performance of RL, which is responsible for presenting the trading strategy, is very important for
automatic P2P trading. However, most previous works [13–16] only applied RL or DRL to solve the
MDP on energy trading, but did not consider the network modification of RL as they only considered
the characteristics of energy trading to effectively solve it.

We aim to maximize the profits of the prosumer through automatic P2P energy trading, which is
the same as that of stock trading algorithms. Therefore, we use the RL-based automatic trading
algorithm used in stock trading to implement the automatic energy trading model. Our model provides
optimal trading action based on independent prosumer ESS information, electricity generation,
and consumption information for each designated trading time unit. Assuming that there exists a
mechanism for the physical transaction of the P2P energy trading results, we present an implementation
of an RL-based trading model for the automation of P2P energy trading and an effective network
configuration by considering the unique factors of P2P energy trading.

In this paper, we propose a long short-term delayed reward (LSTDR) method that improves the
existing delayed reward method of the RL network. LSTDR is a method that utilizes both short-term
and long-term delayed rewards, enabling effective analysis of the long-and short-term patterns of
trading environment information. To effectively analyze time-dependent information, we use a DQN
based on a long short-term memory (LSTM) as the training model. The proposed method focuses
on maximizing individual prosumer’s profit based on noncooperative game theory [17] without
considering the optimization of the overall benefits of all prosumers, so it is not directly related to
Pareto optimality [18,19]. It does not consider the gain of consumers who do not generate electric
energy either. Nevertheless, individual prosumers can benefit from adopting the proposed trading
strategy at the same time reduce the overall energy generation of the grid which may potentially
benefit consumers as well.

The remainder of this paper is organized as follows. Section 2 discusses the background
information of the global energy market and P2P energy trading based on DRL and the existing
works. Section 3 explains the difference between stock trading and energy trading, discusses the
schemes for the modification of the automatic trading network by considering them, and proposes
a new evaluation criterion for the trading strategy of LSTDR for RL. Section 4 presents the trading
environment and experimental data for the performance evaluation of our proposed model. Section 5
discusses the experimental results. Finally, Section 6 concludes this paper.

2. Background and Related Works

2.1. Global Energy Market

Most countries fall into the category of energy producers which can produce energy from energy
sources such as coal, oil and gas, or from renewable energy sources (RES). Energy produced in each
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country covers each domestic energy demand, and additionally needed or remaining energy after
production is imported or exported to other countries, which activates the global energy markets [20].
In the scenario of the International Energy Agency (IEA)’s “World Energy Outlook 2019 (https://
www.iea.org/reports/world-energy-outlook-2019)”, the demand for primary energy in the global
energy market will continue to increase every year, led by emerging economies such as China and
India, while demand for primary energy will decrease in the developed countries, while the share of
renewable energy will increase gradually for a low carbon emission to cope with the climate change.
In addition, among the energy markets, the demand for electricity in the global electricity market will
show the similar pattern, and the proportion of renewable energy in the supply is expected to increase
significantly. The expansion of supply and demand for renewable energy in the electricity market may
lead to the advancement of renewable energy generation technologies and the spread of supply [21],
and increase the number of prosumers participating in the energy market for small-scale electricity
generation through RES.

Each country provides benefits through various policies to promote electricity consumers to
become prosumers. Most developed countries provide an environment where prosumers can generate
profits by reducing electricity bills by increasing their self-consumption rate through self-generated
electricity, or by selling it [22]. However, since the methods of electricity rate systems applied to
each country are not all the same, even if prosumers in different countries have the same amount
of consumption and generation, their profits can differ. For example, in two different countries
with progressive rate system, if one country has a narrow range of progressive stages and a higher
progressive rate compared to the other, the prosumers included in this country may gain less profits
than those in the other country, even if they have less consumption and more electricity generation.
This is an example of South Korea and the United States. In South Korea, the rate at the first progressive
stage is lower than in the United States, but the progressive range is very narrow compared to the
United States and the rate of increase in progression is much higher, resulting in higher electricity bills
in South Korea compared to the same amount of electricity used in summer. Thus, the strategies of
prosumers participating in trading in the electricity market should vary from country to country.

2.2. Peer-to-Peer Energy Trading

In P2P energy trading, the main agent is the prosumer, who produces and consumes energy and
exchanges with other prosumers for surplus electricity that is overproduced after consumption [23].
Such P2P energy trading takes place in small DERs such as dwellings, factories, schools, and offices [6,7].
Unlike in the indirect trading method of conventional energy trading, where trading is performed
through brokers offering wholesale or bundled services, in P2P energy trading, prosumers can trade
directly with other prosumers (or consumers). Underscoring the strength of P2P energy trading,
Tushar et al. [4] suggested that the development of this type of trading can lead to potential benefits
for prosumers, such as earning profits, reducing electricity bills, and lowering their dependency on the
grid. They also mentioned the importance of modeling the prosumer’s decision-making process, noting
that the system for energy trading requires reasonable modeling of each participant’s decision-making
process that can generate greater benefits for the entire energy network while considering human
factors such as rationality, motivation, and environmental affinity for the trading. Therefore, it is
important for P2P energy trading to set the direction and to model a strategy, and game theory [24]
can be applied to this. Game theory can be divided into two main concepts: noncooperative game
theory [17] and cooperative game theory [25]. In P2P energy trading, a noncooperative game sets
a strategy with the goal of maximizing its own profits without the need to share and collaborate
with other prosumers participating in the trading during the decision-making process. In contrast,
in a cooperative game, for the benefit of all independent prosumers, they become the subject,
share strategies and coordinate their own strategy choices. Therefore, even in the same energy
trading environment, the game theory applied according to the purpose of the prosumer is different.
In this study, we model the trading strategy on the basis of the noncooperative game theory that
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maximizes profits from the individual prosumer’s point of view. Figure 1 compares the structures of
non-P2P energy trading and the P2P energy trading.

