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Abstract: Various challenges are acknowledged in practical cases with high wind power penetration.
Fault ride-through (FRT) capability has become the most dominant grid integration requirements
for the wind energy conversion system worldwide. The high voltage ride-through (HVRT) and
low voltage ride-through (LVRT) performance play a vital role in the grid-friendly integration into
the system. In this paper, a coordinated HVRT and LVRT control strategy is proposed to enhance
the FRT capability of the permanent magnet synchronous generator (PMSG)-based wind turbine
generators (WTG). A dual-mode chopper protection is developed to avoid DC-link overvoltage, and a
deadband protection is proposed to prevent oscillations under edge voltage conditions. The proposed
strategy can ride through different levels of voltage sags or swells and provide auxiliary dynamic
reactive power support simultaneously. The performance of the proposed control scheme is validated
through various comparison case tests in PSCAD/EMTDC.

Keywords: high voltage ride-through (HVRT); low voltage ride-through (LVRT); permanent magnet
synchronous generator (PMSG); wind energy conversion system (WECS)

1. Introduction

The renewable energy has been widely acknowledged as an essential solution to climate change and
the energy crisis. With the significant development of energy conversion technologies, much attention
has been attached to the clean energy generation [1]. In 2019, there were 34 large-scale renewable
energy projects completed, increasing Australia’s large-scale renewable power generation by 2.2 GW.
Among the renewables, the installed wind energy capacity in 2019 was 837 MW, and wind energy has
overtaken hydro as Australia’s leading renewable energy source, which accounts for more than 35% of
the total clean energy generation [2]. The significantly increasing installed capacity of wind power has
brought lots of advantages and disadvantages. On 28 September 2016, a catastrophic blackout incident
hit South Australia across the state, which is the first known blackout event in a power system with
high renewable energy penetration [3,4]. It was later concluded that wind farms were to blame for the
catastrophic blackout incident, and the cascading trip of wind farms triggered by extreme weather
events was one of the primary causes of the incident [5]. After the blackout event, different versions of
National Electricity Rules (NER) were revised by the Australian power system operator to address the
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grid-friendly integration of the renewables. Specifically, the grid integration requirements for clean
energy sources have become stricter and stricter. Apart from Australia, different system operators
all over the world have published various strict grid integration requirements for renewable energy,
especially targeting at fault ride-through (FRT) capabilities.

The current challenge of high voltage ride-through (HVRT) and low voltage ride-through (LVRT)
capabilities lies in the inherent intermittency and uncertainty of wind power integration. In the current
wind energy technology, there are two mainstream variable speed wind turbine generators (WTG) [6].
The doubly fed induction generator (DFIG) is also called the type 3 WTG, and the permanent magnet
synchronous generator (PMSG) is also known as the type 4 WTG [7]. The PMSG usually uses a full-scale
converter with no existence of a gearbox, while the DFIG commonly adopts a partial-scale converter
and requires a gearbox. The back-to-back converter in PMSG results in superior control performance,
as well as high cost. To meet the exhaustive grid integration requirements, different control schemes
have been proposed for different WTGs. A complex LVRT control scheme for DFIG was presented
in [8]. In the control scheme, different parameters of the controller could adaptively adjust according to
various fault situations, and an enhanced rotor-side converter (RSC) reactive power management was
also presented. Another comprehensive LVRT control strategy was proposed for DFIG-based WTGs
in [9], which combined crowbar and adaptive series resistance to enhance the LVRT capability. However,
in this method, the dynamic reactive power support was not considered. In [10], a comprehensive
LVRT control strategy was proposed with additional battery storage devices for DFIG-based WTGs,
which achieved dynamic reactive current injection and smooth grid fault recovery with inevitable
high costs. In [11], a proportional-resonant (PR) regulator-based control strategy for DFIG-based
WTGs was designed according to the Spanish grid codes. In this method, the grid-side converter
(GSC) is utilized to provide reactive power support and mitigate oscillations under unbalanced grid
fault situations.

