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Abstract: Soft open points (SOPs) are power electronic devices that replace the normal open points in
active distribution systems. They provide resiliency in terms of transferring electrical power between
adjacent feeders and delivering the benefits of meshed networks. In this work, a multi-objective
bilevel optimization problem is formulated to maximize the hosting capacity (HC) of a real 59-node
distribution system in Egypt and an 83-node distribution system in Taiwan, using distribution system
reconfiguration (DSR) and SOP placement. Furthermore, the uncertainty in the load is considered
to step on the real benefits of allocating SOPs along with DSR. The obtained results validate the
effectiveness of DSR and SOP allocation in maximizing the HC of the studied distribution systems
with low cost.

Keywords: distributed generation; hosting capacity maximization; multi-objective
bilevel optimization; distribution system reconfiguration; soft open points;
active distribution networks; TOPSIS

1. Introduction

Renewable energy integration has been crucial in recent decades to limit the effect of green-house
gases on the environment [1–3]. Various strategies have been adopted in the modern smart grids to
increase their capabilities to accommodate the intermittent renewable resources [4–6]. Hosting capacity
(HC) is the mathematical expression that represents the ability of a distribution system to host
distributed generation (DG) without violating its operational limits [5–8]. Many methodologies for
improving HC [5–8] have been proposed in the literature, including power quality (PQ) enhancement,
network reinforcement, distribution system reconfiguration (DSR), static var compensators (SVCs),
energy storage systems (ESS), and soft open points (SOPs), among others. The maximum DG
penetration was determined in [9] for the 18-node and 33-node distribution systems, considering the
IEEE 519 allowable voltage harmonic limits. A constrained harmonic distortion study was carried
out in [10] to maximize HC using harmonic filters. In [11], network reinforcement was employed to
maximize the HC of an existing Egyptian distribution network. The deterministic HC was assessed for
a real-life grid in Jordan called 73-node distribution system having a high X/R ratio, and a hypothetical
grid having a lower X/R ratio called 19-node distribution system designed based on the Jordanian
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standards [12]. The HC was successfully maximized in [12] via two strategies, including network
reinforcement and reactive power control. DSR was employed in [13] to maximize the HC of the
33-node distribution system using linear load flow formulation. HC was successfully enhanced in [14]
via DSR and ESS for a real distribution system in central Italy, including 5 feeders and 287 busbars.
A multi-period DSR was employed in [15,16] to enhance the HC of the IEEE 123-node and 1001-node
distribution systems. Static and dynamic DSR were investigated in [17], and a static reconfiguration
was found to be beneficial at the planning stage. In contrast, dynamic reconfiguration was found to
be useful for active distribution networks, especially when a higher number of remotely controlled
switches are available. DSR was employed in [18] to maximize HC by selecting the best configurations
of the distribution network capable of maximizing the HC of a large distribution network in Japan
including 235 switches. A stochastic optimization was developed in [19] for the optimal allocation of
SVCs to maximize PV penetration while considering uncertainties related to photovoltaics (PVs) and
loads. Quadratic power control for a central battery storage system was proposed in [20] to optimize
the penetration of rooftop PVs. In [21], a linearized power flow model was formulated to determine the
maximum HC of a 33-node distribution system while considering the load uncertainty. A probabilistic
optimization approach was proposed in [22] to assess the effects of uncertainties on HC, while in [23],
a strengthened second-order cone programming problem was formulated to maximize the HC of a
33-node distribution system using SOPs to replace tie-lines with fixed locations. An algorithm was
proposed in [24] to assess the increase in the HC of a generic distribution system for SOP placement in
the UK. HC has also been evaluated for various types of SOP placement, including two-terminal and
multi-terminal SOPs and SOPs with energy storage [25]. In these previous works, individual strategies
were employed to maximize the HC of the distribution systems, but SOPs and DSR were not combined.
In the present work, we put forward a novel approach for HC enhancement based on simultaneous SOP
allocation and DSR to step on the benefits of the meshed networks in the presence of load uncertainties
for two real distribution systems and also ensuring the radial structure while reconfiguring the non-SOP
tie-lines which provide resiliency in allocating DGs. The main contributions of this work can be
summarized as follows:

(1) A multi-objective bilevel optimization problem is formulated to minimize the total active losses
by introducing DSR to a lower level problem and then to maximize the HC and minimize the
annual total cost for two real distribution systems.

(2) A probabilistic HC maximization approach is proposed to illustrate the expected impact of load
uncertainties on HC.

(3) The proposed optimization approach ensures radiality among the studied distribution networks
while reconfiguring the non-SOP tie-lines in a short time.

(4) A combination of DSR and SOPs is successfully used to support the penetration of DGs in
distribution systems while guaranteeing an economic planning framework.