(a) (b)

Figure 1. Comparison of the structures of (a) non-P2P energy trading and (b) P2P energy trading.

2.3. Markov Decision Process

The MDP is a discrete time probability control process that mathematically models and analyzes
decision making, and it is designed according to the first-order Markov assumption that the current
state is affected only by the previous state [26]. P2P energy trading is a decision-making problem in
which a decision to participate in a trading can be defined as an MDP in an environment containing
high-dimensional information. The MDP can be defined by the following five elements:

• State Space S: This is the set of states s of the agent, which is the decision maker of a given
environment E. In P2P energy trading, it is the state of the prosumer, which is the agent in a
given trading environment, and includes the environmental information of the prosumer, such as
energy generation, consumption, and energy reserves.

• Action Space A: This is the set of all actions that the agent can select in a given state s. In P2P
energy trading, the set of actions that a prosumer can select in a given state includes the actions
for participating in the trading, such as buy, sell, and hold.

• Reward R: This is the reward that the agent obtains from each action in a given state. Reward is
typically a scalar, and depending on how the condition is set in each state, the reward obtained
by the agent varies. There are two types of rewards: immediate reward, which is rewarded for
the outcome of the next state, and delayed reward, which is rewarded for future results that are
affected by the current behavior [27].

• State Transition Probability Matrix P: State transition probability is the probability of transitioning
from one state to another (or to the same state) and P is the matrix that defines the state transition
probabilities in all states.

• Discount Factor γ: This is an element that plays a role in making the reward value of the future
viewed from the present smaller according to the time distance from the present, considering
that the future behavior is less affected by the present state as it returns with time. It has a value
between 0 and 1.

Finally, a policy π to solve the MDP can be expressed through the above five elements and can be
obtained through dynamic programming [28] or RL. Figure 2 shows the basic process of the MDP.
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Figure 2. Markov decision process.

2.4. Deep Reinforcement Learning

DRL is a method that utilizes deep learning (DL) in RL algorithms [29]. RL algorithms optimize
a policy using various approaches to find the optimal policy for the given goal. Representative
algorithms of RL include SARSA [30], policy gradient [31], and Q-learning [32], and these algorithms
update the main learning parameters using a function approximator to find the optimal policy [33].
DRL optimizes the policy by replacing this function approximator with DL. Accordingly, it is possible
to effectively learn from a huge amount of data, and this has the advantage of improving the learning
performance by applying various DL methods.

2.4.1. Deep Q-Networks

DQN [34] is a DRL algorithm that combines a deep neural network (DNN) with a Q-learning
algorithm of RL. For Q-learning, a policy is recorded in the Q-table so that it can output the optimal
action in each state of the agent [32]. However, this tabular recording of policy requires more memory
as the amount of data increases or the dimension of the data increases. To solve this problem, function
approximator is used to define the Q-function through parameters other than the table. The DQN
uses the DNN as the function approximator [34] and applies the experience replay method to improve
the data learning efficiency. To reduce the inefficiency of learning due to the correlation of adjacent
learning data, the experience replay method stores the information about the agent’s actions and the
resulting state changes and rewards as a tuple-type transition in a buffer called replay memory and
uses it for sampling during training. Therefore, it is possible to prevent a situation that falls into a local
minimum by randomly selecting and using the transitions obtained in various environments during
training. Algorithm 1 shows the overall algorithm structure of DQN proposed in [34].

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function Q with random weights
for episode = 1, M do

Initialise sequence s1 = {x1} and preprocessed sequence φ1 = φ(s1)
for t = 1, T do

With probability ε select a random action at
otherwise select at = maxa Q ∗ (φ(st), a; θ)
Execute action at in the emulator and observe reward rt and input xt+1
Set st+1 = st, at, xt+1 and preprocess φt+1 = φ(st+1)
Store transition (φt, at, rt, φt+1) in D
Sample a random minibatch of transitions (φj, aj, rj, φj+1) from D

Set yj =

rj for terminal φj+1

rj + γ maxa0 Q(φj+1, a0; θ) for non-terminal φj+1

Perform a gradient descent step on (yj −Q(φj, aj; θ))2

end for
end for
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2.4.2. Long Short-Term Memory

LSTM is a recurrent neural network (RNN) model in DL; it is effective for analyzing time-series
data and is used for solving the gradient vanishing problem that occurs in vanilla RNN [35]. LSTM has
a structure in which one memory cell ct and three gates (i.e., input gate it, forget gate ft, and output
gate ot, all at time t) that control the information flow are added to the vanilla RNN structure, so that
long-term information can be effectively handled. Each gate operates in a different role [36]. The input
gate determines how much the current information is reflected and stored in the memory cell, and the
forget gate determines how much past information is forgotten and transferred to the memory cell.
The output gate determines how much information is reflected and outputs the information currently
stored in the memory cell. The operation of these gates is determined by an activation function σ

(typically sigmoid or hyperbolic tangent) in each state. In this way, it is possible to effectively deal
with time-series information because the information is updated by determining the importance and
association of the information over time at each gate. The overall operating structure of LSTM can be
expressed by the following equations [35]:

it = σg(wixt + Uiht−1 + bi), (1a)

ft = σg(w f xt + U f ht−1 + b f ), (1b)

ot = σg(woxt + Uoht−1 + bo), (1c)

ct = ft ◦ ct−1 + it ◦ σc(wcxt + Ucht−1 + bc), (1d)

ht = ot ◦ σh(ct). (1e)

For the input sequence x = {x1, x2, x3, ..., xT} in Equation (1), xt represents the input at time t; Ui, U f ,
Uo, Uc, wi, w f , wo and wc are the weight matrices; and bi, b f , bo, and bc are the bias vectors, all of which
are the parameters that are updated during training. Finally, ct and hidden layer output ht, which is
the information transmitted to the next state, are calculated through the Hadamard product (◦), which
is the element-wise product of the output of each gate and information ct−1 and ht−1 transmitted from
the previous state. Figure 3 shows the architecture of LSTM.