With respect to PSMG-based WTGs, a two-stage control strategy was proposed to enhance
the FRT capability under different grid faults, which combined DC-link voltage control bandwidth
tuning and active damping control to reduce the shaft stress [12]. Another LVRT control method for
PMSG-based WTGs was proposed in [13], which utilized the feedback linearization. The capacitor
voltage is controlled by the machine-side converter (MSC) rather than the GSC. Unlike [12,13], which
aim to achieve smooth fault-ride through based on the WTG itself, the external equipment like a
static synchronous compensator (STATCOM) is utilized to provide auxiliary reactive power support
to enhance the FRT capability in [14]. Apart from those strategies, a coordinated instantaneous
active power control method was proposed in [15], which combines the machine-side and grid-side
active power. A sliding mode control-based control scheme for PMSG-based WTG was also presented
in [16], providing auxiliary reactive power support and maintaining the energy balance. On the
other hand, HVRT is a comparatively emerging topic, which has not yet been extensively researched.
In [17], an HVRT control method for the PMSG was proposed based on the closed-loop modulation
voltage control, but the grid voltage swell considered in the research was relatively small. Another HVRT
approach for the DFIG was proposed in [18], which adopts a virtual impedance control method to
enhance the HVRT performance.

To meet the increasingly stringent grid integration requirements, this paper aims to develop a
coordinated control scheme for PMSG-based WTG to improve the HVRT and LVRT performance.
The main contributions are summed up in three aspects: (1) Different grid integration requirements of
leading wind power countries are detailed introduced and compared; (2) based on the dual-mode
chopper circuit and auxiliary reactive power support, a coordinated FRT control strategy is proposed
to enhance the performance during the different level of grid fault; (3) various comparison tests are
carried out to verify the improvement of the FRT capability.

The reminder of this paper is structured as follows. In Section 2, grid codes of selected countries
are detailed, presented and compared. Section 3 denotes the modeling of WTG and conventional vector
control methods. In Section 4, based on the analysis of transient behaviors during grid faults conditions,
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a comprehensive control strategy combining dual chopper protection and auxiliary reactive power
support is presented. Various comparison tests are conducted in Section 5 to validate the effectiveness
of the proposed approach, and the final section draws the conclusion.

2. Grid Codes in Different Nations

The development of wind power generation in different countries varies from each other. To make
the most of the wind energy, the developed wind energy countries have introduced a series of grid
codes to meet their grid integration requirements. Among the issues wind power generation are facing,
FRT capability is a major one. According to the utility grid codes, wind power plants (WPP) should
have enough HVRT and LVRT capabilities. An example of typical HVRT and LVRT requirements is
shown in Figure 1, which indicates that the WTG should remain interconnected if the grid voltage is
within the twilled blue area. If the grid voltage is outside that area, the WTG will be authorized to trip
with no punishment. It is widely adopted that the WTG should operate for a long time if the terminal
voltage falls between 0.9 pu and 1.1 pu, while it only needs to be connected for a short period in other
voltage conditions.
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Figure 1. An example of fault ride-through (FRT) grid codes.

The mainstream grid codes for FRT from different nations are listed and compared in Table 1 [19–25].
It is shown that, for LVRT, zero voltage ride-through (ZVRT) is also essential in most of the grid codes.
On the other hand, for HVRT, it is required that the WTG should stay interconnected when the
grid voltage is within [1.10, 1.30] pu by most of the grid codes. Under different undervoltage and
overvoltage conditions, WTGs are required to stay connected from milliseconds to seconds.

Table 1. Comparison of grid codes around the world.

Nation Maximum Voltage
Dip

Maximum Dip
Duration

Maximum Voltage
Swell

Maximum Swell
Duration

Denmark Energinet 0.2 pu 0.5 s 1.30 pu 0.1 s
Germany VDE FNN 0.0 pu 0.15 s 1.25 pu 0.1 s

America WECC 0.0 pu 0.15 s 1.20 pu 1 s
Australia AEMC 0.0 pu 0.12 s 1.30 pu 0.2 s

China SAC 0.2 pu 0.625 s 1.30 pu 0.5 s
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3. WTG Modeling and Control Strategy

As mentioned previously, among the two mainstream WTG, the direct-driven PMSG (DD-PMSG)
has benefits such as better reliability and higher power generation efficiency than the DFIG. The main
objective of the paper is to improve the FRT capability for the PSMG-based WTG. Attributed to its
full-scale converter, PMSG-based WTG is capable of providing auxiliary reactive power support during
various grid faults. The configuration of the WTG system is denoted in Figure 2, which consists of a
wind turbine (WT), a DD-PMSG, an MSC, a DC-link capacitor, a GSC and a transformer. Table 2 lists
the parameters of the test system.
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Figure 2. Configuration of the permanent magnet synchronous generator (PMSG)-based wind turbine
generators (WTG).