The rest of this paper is organized as follows: Section 2 presents the problem statement, including
the power flow equations, DSR methodology, DG, and SOP models. Section 3 introduces the problem
formulation. Section 4 presents the obtained results and a discussion, while Section 5 contains the
conclusions and identifies future work in this area.

2. Materials and Methods

In this section, the DSR algorithm, the power flow equations, DG, and SOP modeling are illustrated
in detail. Figure 1 provides an overview of DG and SOP modeling in a distribution system.
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Figure 1. Distribution system modeling. 

2.1. Power Flow Equations 

The power flow equations required to solve the distribution system under study are formulated 
as follows [26]: 𝑃ାଵ = 𝑃 − 𝑃ାଵ − 𝑟 ∙ ൫𝑃ଶ + 𝑄ଶ൯ ห𝑉หଶൗ , ∀𝑗 ∈ 𝐵 (1) 𝑄ାଵ = 𝑄 − 𝑄ାଵ − 𝑥 ∙ ൫𝑃ଶ + 𝑄ଶ൯ ห𝑉หଶൗ , ∀𝑗 ∈ 𝐵  (2) ห𝑉ାଵหଶ = ห𝑉หଶ − 2 ∙ ൫𝑟 𝑃 + 𝑥 𝑄൯ + ሺ𝑟ଶ + 𝑥ଶሻ ∙ ൫𝑃ଶ + 𝑄ଶ൯ ห𝑉หଶൗ , ∀𝑗 ∈ 𝐵 (3) 

where 𝐵 = {1,2, … , 𝑁} is the set of nodes of the distribution system and 𝑁 is the total number of 
nodes in the distribution system. 𝑍 is the impedance of the bth line joining nodes 𝑗 and 𝑗 + 1, and 
its real and imaginary components are 𝑟 and 𝑥, respectively. 𝑆 is the apparent power injected at 
the jth node, where 𝑃 and 𝑄 are its real and imaginary components, respectively. 𝑉 is the jth node 
voltage. 𝑃ାଵ  is the demanded active power at node 𝑗 + 1. 

2.2. Distribution System Reconfiguration 

The graph theory-based DSR algorithm proposed by the current authors in [26] is employed in 
this work. This method is based on a graphical interpretation of the nodes (vertices) and lines (edges) 
of the distribution system. The primary advantage of this DSR method is that it gives the global/near-
global solution within a short time for large distribution systems. The search procedure used to 
optimize the current best configuration of the distribution system (𝑅 ), hinges on fetching the 
various possibilities for exchanging the yth tie-line (𝑇௬) included in the set of the tie-lines (𝑇) with its 
neighboring sectionalized lines, connected to its “From” (𝑚 ்), and “To” (𝑛 ்) nodes, as shown in 
Figure 2. Then, the candidate sectionalized lines required to be tie-lines are sorted in a descending 
order via an index called weighted voltage deviation index (𝑊𝑉𝐷), where the 𝑊𝑉𝐷 for the Eth 
sectionalized line (𝑘ா) connected to the yth tie-line is calculated as follows: 
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such that, 𝑚ா and 𝑛ா are the “From” and the “To” ends of the line 𝑘ா. Further, at this step, a loop 
starts here till finding a better configuration for the distribution network having the best fitness value, 
where a temporary test vector (𝑅௧ ) equals to 𝑅  is initialized. Then, the loop continues by 
changing the open/close status of each tie-line 𝑇௬ and its neighboring sectionalized line in 𝑅௧. 

Figure 1. Distribution system modeling.

2.1. Power Flow Equations

The power flow equations required to solve the distribution system under study are formulated
as follows [26]:

P j+1 = P j − PL
j+1 − rb·

(
P2

j + Q2
j

)
/
∣∣∣V j

∣∣∣2, ∀ j ∈ B (1)

Q j+1 = Q j −QL
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(
P2

j + Q2
j

)
/
∣∣∣V j

∣∣∣2, ∀ j ∈ B (2)∣∣∣V j+1
∣∣∣2 =

∣∣∣V j
∣∣∣2 − 2·

(
rb P j + xb Q j

)
+

(
r2

b + x2
b

)
·

(
P2

j + Q2
j

)
/
∣∣∣V j

∣∣∣2, ∀ j ∈ B (3)

where B = {1, 2, . . . , Nn} is the set of nodes of the distribution system and Nn is the total number of
nodes in the distribution system. Zb is the impedance of the bth line joining nodes j and j + 1, and its
real and imaginary components are rb and xb, respectively. S j is the apparent power injected at the jth
node, where P j and Q j are its real and imaginary components, respectively. V j is the jth node voltage.
PL

j+1 is the demanded active power at node j + 1.