Figure 3. Architecture of LSTM.

3. Proposed Approach

Stock trading is the buying and selling of stocks. It is a nonphysical type of trading as there
is no exchange of physical products. In stock trading, the agents participating in the trading aim
to maximize their gains through trading at the optimum time using the market price of stocks that
fluctuate in real time. Accordingly, whether or not the agents will participate in the trading mostly
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depends on the market price of the stock. Figure 4 shows the algorithm of automatic stock trading
based on DRL.

Figure 4. Stock trading algorithm based on deep reinforcement learning.

Unlike stock trading, energy trading has additional factors that affect the trading conditions.
First, the electricity subject to energy trading can be generated and consumed by the prosumers;
therefore, its reserves can change in real time even when they are not traded, unlike stocks whose
reserves change only by trading. Therefore, it is necessary to redefine the evaluation criterion of energy
trading to make it different from that of stock trading, which uses the portfolio of the sum of only
the currency values of the assets held. Second, unlike stocks, which are virtually traded, electricity
is physically traded, and, therefore, there is a trading time until a trading is made and terminated.
Third, when electricity is charged or discharged, losses occur depending on the ESS efficiency, and,
therefore, the actual trading result will be different from the initial trading volume. Considering these,
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we propose strategies for designing a model suitable for automatic P2P energy trading. The automatic
energy trading model adopts the existing automatic stock trading algorithm and modifies it to match
the specifics of energy trading.

3.1. Definition of the P2P Energy Trading Evaluation Criterion

The electricity reserves in the ESS resulting from the energy generation and consumption of
prosumer constantly change even if there is no trading, and the energy trading determines the trading
action according to the reserves in the ESS changed by the previous trading, consumption, or generation.
Therefore, if the currency value of the assets held in stock trading is used as an evaluation criterion of
the trading, it is impossible to accurately evaluate the trading results owing to the changes in energy
generation and consumption. Therefore, we define an evaluation criterion as the sum of the gains from
participating in P2P energy trading compared with not participating in it.

The total profit from participating in the P2P energy trading proposed in this paper is defined
as the sum of four gains. The first gain is the change in the electricity bill. When energy trading is
completed, since the result of the trading changes the amount of electricity held in the ESS, the amount
of electricity available to the prosumer in the ESS is changed, and the amount of electricity supply
used is also changed accordingly. For example, if the amount of electricity held in the ESS is less than
the amount consumed, the electricity bill can be reduced by purchasing electricity through P2P energy
trading rather than through the supply electricity. Conversely, while the amount of electricity held in
the ESS is greater than the amount consumed, selling through P2P energy trading can result in profit,
although it may involve the use of supply electricity, which may increase the electricity bill. Therefore,
if only the gain from the trading is considered without the electricity bill, there may be a situation
in which additional electricity bills are paid more than the gain from the trading, resulting in loss.
The gain from the change in electricity bill can be expressed as follows:

Gbill(Sp(t)) = Bo(So(t))− Bp(Sp(t)), (2)

where t = 1, 2, 3, . . . , T; Bo(So(t)) is the electricity bill paid by the prosumer who does not participate
in P2P energy trading in state So(t) and Bp(Sp(t)) is the electricity bill paid by the prosumer who
participates in P2P energy trading in state Sp(t). In both situations, the difference in electricity bills is
Gbill(Sp(t)), which is the gain from the change in the electricity bill for participating in energy trading,
where t is the number of states that have elapsed from the start of the electricity bill calculation to
the hour-by-hour period, and T is the total number of states from the time the final electricity bill is
calculated. We assume that the time before the trading is established, the electricity is transferred,
and the ESS is completely charged/dischargid is within 1 h, thereby setting the trading participation
decision interval to 1 h. Therefore, t increases in units of 1 h. The second gain is the trading gain from
P2P energy trading. When a prosumer participates in a P2P electricity trading, the prosumer takes one
of three actions: buying, selling, and nonparticipation, and the prosumer’s assets change as a result of
the trading. The amount of change in these assets is equal to the gain achieved only through trading,
and it can be defined as

0 ≤ Qb(Sp(t)) ≤ 1/η · Emax, (3a)

0 ≤ Qs(Sp(t)) ≤ η · Emax, (3b)

Mb(Sp(t)) = (1 + ξ) · (P(Sp(t)) ·Qb(Sp(t))), (3c)

Ms(Sp(t)) = (1− ξ) · (P(Sp(t)) ·Qs(Sp(t))), (3d)

Mtrade(Sp(t)) =
t

∑
k=1

Ms(Sp(k))−
t

∑
k=1

Mb(Sp(k)), (3e)