Table 2. Parameters of the test WTG system.

Parameter Value Parameter Value

Nominal capacity 1.5 MW Rated terminal voltage 620 V
Filter inductance 0.24 mH Filter capacitance 450 uF
Nominal wind speed 10.3 m/s Rated DC-link voltage 1150 V
Switching frequency 2.8 kHz DC-link capacitance 85 mF

The performance of the MSC and GSC has a great influence on the safe and stable operation of
the WTG. The modeling and the conventional vector control method are presented as follows. As for
the MSC, the stator dynamic equations in the rotor reference frame are described as (1) usd = −Rsisd + Lsd

disd
dt −ωsLsqisq

usq = −Rsisq + Lsq
disq
dt +ωsLsdisd +ωsψ f

(1)

where usd and usq are the stator d-axis and q-axis voltages, respectively; isd and isq are the stator d-axis
and q-axis current, respectively; Lsd and Lsq are the stator d-axis and q-axis inductances, respectively;
Rs is the stator windings resistance; ψ f is the magnetic flux; ωs is the angular frequency of the
stator voltage.

As for GSC, the dynamic equations in the grid voltage oriented synchronous reference-frame are
described as (2)  ued = −

(
Rigd + L

digd
dt

)
+ ugd +ωLigq

ueq = −
(
Rigq + L

digq
dt

)
+ ugq −ωLigd

(2)

where ugd and ugq are the d-axis and q-axis components of the terminal voltage, respectively; ued and
ueq are the d-axis and q-axis components of the grid voltage, respectively; igd and igq are the d-axis
and q-axis components of the terminal current, respectively; L and R are the lumped inductance and
resistance of the transformer and the filter, respectively; ω is the angular frequency of the grid voltage.
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Figures 3 and 4 show the conventional vector control method for the MSC and the GSC, respectively.
The MSC targets at the wind power managements, whereas the GSC aims to maintain the capacitor
voltage stable and regulate the decoupled output power.
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4. Coordinated HVRT and LVRT Control Strategy

4.1. Transient Behaviors during HVRT and LVRT

In Figure 2, given that the losses between the PMSG and the converters are ignored and the system
is in steady-state, the DC-link voltage will remain unchanged. In that case, Equation (3) is workable,
which means that the PMSG generates electrical power from the wind, and then that electrical power
is transmitted to the grid through the MSC and GSC.

Pm = Pe = Pg (3)

where Pg is the active power transmitted to the utility grid; Pe is the electrical power generated from
the generator; and Pm is the mechanical power harvested from the WT.

As for LVRT, the power balance between the Pe and Pg will not be workable if there is a grid
voltage dip. The output current of the GSC cannot change immediately, which indicates that Pg will
decrease instantly because of the low voltage condition. Meanwhile, due to independence between
MSC and GSC, the output of the MSC, Pe, will not change immediately, causing the excess energy
accumulated in the capacitor as expressed in (4).

∆P = UdcIdc =
1
2

C
dU2

dc
dt

= Ps − Pg (4)
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where ∆P is the excess energy accumulated in the capacitor; Udc and Idc are the voltage and current
in the capacitor, respectively. Then, the GSC begins to inject more active current to dissipate the
unbalanced energy in the DC-link capacitor. However, the fault is not yet cleared, and the grid
voltage is still low, which means that the GSC cannot transmit enough power to the grid. Finally,
the unbalanced energy continues to accumulate in the capacitor, leading to the overvoltage of the
capacitor and, even worse, the trip of the whole system.

As for HVRT, the output of the MSC, Ps, will remain unchanged if there is a grid voltage swell.
In the meantime, the overvoltage situation could lead to the reverse energy flows back to the WTG.
Hence, the unchanged output of the MSC and the reverse energy together result in the surge of the
capacitor voltage, endangering the normal operation of the WTG [26].