2.2. Distribution System Reconfiguration

The graph theory-based DSR algorithm proposed by the current authors in [26] is employed
in this work. This method is based on a graphical interpretation of the nodes (vertices) and lines
(edges) of the distribution system. The primary advantage of this DSR method is that it gives the
global/near-global solution within a short time for large distribution systems. The search procedure
used to optimize the current best configuration of the distribution system (Rrec), hinges on fetching
the various possibilities for exchanging the yth tie-line (Ty) included in the set of the tie-lines (T) with
its neighboring sectionalized lines, connected to its “From” (mTy), and “To” (nTy) nodes, as shown in
Figure 2. Then, the candidate sectionalized lines required to be tie-lines are sorted in a descending order
via an index called weighted voltage deviation index (WVD), where the WVD for the Eth sectionalized
line (kE) connected to the yth tie-line is calculated as follows:

WVD =

∣∣∣∣∣∣VmT y

∣∣∣− ∣∣∣VnT y

∣∣∣∣∣∣
min

{∣∣∣VmT y

∣∣∣, ∣∣∣VnT y

∣∣∣} −
∣∣∣∣∣∣VmkE

∣∣∣− ∣∣∣VnkE

∣∣∣∣∣∣
min

{∣∣∣VmkE

∣∣∣, ∣∣∣VnkE

∣∣∣} (4)

such that, mkE and nkE are the “From” and the “To” ends of the line kE. Further, at this step, a loop
starts here till finding a better configuration for the distribution network having the best fitness value,
where a temporary test vector (Rtemp

rec ) equals to Rrec is initialized. Then, the loop continues by changing
the open/close status of each tie-line Ty and its neighboring sectionalized line in Rtemp

rec . Various tests are
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done to ensure radiality while compiling this loop, including (1) if the power flow did not converge,
thus, Rtemp

rec is not radial because of the failure in one or more of the connected loads as shown in trail
#2 in Figure 2, or (2) if a better objective function value is obtained, Rrec is updated to Rtemp

rec and the
loop is terminated, or (3) the loop terminates, if no possibility for exchanging the tie-lines with their
neighboring lines. This algorithm was tested on various real and large distribution networks up to the
4400-node distribution system, including 185 tie-lines, and has proven its ability to ensure radiality
and fast convergence toward finding the best configuration in a short time, since it directly exchanges
the existing tie-lines with its neighboring sectionalized lines, thus no randomness exists.
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2.3. DG Modeling

In this study, the DG power factor is unity, where the power injected by the uth DG in the
deterministic case study is formulated as follows:

0 ≤ PDG
u ≤ LDG

u ·S
DG, ∀u ∈ B (5)

where as for the probabilistic case study at the sth scenario:

0 ≤ PDG
u,s ≤ LDG

u,s ·S
DG, ∀u ∈ B, s ∈ S (6)

and its allocation is constrained by the binary variables LDG
u and LDG

u,s in the deterministic and
probabilistic cases, respectively, where LDG

u and LDG
u,s are equal to one in the case of DG allocation at the

uth node. SDG is the maximum size of the installed DGs. S is the set of all scenarios studied.
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2.4. SOP Modeling

SOPs were introduced in 2011 as a resilient alternative to normally open points (NOPs) and can
provide the flexibility of meshed networks in sharing active and reactive power between adjacent
feeders in active distribution systems [27]. SOPs may have several integration topologies, including the
back-to-back voltage source converter (VSC), static series synchronous compensator (SSSC), and unified
power flow controller (UPFC) [28]. In this work, the back-to-back VSC is used because of its ability to
improve operational and power quality indices [29].

In this paper, two case studies are conducted to maximize the HC of real distribution systems
using DSR and SOPs placement, including the deterministic and the probabilistic case studies. In both
cases, the SOP is placed instead of a certain tie-line, providing resiliency in delivering apparent powers
between the SOP terminals. Regulating equations for SOPs are provided below for the deterministic
and probabilistic cases.

2.4.1. Deterministic Case

An SOP is allocated if its allocation variable LSOP
y is equal to one, and is not assigned if LSOP

y is
equal to zero. Each tie-line is connected to either two feeders or loop laterals, the first of which is
denoted by I and the other by J. Thus, the Ith feeder connected to the yth tie-line is denoted by Iy.