Gtrade(Sp(t)) = Mtrade(Sp(t))−Mtrade(So(t)), (3f)
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Gtrade(Sp(t)) = Mtrade(Sp(t)), (3g)

where Emax represents the maximum storage capacity of the ESS, and η represents the efficiency
of the ESS. Qb(Sp(t)) and Qs(Sp(t)) represent the trading purchase and sale volume, respectively,
and P(Sp(t)) represents the trading price. Mb(Sp(t)) and Ms(Sp(t)) represent the cost spent on
purchases and the profits from sales, respectively. At this time, ξ represents the trading fee.
Mtrade(So(t)) and Mtrade(Sp(t)), which are the total amount of asset changes through trading,
are calculated as the difference between the total amount of revenue and the expenditure up to
t. When the prosumer does not participate in P2P trading, the asset changes through trading
Mtrade(So(t)) are zero, and, therefore, the gain from the P2P energy trading Gtrade(Sp(t)) is equal
to Mtrade(Sp(t)). Since the trading is based on the ESS, the amount of electricity that can be traded is
limited. Therefore, the trading volume should consider the amount of electricity held in the ESS or the
remaining storage capacity of the ESS, and it cannot exceed the maximum ESS capacity. In addition,
trading fees may also be considered in P2P energy trading, which should be further considered in the
settlement of trading costs. The third gain is for virtual losses from over-generation. If electricity is
generated while the electricity in the ESS is fully charged, the generated electricity cannot be stored in
the ESS, resulting in losses. However, this can be prevented through the sales from P2P energy trading
before these losses occur. Therefore, it is possible to perform an efficient trading action considering the
electricity generation by the prosumer and the losses from over-generation depending on whether or
not P2P energy trading is involved. The gain on virtual losses from over-generation can be expressed
as follows:

Vgain(Sp(t)) = η · (Lo(So(t))− Lp(Sp(t))) · P(Sp(t)), (4a)

Gvirtual(Sp(t)) =
t

∑
k=1

Vgain(Sp(k)), (4b)

where Lo(So(t)) and Lp(Sp(t)) are the amount of electricity loss from over-generation, and Vgain(Sp(t))
is the instantaneous gain on the currency value of the virtual loss in state Sp(t). Gvirtual(Sp(t)) is the
cumulative gain from reducing over-generation. Setting up a trading strategy in such a way as to
reduce losses from over-generation not only can reduce the losses of prosumers but also can have the
effect of reducing the total amount of supply electricity on the power system. The fourth gain is the
change in the currency value of the amount of electricity held in the ESS. The electricity held in the ESS
is the result of consumption, generation, and trading, and it includes the result of the changes due to
the trading actions. The gain from the change in the currency value of the amount of electricity in the
ESS can be expressed as follows:

Cg(So,p(t)) = η · Generation, (5a)

Dc(So,p(t)) = −1/η · Consumption, (5b)

Cb(Sp(t)) = η ·Qb(Sp(t)), (5c)

Ds(Sp(t)) = −1/η ·Qs(Sp(t)), (5d)

E(So(t)) = E(So(t− 1)) + Cg(So(t)) + Dc(So(t)), (5e)

E(Sp(t)) = E(Sp(t− 1)) + Cg(Sp(t)) + Dc(Sp(t)) + Cb(Sp(t− 1)) + Ds(Sp(t− 1)), (5f)

Gess(Sp(t)) = η · (E(Sp(t))− E(So(t))) · P(Sp(t)), (5g)

where Cg(So,p(t)) and Dc(So,p(t)) respectively represent the amount of ESS charged and discharged
owing to the generation and consumption of the prosumer from state So,p(t) to state So,p(t − 1).
Moreover, Cb(Sp(t)) and Ds(Sp(t)) respectively represent the amount of electricity charged and
discharged by the prosumer through P2P energy trading. E(So(t)) and E(Sp(t)) represent the amount
of electricity in the ESS. In addition, because the effect (charge or discharge) of the trading result in state
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Sp(t− 1) is not immediately apparent but is shown in the next state Sp(t), the amount of electricity in
the ESS E(Sp(t)) after the prosumer’s P2P energy trading utilizes the trading volume in the previous
state Sp(t− 1) rather than the current trading volume in state Sp(t). Gess(Sp(t)) represents the gain
from the currency value of the electricity held in the ESS. Finally, the profit G(Sp(t)) for participating in
P2P energy trading, which has been redefined as the trading evaluation criterion, is defined as follows:

G(Sp(t)) = Gbill(Sp(t)) + Gtrade(Sp(t)) + Gess(Sp(t)) + Gvirtual(Sp(t)). (6)

3.2. Long Short-Term Delayed Reward

MDPs that have a continuous environment such as automatic trading do not have exact
termination points, unlike MDPs that have an episode’s termination point, such as mazes, Atari games,
and CartPoles [37]. Therefore, in the case of the existing RL-based stock trading [38], the RL structure
is designed to generate the termination points of learning by providing a delayed reward [27] when
a certain amount of portfolio gain or loss is achieved during the trading. However, we considered
various external factors affecting energy trading when defining the evaluation criterion for energy
trading in Section 3.1 and utilized the gain from electricity bills. The electricity bill is set according to
the amount of electricity used each month. Accordingly, we aimed to determine the monthly gains,
and, for this purpose, we set the time that the delayed reward is the output of automatic energy trading
at the end of the period when the electricity price is set so that the termination point of the episode
is generated every month. Similarly, most of the papers on energy trading set the trading strategy
by designating a certain size (period) for an episode [13,14,39,40], and the policy is updated by using
the immediate rewards that occur in every state in episode and the delayed reward generated at the
termination point of the episode. The delayed reward value only determines the end point of the
episode to proceed with the policy update, but is not directly used for policy update. The policy update
reflects the impact on the future by applying a discount factor to each of the immediate rewards from
the current state to the state in which the delayed reward occurred.