4.2. DC-Link Protection

As mentioned previously, both HVRT and LVRT will result in the unbalanced energy accumulating
in the capacitor. The essence of improving FRT capability is to maintain the balance of the excess
energy in the capacitor during faults. Generally, there are three main solutions, namely, (1) decreasing
the electrical power generated from the generator, Pe, (2) increasing the output power to the grid, Pg,
and (3) dissipating the unbalanced power in the DC-link, ∆P.

As for the first option, decreasing the electrical power generated from the PMSG is not a
practical solution. One reason for that is the control of the pitch angle system for the wind turbine is
a relatively slow dynamic process and cannot be immediately changed. Another reason is that the
structure of the full-rated converter is able to achieve a few electromechanical interactions between
the PMSG and the grid. Thus, the first option is not suggested. As for the second option, the GSC
is able to inject maximum active current within the limitation of insulated gate bipolar transistor
(IGBT) during faults, but little energy can be transmitted to the grid due to the low voltage conditions.
In HVRT situations, it is also difficult to increase Pg because of the inevitable reverse power flow.
Thus, the idea of increasing output power during faults is not practical. As for the third option,
additional devices may be needed to balance the excess energy such as a chopper protection circuit.
The conventional chopper protection circuit is made up of an IGBT in series with a resistor, which is
widely adopted for its low cost and easy implementation. However, the single resistor needs to work
uninterruptedly under various faults conditions, which frequently results in overheating problems.
For that reason, a dual-mode chopper circuit is proposed, and the configuration and control strategy
are shown in Figure 5.
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To mitigate the DC-link voltage surge caused by the unbalanced energy, the mechanism of
the dual-mode chopper is depicted as follows: R1 is in series with the IGBT1, and R2 and IGBT2
is in parallel with R1. The resistance of R1 is slightly larger than R2. The difference between the
instantaneous capacitor voltage and the reference capacitor voltage is dispatched to a hysteresis buffer 1,
where the firing pulse 1 is generated and dispatched to the IGBT1 to dispel the unbalanced energy
via R1. In the meantime, the voltage difference is also sent to another hysteresis buffer 2 to generate the
firing pulse 2 for the R2.

The resistance of R1 and R2 plays a significant role in the effectiveness of the dual-mode
chopper circuit. The influence is denoted as follows: If the equivalent resistance of R1 and R2 is
too large, the unbalanced energy cannot be dissipated immediately. On the other hand, if the equivalent
resistance is not large enough, the maximum heat tolerance of the dual-mode chopper will become
extremely high, which will inevitably raise the cost. To select an appropriate equivalent resistance,
the upper and lower limits can be expressed as:

Udcmin
Idcmax

≤ R ≤
Udcmax
Idcmax

(5)

where Idcmax is the maximum allowed current in the capacitor; Udcmax and Udcmin are the upper and
lower thresholds of the capacitor voltage, respectively. Selecting Udcmin = 1150 V, Udcmax = 1300 V and
Idcmax = 1350 A, then the equivalent resistance is within [0.852, 0.963] ohm. Moreover, the difference
between R1 and R2 will also affect performance. When the voltage drop is not large, the unbalanced
energy is dissipated by R1, keeping the capacitor voltage stable. When the grid voltage drop is
relatively large, R1 is additionally put into service to dissipate the excess energy. After tuning
by simulations, R1 is set as 2.0 ohms, and R2 is set as 1.8 ohms.

4.3. Dynamic Reactive Current Injection

It has been widely acknowledged that the PMSG-based WTG is capable of injecting reactive
current during faults, which is also demanded by most of the grid codes nowadays. To make the most
of the auxiliary support from the full-scale converter, the following control methods are proposed.
In this control strategy, the reactive current reference depends on the operation mode of the WTG.
If the WTG is in normal operation, the reactive current reference is generated by the reactive power
reference from the power plant controller. If the WTG is in FRT mode, then the dynamic reactive
current reference is calculated by the depth of the voltage sags, which is expressed as follows:

igqre f = K · IN · (UN −U) (6)

where K is the coefficient; igqre f is the reactive current reference; U is the instantaneous terminal voltage;
UN and IN are the nominal voltage and current of the WTG. If the terminal voltage is below the
nominal voltage, there will be a capacitive current reference sent to the converter. If the terminal
voltage is above the nominal voltage, there will be an inductive current reference. Since the total
current of the GSC is limited by the current threshold of the IGBT, the active current reference then
should be limited by the following equation during FRT mode:

igdre f ≤
√

I2
max − i2gqre f (7)

where Imax is the maximum allowed current of the IGBT, and igdre f is the active current reference.
The maximum allowed current is set to be 1.8 pu in this work.

In Figure 6, it is observed that in the normal operation mode, the active and reactive reference are
the same as the conventional vector control. In FRT mode, the igqre f switches to (6) to provide auxiliary
capacitive or inductive reactive power support, whereas the limit of the igdre f is within the range of
the maximum allowed current of the IGBT. In this way, the GSC is set to be the Q-priority mode,
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which means the converter focuses more on the reactive current contribution rather than active current
during HVRT and LVRT events.Energies 2020, 13, x FOR PEER REVIEW 8 of 16 
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The injected amount and timing of reactive current play an important role in the transient
performance during faults. Theoretically, the more the injected reactive current is, the better
improvement of the terminal voltage profile will be. However, the total amount of output current is
limited by the IGBT hardware. As shown in (7), the injected amount of active current is limited by
the injected amount of the reactive current. On the other hand, the amount of the active current is
essential to the energy transfer from DC-link to the grid. If the active current is too small, there will be
a huge amount of unbalanced energy built up in the capacitor, which could lead to the overheating of
the chopper circuit and cause protection trips. Moreover, the timing of the reactive current injection
is also critical to transient behaviors. Most of the grid codes require a fast, reactive current response.
For example, in Australia, the rise time of the reactive current injection should be smaller than 40 ms
and the settling time also should be smaller than 70 ms [23]. An instant reactive current injection will
achieve great transient performances during faults, but it may also lead to maloperations and overuse
of the switches. Hence, the injected timing should be small enough to ensure fast grid voltage support,
yet not too small to avoid maloperation and overuse of the switches. The injection time delay is set as
10 ms in this test.

4.3.1. Maximum Iq Injection under Deep Voltage Dip

As mentioned before, most grid codes around the world include ZVRT requirement. To further
enhance the performance under deep voltage dip, a maximum Iq injection strategy under server
voltage dip is proposed, which means the WTG will inject maximum reactive current once the voltage
is below the threshold. In this paper, the threshold is set to be 0.2 pu. Thus, the overall reactive current
reference under various voltage conditions are described as in (8). When the WTG terminal voltage
falls within 0.9 pu and 1.1 pu, the WTG operates normally. When the voltage is above 1.1 pu or between
0.2 pu and 0.9pu, the WTG injects desired reactive current as in (6). When the voltage is below 0.2 pu,
the WTG injects the maximum reactive current within its limit.

igqre f =


KHVRT · (UN −U) · IN U > 1.1 pu
igqcmd 0.9 pu ≤ U ≤ 1.1 pu

KLVRT · (UN −U) · IN 0.2 pu ≤ U < 0.9 pu
Kmax · IN U < 0.2 pu

(8)

where UN and IN are the nominal voltage and current, respectively; KLVRT and KHVRT are coefficients
of 1.5 and 2.0, respectively; Kmax is set to be 1.8.
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4.3.2. Deadband Protection under Edge L/HVRT Conditions

The dynamic reactive current support does improve the voltage profile in L/HVRT events by
providing more reactive power. However, it will also bring up some other issues under certain
edge conditions. Consider the following scenario: When the voltage is just shy of 0.9 pu, the WTG
detects an LVRT event and then injects a certain amount of reactive current. After that, the terminal
voltage will ascend because of the increased capacitive reactive power at the WTG terminal and then
exit the LVRT mode. Meanwhile, if the WTG exits LVRT mode and the fault is not yet cleared, the WTG
will fall into LVRT mode again. The repetitive in and out LVRT mode under edge conditions could
lead to oscillations, posing danger to the safe operation of the WTG. This type of oscillation could also
happen under the edge HVRT conditions.