Such a one-month delayed reward assignment, however, can make learning difficult for short-term
patterns that occur within a month. To compensate for this, we design an additional delayed reward
to include the case when an increase or decrease in the profit that we defined occurs above a certain
threshold as in the stock trading method. At this time, the delayed reward is not provided whenever
an increase or decrease occurs above a certain threshold, such as in stock trading, but is added to
the final delayed reward by utilizing the number of occurrences of the increase or decrease within
a month. Finally, the delayed reward information is utilized when deciding on the action in each
state to ensure that the outcome of a month’s trading affects the learning direction in the training.
For this, the obtained delayed reward is added to the Q-function updated through the neural network.
By applying the delayed reward method of stock trading to energy trading, we enable the DNN in
RL at the beginning of the learning to focus on very short-term patterns (because of the generation
of batch data based on the delayed reward that occurs every short period of time) and then to find
that the monthly pattern is important while finding the overall training direction only after a great
deal of training has progressed. However, to do it, we can set the monthly term as a unit of training
(which results in a delayed reward every month) so that we can train from the beginning of the training
in a way that fits our goals. In addition, the ratio of the profit and the number of trades was utilized to
add to the final delayed reward. By doing so, when delayed reward occurs owing to a profit above a
threshold, we can direct the trading model to effectively maximize the profit while giving a higher
score continuously to a situation where more gain is obtained instead of the same delayed reward
score. Therefore, we propose an LSTDR method for delayed reward by considering long-term patterns
of 1 month and short-term patterns in the long-term. Figure 5 shows the structure of the proposed
automatic P2P energy trading scheme. Algorithm 2 shows the overall algorithm structure for the
energy trading with LSTDR method.
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Algorithm 2 Energy trading with the LSTDR method

Initialize replay memory D to capacity N
Initialize action-value function Q with random weights
for epoch = 1, M do

Initialise sequence s1 = {x1} and preprocessed sequence φ1 = φ(s1)
Initialize Gtotal (total gain) to zero and Gbase (base gain) to non-zero
Initialize Cs (count value for the occurrence of non-zero Rs (short-term delayed reward)) to zero
Initialize Ss (cumulative value of Rs) to zero
Initialize Pm (cumulative value of the unit trading price) to zero
Initialize Ntrade (number of times prosumer participated in the trading) to zero
Initialize Ns (count value for the number of states in a month) to zero
Set gs (threshold value of the short-term profit) to user’s desired value (we set it to 0.2)
Set gm (threshold value of the monthly profit) to user’s desired value (we set it to 0.25)
for t = time of the first training data, time of the last training data do

Ns+ = 1
With probability ε select a random action at
otherwise select at = maxa Q∗(φ(st), a; θ)
Execute action at in the emulator and observe immediate reward rt and environment xt+1
Set st+1 = st, at, xt+1 and preprocess φt+1 = φ(st+1)
Store transition (φt, at, rt, φt+1) in D
Update Gtotal with Gbill , Gtrade, Gess and Gvirtual
Update Bo (prosumer’s current electricity bill when not participating in the P2P trading)
Update Pm and Ntrade
if Gbase is equal to or greater than zero then

if Gtotal is equal to or greater than (1 + gs) · Gbase then Rs is 1
else if Gtotal is greater than (1− gs) · Gbase and less than (1 + gs) · Gbase then Rs is 0
elseRs is -1
end if

else
if Gtotal is equal to or greater than (1− gs) · Gbase then Rs is 1
else if Gtotal is greater than (1 + gs) · Gbase and less than (1− gs) · Gbase then Rs is 0
elseRs is -1
end if

end if
Ss+ = Rs
if Rs is not zero then Cs+ = 1 and Gbase = Gtotal
end if
if t is the end of the month then

Ra = ((Gtotal − Gvirtual)/Ntrade) · (Ns/Pm)
if (Gtotal − Gvirtual) is equal to or greater than Bo · gm then

Rl (long-term delayed reward) is Ra + 1
else if (Gtotal − Gvirtual) is greater than zero and less than Bo · gm then Rl is Ra
elseRl is Ra − 1
end if
Rtotal is α · Rl + (1− α) · (Ss/Cs) (α is a weight factor between 0 and 1)
Initialize Gtotal , Gbase, Cs, Ss, Pm, Ns, Ntrade

elseRtotal is zero
end if
if Rtotal is non-zero then

Sample a random minibatch of transitions (φj, aj, rj, φj+1) from D

Set yj =

rj + Rtotal for terminal φj+1

rj + γ maxa0 Q(φj+1, a0; θ) + Rtotal for non-terminal φj+1

Perform a gradient descent step on (yj −Q(φj, aj; θ))2

end if
end for

end for
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Figure 5. Energy trading algorithm based on LSTDR.

4. Experiments

In our work, we defined the trading environment for the evaluation of the proposed P2P automatic
energy trading model and generated the experimental data accordingly. The experiment was conducted
under the assumption that P2P energy trading exists in South Korea, and the public data in South Korea
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were utilized for the data generation. In the experiment, we verified the validity of the proposed LSTDR
method and confirmed the profit that the prosumer would gain by participating in the trading through
the proposed P2P automatic energy trading model. In the first experiment, we compared the results
of three delayed reward methods: the short-term delayed reward (STDR) method [27], which is a
delayed reward method used in stock trading; long-term delayed reward (LTDR) method [13,14,39,40],
which generates a termination point every month to provide delayed reward at that time; and the
LSTDR method, which utilizes both of these methods and is the one proposed in this paper. The second
experiment compared the prosumers who did and did not participate in the trading to confirm the
benefits of participating in P2P energy trading. In the last set of experiments, we confirmed whether
the proposed P2P energy trading model is applicable to the various electricity rate system in other
countries as well as the changes in the energy consumption and generation of the prosumers.

4.1. Definition of the Trading Environment

For the creation of the datasets and the conduct of the experiments, we first assumed that P2P
energy trading exists in South Korea and prosumer was defined as a three- to four-person household
whose electricity bill is set at the end of each month in the progressive rate system. Table 1 shows the
information on the progressive rate system applied to the household.

Table 1. Information on the progressive rate system applied to the household.