In order to overcome the oscillations under edge conditions, a deadband protection strategy is
proposed and depicted in Figure 7.
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As shown in Figure 7, set reset (SR) latches are adopted to generate the deadband. First, the filtered
terminal voltage is compared with the upper and lower thresholds and then sent to S and R inputs,
respectively. After that, the flag for the HVRT and LVRT is generated through a delay component.
Considering the aforementioned scenario of edge voltage conditions, when the voltage is just below
0.9 pu, the WTG injects dynamic reactive current. The voltage rises a little bit but still is within
the deadband. The WTG will not repeatedly enter and exit the LVRT mode. Thus, there will be
no oscillations. To achieve the dead protection, for LVRT the detection in voltage should be smaller
than the out voltage and vice versa for HVRT. In this paper, LVRT_in_Vol and LVRT_out_Vol are set to
be 0.90 and 0.93, respectively. HVRT_in_Vol and HVRT_out_Vol are set to be 1.10 and 1.07, respectively.

4.4. Coordinated L/HVRT Control Scheme

In this section, the coordinated HVRT and LVRT control strategy is formulated by combining
the dual-mode chopper protection and the dynamic reactive power support. The complete process is
denoted in Figure 8. In normal conditions, the dual-mode chopper protection does not engage, and the
WTG operates normally. When there is a sever voltage dip or swell, the WTG switches into FRT mode,
and the dual-mode chopper protection will activate if the capacitor voltage is above the threshold.
In FRT mode, if the voltage is below 0.2 pu, the WTG will immediately inject maximum reactive current.
A deadband protection scheme is added to prevent oscillations under edge voltage conditions.
The detailed validation simulations will be presented in the following section.
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5. Simulation Validation

In the section, different comparison tests are conducted to verify the effectiveness of the coordinated
control scheme in PSCAD. The brief layout of the WTG system and the grid fault emulator is depicted
in Figure 9.
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In Figure 9, the test system is made up of a PMSG-based WTG, transformers T1 and T2, an equivalent
transmission line, a grid faults emulator, and an ideal grid. To acquire more practical results, a grid
faults emulator based on the IEC 61400-21 is adopted rather than modifying the utility grid voltage in
the software [27]. The grid impedance ZLg is utilized to reflect the influence of the short circuit ratio on
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the system strength. By definition, the short circuit ratio (SCR) at the point of interconnection (POI) is
calculated as follows:

SCRPOI =
SSCC
SWPP

(9)

The short circuit capacity (SCC) at POI is calculated as in (10)

SSCC =
V2

POI
ZLg

=
V2

POI√
R2

Lg + X2
Lg

(10)

Selecting the POI voltage and WTG nominal capacity as the base value, then the SCR can be
derived as the inverse of the grid impedance ZLg as shown in (11).

SCRPOI =
SSCC
SWPP

=
V2

POI pu

ZLg pu
=

1
ZLg pu

(11)

In the following comparison tests, the SCR at POI is set as 5 and the X/R ratio is set as 10.
It should be pointed out that the system strength plays a significant role in the transient behaviors of
the WTG. The impedance of ZLg should be selected so that the WTG can still operate normally with
the voltage drop, and meanwhile, meaningful fault response of the WTG can still be acquired.

The mechanism of the grid fault emulator is denoted as follows. The change of SCR at the
POI is created by the by-pass connection of ZLg prior and after the drop. As for the LVRT emulator,
the ZLP. is made up of an inductor in series with a resistor. The operation of S2 is applied to connect
the impedance ZLg and create the voltage drop. Various depths of voltage drop can be obtained by
modifying the impedance of the ZLP. As for the HVRT emulator, the inductor in the ZLP is replaced by
a capacitor. Various levels of grid voltage surge could be achieved by changing the impedance of the
ZLP as well. It should be noted that the series resistor is applied to generate additional damping and
avoid unnecessary oscillations.

5.1. Dual-Mode Chopper Protection Test

In the test, a 0.22 pu grid fault was applied to validate the performance of the dual-mode
chopper protection. In Figure 10, the voltage decreased to 0.22 pu at t = 2.0 s, and then the voltage
recovered to 1.0 pu at t = 3.5 s. It is observed that the capacitor voltage increases immediately when
the voltage drops. That is because there is unbalanced energy accumulated in the capacitor. After that,
the dual-mode chopper circuit activates to dispel the unbalanced energy, and then the capacitor voltage
is maintained around 1.25 kV. The comparison study with no chopper protection is not presented in
Figure 10 because under such severe voltage drop conditions, the DC-link voltage will continue to rise
and the unbalanced energy will eventually cause the overheat in the capacitor, resulting in the trip of
the WTG. It should be pointed out that during LVRT, the active power output of the WTG drops a lot
due to the low voltage situation, while the reactive power output remains almost stable because of the
unchanged reactive current reference. The three-phase instantaneous current remains stable, and no
obvious waveform distortion can be observed under this fault situation. The result indicates that the
DC-link protection can effectively prevent the overvoltage of the capacitor. In HVRT events, the DC-link
voltage also rises and then the chopper circuit engages to protect the DC-link. The simulation result is
similar to the LVRT event and not repeatedly presented here.
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Figure 10. Simulation results of a 0.22 pu LVRT incident with full active power output.

5.2. Comparison Tests under Different LVRT Conditions

In the comparison study, 0.30 pu and 0.50 LVRT events were carried out. Both of the faults were
applied at t = 2.0 s, and the voltage recovered to 1.0 pu at t = 2.5 s. In Figures 11 and 12, it is clear that
both WTG survive the undervoltage conditions. The difference between the proposed method and the
conventional method is that, under undervoltage situations, the WTG voltage with dynamic reactive
current injection is obviously higher than the one with no reactive current injection, which means
the dynamic reactive current contribution effectually provides auxiliary reactive power support and
improves the terminal voltage profile under LVRT situations.
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Figure 12. Comparison study of a 0.50 pu LVRT incident with half active power output.

5.3. Comparison Tests under Different HVRT Conditions

In the comparison study, 1.15 pu and 1.20 pu HVRT events were carried out. Both of the faults
were applied at t = 2.0 s, and the voltage recovered to 1.0 pu at t = 2.5 s. In Figures 13 and 14, it is clear
that both WTG survive the overvoltage conditions. The difference between the proposed method and
the conventional method is that, under overvoltage situations, the WTG voltage with dynamic reactive
current injection is obviously lower than the one with no reactive current injection, which means
the dynamic reactive current contribution effectually provides auxiliary reactive power support and
improves the voltage profile under HVRT situations.
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5.4. Comparison Tests under Edge LVRT Conditions

In the comparison study, an edge 0.90 pu grid fault was applied at t = 2.0 s, and the voltage
recovered to 1.0 pu at t = 2.5 s. In Figure 15, both simulation results show that the WTG survive the
undervoltage condition. Compared with the one without deadband protection, the WTG terminal
voltage with deadband protection is clearly more stable during an edge LVRT event. Obvious oscillations
in terminal voltage and reactives can be observed during the fault. As shown in the Flag_FRT subplot,
the WTG without deadband protection repeatedly enters and exits LVRT mode, which shows consistency
with the theoretical analysis. The repetitive reactive current injection results in the oscillations of
reactive power and terminal voltage. The comparison test indicates that the deadband protection
successfully improves the WTG performance under edge voltage conditions.
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In a nutshell, the coordinated HVRT and LVRT control scheme has better FRT performance over
the conventional vector control method. The dual-mode chopper protection aims to balance the excess
energy in the capacitor, while the dynamic reactive current injection focuses on providing auxiliary
support to improve the voltage profile under fault situations.

6. Conclusions

This paper proposes a coordinated FRT control scheme for the PMSG-based WTG, which combines
the dynamic reactive current injection and the dual-mode chopper protection. The dual-mode
chopper protection deals with the unbalanced energy in the capacitor, whereas the dynamic reactive
current injection aims to provide auxiliary reactive power support under grid fault situations.
Various comparison tests were conducted to verify the effectiveness and performance of
the control strategy. (1) The dual-mode chopper circuit can effectively protect the DC-link;
(2) dynamic reactive current support is able to improve the voltage profile under various
voltage conditions; (3) deadband protection is capable of preventing oscillations under edge HVRT
and LVRT conditions. Future works will focus on the enhanced FRT control strategy considering weak
grid integration and unbalanced faults.
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