Season Consumption (kWh) Basic Rate (USD) Progressive Rate (USD/kWh)

0–300 0.78 0.08
Summer (July, August) 301–450 1.37 0.16

451– 6.23 0.24

0–200 0.78 0.18
Others 201–400 1.37 0.24

401– 6.23 0.28

In addition, it is assumed that the general household, which is a prosumer, has an ESS and can
obtain information such as electricity generation and consumption in real time through a smart meter
and the amount of electricity held in the ESS. As an external requirement, it is assumed that the
distribution lines with other prosumers are connected in advance, so that there is no need to perform a
follow-up work after the trading is completed, and that the full charging or discharging of electricity
in the ESS is assumed to occur within 1 h after the trading is completed. The environmental factors
and setup information based on these assumptions are listed in Table 2.

Table 2. Setup for the trading environment.

Environmental Factor Setup Information

Country South Korea
Prosumer Three- to four-person household

Electricity bill Progressive rate system
Generation method PV system
Generator capacity 3 kW

Average daily consumption Less than 10 kWh
Smart meter Installed

ESS Installed
ESS storage capacity 8 kWh
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4.2. Definition of the Dataset

We generated a dataset according to the assumptions made in Section 4.1, and the generated
dataset contains three types of information. The first information is time information. Time information
is represented as month, day, and hour in three channels, all in integer form. Table 3 shows the
definition of time information in the dataset.

Table 3. Definition of time information in the dataset.

Time Information Definition Range

Month information
Month information of the date, expressed as an integer
starting from January to December. 1–12

Day information
Day of the week information of the date, expressed as an
integer starting from Monday to Sunday. 1–7

Hour information
Hour information of the date, expressed as an integer in
hours from 00:00 (midnight) to 23:00 hours (11:00 pm). 0–23

As described above, by providing the time information on a daily basis, we enable the neural
network in RL to effectively learn the pattern information depending on the time of day in a trading
environment. The second information is weather information because electricity generation and
consumption are sensitive to weather conditions. Therefore, by using weather information, we could
effectively predict the generation and consumption of prosumer, and to make trading decisions
by considering this information. We used 21 types of weather information provided by the Korea
Meteorological Administration (KMA) (https://data.kma.go.kr/data/grnd/selectAsosRltmList.do?
pgmNo=36) on an hourly basis. Therefore, the weather information in the dataset consists of
21 parameters as listed in Table 4.

Table 4. Definition of weather information in the dataset.

Factor Unit Factor Unit

Temperature ◦C Wind direction ◦

Wind speed m/s Precipitation mm
Humidity % Vapor pressure hPa
Dew point ◦C Local atmospheric pressure hPa

Sea-level pressure hPa Sunshine duration h
Solar radiation MJ/m2 Snowfall cm

Total Cloud 10 quantiles Low-middle level cloud 10 quantiles
Height of lowest cloud 100 m Visibility 10 m
Ground temperature ◦C (5 cm) Underground temperature ◦C

(10 cm) Underground temperature ◦C (20 cm) Underground temperature ◦C
(30 cm) Underground temperature ◦C

The final information is prosumer information, which consists of two dimension of prosumer
electricity generation and consumption. We previously defined a prosumer as a general three- to
four-person household and set it up to generate electricity only through a PV system. Based on this,
the KMA’s sunshine duration information was utilized to generate the virtual information for the
electricity generation by the prosumer. In addition, demand forecast data for domestic pricing plans
and average monthly electricity usage information for three- to four-person households were utilized
to generate information on the virtual electricity consumption of the prosumer. Figure 6 shows the
data for the generated virtual electricity consumption and generation.

https://data.kma.go.kr/data/grnd/selectAsosRltmList.do?pgmNo=36
https://data.kma.go.kr/data/grnd/selectAsosRltmList.do?pgmNo=36
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(a)

(b)

Figure 6. Generated data for electricity consumption and generation of a three- to four-person
household: (a) consumption and (b) generation.

In addition, we used the electricity bill rate and the demand forecast data for the domestic pricing
generation plan to generate the prosumer’s desired trading price information in proportion to the
electricity demand, and the generated data are shown in Figure 7.

Figure 7. Generated data for the desired trading price of the prosumer.

As a result, the generated dataset consists of a total of 27 dimension, and we generated data for a
total of 3 years from 2016 to 2018. Among them, the data for 2016 and 2017 were used for the training
and those for 2018 were used for the testing.
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4.3. Hyperparameters for Learning

In DRL, hyperparameters are the factors that affect the operation of various algorithms in the
model; thus, they greatly affect the model performance. The hyperparameters in DQN we used as a
trading model can be divided into hyperparameters for RL and those for DL, and our hyperparameter
settings are shown in Table 5.

Table 5. Hyperparameter settings.

Algorithm Hyperparameter Value Explanation

DL

Learning rate 0.0001

The value that affects the optimization speed of the DL
model during training. It determines the degree of update
of the parameter in the process of reaching the optimal
point for the learning goal.

Hidden layer size 256
The number of nodes in the hidden layer in the DL model.
The input data of the hidden layer is expressed as a new
feature value for each node.

Optimizer Adam
Parameter optimization model. It allows parameters to
be updated in a direction that matches the goal during
training.

Epoch 200
A unit of learning in which all data from the training
dataset are used.

RL

Replay memory size 8760
The number of transitions that can be stored in DQN’s
replay memory. The number of states is equivalent to
one year (24× 365).

Epsilon 0.5

The probability of random exploration in the decision of
action. It enables the exploration of various environments
so that they can learn strongly about environmental
changes. The epsilon value decreases as the epoch
increases in the training of DL.

Discount factor 0.99
The value that reflects the degree of future impact on the
reward.

4.4. Experiment Environment

We used TensorFlow and Keras as the DRL framework for the experiment and a workstation with
a high-performance GPU. The details are as follows:

• CPU: Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz (32 cores)
• GPU: Tesla V100
• OS: Ubuntu 16.04.5 LTS
• TensorFlow Version : 1.14.0
• Keras Version : 2.3.1

5. Results and Discussion

5.1. Validation of the Proposed Delayed Reward Method

In Section 3.2, we presented the difficulty of applying the STDR method used in stock trading
as a delayed reward method for the energy trading model and the approaches to compensate for it.
To verify the effectiveness of the proposed method, we compared the results by applying the following
methods to each trading model: the STDR method; the LTDR method, which is a delayed reward
method that considers the electricity bills; and the LSTDR method, which complements the LTDR
method, as the latter cannot learn short-term patterns well. This experiment utilized the contents and
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dataset defined in Section 4. Figure 8 shows the patterns of the monthly profit change for each delayed
reward method.

(a)

(b)

(c)

Figure 8. Comparison of the patterns of the monthly profit change according to the delayed reward
method: (a) STDR, (b) LTDR, and (c) LSTDR.
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Figure 8a shows the change in profit for monthly trading when STDR is used as a delayed reward
method. The change in monthly profit generally shows a pattern of steady increase. This is because
there is no designated termination point of a episode, and when a profit change over a certain threshold
occurs, the episode can be terminated to learn various short-term patterns. However, because there is
no designated termination point of a episode, if the model is not well trained for short-term patterns
through sufficient exploration, it may not generate profits every month. The results showed that
most, but not all, of the months have high profits. On the contrary, in Figure 8b, which is the result
of using the LTDR method, it can be seen that profits are generated in all months, but are much less
than those of the STDR method. This can generate a profit for each month because the LTDR method
generates the termination point for an episode every month; however, it is difficult to learn short-term
patterns because delayed reward occurs once a month. Therefore, it can be seen that the model has not
been trained in the direction of steadily increasing profit. Figure 8c shows the result of solving the
problems in the previous two delayed reward methods and of achieving a higher profit every month.
Therefore, it is concluded that a more effective energy trading model can be generated through LSTDR,
which scores the number of STDRs occurring within a month and reflects them in the results of the
LTDR method.

5.2. Comparison of Gains from Participating in P2P Energy Trading

We defined profit in Section 3.1 as a criterion for evaluating the trading results by including
various gains. In this section, the gains of participating in P2P energy trading are identified and the
resulting profit is finally identified. The experiment was conducted using the content and dataset
defined in Section 4 based on the proposed LSTDR energy trading model. Figure 9 shows a comparison
of the electricity bills of a consumer who does not generate and consumes only, a non-trading prosumer
who does not participate in the trading, and a trading prosumer who participates in the trading.

Figure 9. Monthly electricity bills.

Figure 9 shows the result of the prosumer’s participation in P2P energy trading, where it
pays additional electricity bills. This is because if the prosumer does not participate in the trading,
most consumption can be covered by the electricity stored in the ESS after the electricity generation;
however, if it participates in the trading and sells it, the number of situations in which the consumption
cannot be covered through electricity in the ESS increases and, therefore, the amount of supply
electricity used increases. The reason for this trading strategy is that the trading price is higher
than the supply electricity price. In the generation of the experimental dataset, we did not generate
the prosumer’s trading price separately for the purchase and sales, but, instead, we generated it as
one trading price in proportion to the electricity demand. The trading price generated in this way
is higher than the first-stage rate of the progressive rate and is lower than the second-stage rate.
Therefore, the prosumer tends to maximize gains by selling electricity in the ESS and using cheap
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supply electricity when the first-stage rate is applied. In response, when the prosumer participates in
the trading, it shows the result of using the supply electricity in a way that does not go beyond the
first stage of the progressive rate in every month.

We assumed that the prosumer sets the average daily consumption below 10 kWh and uses a
PV system with a capacity of 3 kW. Therefore, daily electricity generation is larger than consumption.
However, the ESS’s capacity is set at 8 kWh, resulting in lost electricity from over-generation. For this
situation, we mentioned that P2P energy trading can reduce the amount of electricity lost from
over-generation, and the experimental results to confirm this are shown in Figure 10.

Figure 10. Currency value of the monthly virtual loss from over-generation.

Figure 10 shows the currency value of the monthly virtual loss arising from over-generation.
If the prosumer does not trade in the over-generation condition, it loses a large amount of virtual
losses per month. However, by participating in the trading, the prosumer can sell the electricity that
is over-generated, and, therefore, electricity that is lost can be minimized. In addition, although this
study has set the goal of generating a trading strategy for its own gains, the sale of electricity through
energy trading may also result in further reduction of the use of electricity in the power grid. In this
experiment, it was shown that it is possible to avoid the situation of over-generation through trading,
thus showing no virtual loss every month.

We identified four gains that we defined to obtain a profit for participating in energy trading.
Figure 11 shows the monthly gains of the prosumer by participating in energy trading.

As shown in Figure 11, prosumer tends to be more profitable when participating in P2P energy
trading, although they must pay a higher monthly electricity bill; despite the latter, there are many
gains from trading and a reduced virtual loss. In fact, the result of the gain on virtual loss is implied
in the trading gain. This is because it has gained from the trading in as much as there was no loss.
Therefore, when considering the profit to be earned at the end of each month, we do not need to
additionally consider the gain on virtual loss. Figure 12 shows the monthly profit that the prosumer
ultimately earns by participating in P2P energy trading.
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Figure 11. Monthly gains of the prosumer by participating in energy trading.

Figure 12. Monthly profit of the prosumer by participating in energy trading.

In Figure 12, total profit shows the profit including the gain on virtual loss and real profit shows
the profit actually gained by prosumer as the sum of other gains except the gain on virtual loss.
Prosumer has shown positive results for both profits by participating in P2P energy trading, and most
profits have been obtained by selling lost electricity that cannot be stored after generation because the
ESS capacity is fully charged.

5.3. Comparison of Various Rate Systems

We applied the proposed model to various rate systems based on the prosumer’s trading
environment defined in Section 4.1. First, South Korea does not adopt a fixed rate system, but in order
to compare it with the progressive system applied in the previous experiment, the situation of the
fixed rate system was defined and the results were confirmed. The rate of the fixed rate system was set
to a value higher than the first-stage rate of the progressive system and lower than the second-stage
rate, and Figure 13 shows the monthly total profits of the progressive and fixed rate system in the same
trading environment.
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(a)

(b)

Figure 13. Monthly total profits comparison of (a) progressive rate system and (b) fixed rate system.

As shown in Figure 13, the patterns of the total monthly profits for the progressive and fixed rate
systems are very similar, with the former being higher than the latter. This is because when the amount
of generation is greater than the amount of consumption, the progressive rate does not change, and the
progressive system is applied like a fixed rate system. However, it can be seen that the first-stage rate
of the progressive system is lower than that of the fixed rate system, so that more profits are obtained.

Secondly, by applying the compositions of the progressive systems of other countries to the rate
system, the monthly total profits were compared. We used the progressive rates of the United States,
Taiwan, and Japan provided by Korea Electric Power Corporation (KEPCO) (http://cyber.kepco.co.
kr/ckepco/front/jsp/CY/H/C/CYHCHP00302.jsp) to the experiment, which is shown in Table 6.
Figure 14 shows the comparison of monthly total gains for each country and Figure 15 shows the
pattern of changes in total monthly gains for each country.

http://cyber.kepco.co.kr/ckepco/front/jsp/CY/H/C/CYHCHP00302.jsp
http://cyber.kepco.co.kr/ckepco/front/jsp/CY/H/C/CYHCHP00302.jsp
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Table 6. Information on the progressive rate system applied to the household in each country.

Country Season Consumption (kWh) Progressive Rate (USD/kWh)

USA All 0–1000 0.0915
1001– 0.1002

Taiwan

0–120 0.072
121–330 0.10

Summer 331–500 0.15
(June–September) 501–700 0.19

701–1000 0.21
1001– 0.23

Others

0–120 0.072
121–330 0.092
331–500 0.12
501–700 0.15
701–1000 0.17

1001– 0.18

Japan All
0–120 0.18

121–300 0.24
301– 0.28

Figure 14. Monthly profit of the prosumer by participating in energy trading.

(a)

Figure 15. Cont.
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(b)

(c)

(d)

Figure 15. Monthly total profits comparison of (a) South Korea, (b) Japan, (c) Taiwan, and (d) USA.

As shown in Figure 14, proposed model was able to gain monthly profits even when applied to
rate systems in various countries. Also, as shown in Figure 15, almost similar trading strategies are
being created for prosumers with the same trading environment, because the progressive rate of all
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countries is fixed at the first-stage due to the amount of generation more than consumption. In this
regard, in order to effectively confirm the trading strategy that changes according to the composition
of the progressive rate system, we doubled the consumption of prosumers and changed the PV power
generation capacity from 3 kWh to 750 Wh, so that progressive rate changes can occur well. Figure 16
shows the patterns of monthly total profits for the changed energy consumption and generation of
the prosumer.

(a)

(b)

(c)

Figure 16. Cont.
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(d)

Figure 16. Monthly total profits comparison of (a) South Korea, (b) Japan, (c) Taiwan, and (d) USA.

As shown in Figure 16, it can be seen that different trading strategies are created according to the
change of the trading environment to maximize profits. In this experiment, higher progressive rate
is applied in countries other than the United States because of the higher consumption. As a result,
even if most prosumers take loss in advance, they purchase electricity through tradings, and later
benefit from staying in the lower bracket of the progressive rate of the billing system. This indicates
that the proposed model is capable of creating different trading strategies for each country owing to
the different progressive rate compositions. These results indicate that the proposed model can be
applied well to various trading environments.

6. Conclusions

In this paper, we proposed an LSTM-based DQN model with the LSTDR method as an effective
automatic P2P energy trading model; we also proposed a new evaluation criterion that can effectively
learn the long-term and short-term patterns of the trading environment. We set the goal of a
noncooperative game theory-based trading strategy that maximizes the prosumer’s profit through
participation in P2P trading. The profit is defined as the sum of four gains, and each gain is obtained
by comparing the case where the prosumer does not participate with the case where the prosumer
participates in the trading.

A comparative experiment was conducted with the STDR method, which is a delayed reward
method used in stock trading, and the LTDR method, which can learn a specific long-term patterns
of information by designating the termination point of the episode. By using the proposed LSTDR
method, we were able to solve the problem of the STDR method, which does not obtain the profit
every month, and the issue with the LTDR method, which can obtain a profit every month but not a
large amount of it.

We set up a virtual energy trading environment by designating a three- to four-person household
in South Korea that generates electricity through a PV system as a prosumer, and we conducted
experiments using the LSTDR method-based energy trading model. In the experiment, we confirmed
each of the gains we defined and finally confirmed the profits that prosumer would earn by
participating in P2P energy trading. The proposed trading strategy tended to generate trading
gains through continuous sales, without deviating from the progressive rate of the electricity bill that
is cheaper than the trading price, resulting in losses due to the payment of additional charges for
the electricity bill gain. Nevertheless, it was able to achieve the highest trading gain. In addition,
by trading, the prosumer could reduce the amount of electricity lost from over-generation. The same
trend can also be found with the fixed rate system. Finally, the prosumer was able to earn a profit
every month, showing that it can benefit from participating in P2P energy trading.
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Further experiments with different progressive rate systems in Japan, Taiwan and the United
States as well as the changes of the energy consumption and generation of the prosumers indicate the
general applicability of the proposed method. However, prosumers may belong to a variety of trading
environments other than the rate systems, and may participate in trading for different purposes. In the
future, we plan to build a trading environment that is closer to a real-world by considering the situation
of various prosumers and enabling trading between prosumers through trading matching.
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