SOP Equality Constraint [29]:
SOPs are characterized by their ability in transferring the active powers between the adjacent

feeders (i.e., I and J feeders), where the sum of the injected SOP powers to the Ith and Jth feeders
equals to zero in case of lossless SOP placement [29], whereas lossy SOP is represented in (7), where the
internal active loss of the two VSCs is considered as follows [29,30]:

PSOP
Iy

+ PSOP
Jy

+ PSOP−loss
Iy

+ PSOP−loss
Jy

= 0,∀y ∈ T (7)

SOP Capacity Limit Constraint [29,30]:
Each SOP is composed of two VSCs. These VSCs are connected back-to-back through a DC-link

capable of transferring both active and reactive powers constantly, and their governing equations are
formulated as follows [29,30]: √(

PSOP
Iy

)2
+

(
QSOP

Iy

)2
≤ LSOP

y ·SSOP
Iy

,∀y ∈ T (8)

√(
PSOP

Jy

)2
+

(
QSOP

Jy

)2
≤ LSOP

y ·SSOP
Jy

,∀y ∈ T (9)

where, PSOP
Iy

+ QSOP
Iy

i and PSOP
Jy

+QSOP
Jy

i are the sending and receiving transferred complex apparent

powers by the SOP installed instead of the tie-line y, respectively. PSOP−loss
Iy

and PSOP−loss
Jy

are the active
losses by each VSC [29,30].

To limit the allocated SOP size instead of the yth tie-line, the following capacity constraint is
formulated as follows [29,30]:

SSOP
Iy
≤ SSOP

max ,∀y ∈ T (10)

SSOP
Jy
≤ SSOP

max ,∀y ∈ T (11)

where, SSOP
max is the maximum SOP size.

SOP Internal Power Loss Equations [29]:

PSOP−loss
Iy

= ASOP
L

√(
PSOP

Iy

)2
+

(
QSOP

Iy

)2
,∀y ∈ T (12)
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PSOP−loss
Jy

= ASOP
L

√(
PSOP

Jy

)2
+

(
QSOP

Jy

)2
,∀y ∈ T (13)

PSOP−loss
tot =

NSOP∑
y=1

PSOP−loss
Iy

+ PSOP−loss
Jy

(14)

ASOP
L is the loss coefficient of each VSC [29,30]. PSOP−loss

tot is the total SOP losses, and NSOP is the number
of SOPs installed.

2.4.2. Probabilistic Case

In this case, a set of scenarios S = {1, 2, 3, . . . , Ns
} are applied to the distribution systems, where Ns

is the total number of scenarios.
SOP Equality Constraint [29]:

PSOP
Iy,s + PSOP

Jy,s + PSOP−loss
Iy,s + PSOP−loss

Jy,s = 0,∀y ∈ T, s ∈ S (15)

SOP Capacity Limit Constraint [29]:
In addition to the capacity constraints demonstrated in (10), and (11), the following constraints

expressed in (16), and (17) are considered in this case study.√(
PSOP

Iy,s

)2
+

(
QSOP

Iy,s

)2
≤ LSOP

y ·SSOP
Iy

,∀y ∈ T, s ∈ S (16)

√(
PSOP

Jy,s

)2
+

(
QSOP

Jy,s

)2
≤ LSOP

y ·SSOP
Jy

,∀y ∈ T, s ∈ S (17)

SOP Internal Power Loss Equations [29]:

PSOP−loss
Iy,s = ASOP

L

√(
PSOP

Iy,s

)2
+

(
QSOP

Iy,s

)2
,∀y ∈ T, s ∈ S (18)

PSOP−loss
Jy,s = ASOP

L

√(
PSOP

Jy,s

)2
+

(
QSOP

Jy,s

)2
,∀y ∈ T, s ∈ S (19)

PSOP−loss
tot,s =

NSOP∑
y=1

(
PSOP−loss

Iy,s + PSOP−loss
Jy,s

)
,∀s ∈ S (20)

2.5. Scenario Reduction

In this work, the load uncertainties are represented by a preset number of scenarios, each of
which has a certain corresponding probability. The 8760 hourly data are reduced to a relevant set
of scenarios using the backward reduction technique developed by Growe-Kuska et al. in 2003 for
stochastic programming [31].

3. Problem Formulation

In this work, a multi-objective bilevel optimization problem is developed to maximize HC and
minimize the total annual cost (CA) as the upper-level problem, whereas the lower-level problem
is dedicated to minimization of the energy loss cost (CLoss) using DSR. CA consists of the capital
cost for SOP installations (Ccap), the annual operational cost of the SOPs (Cop), and the annual total
loss cost (Closs) [30].

PL
tot =

Nn∑
j=1

PL
j (21)
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HC = 100.
NDG∑
u=1

PDG
u /PL

tot (22)

CA = Closs + Ccap + Cop (23)

Ccap =
λ(1 + λ)q

(1 + λ)q
− 1
·

NSOP∑
y=1

(
cSOP
·max

{
SSOP

Iy
, SSOP

Jy

} )
(24)

Cop = α
NSOP∑
y=1

cSOPSSOP
Iy

(25)

where PL
tot is the total active demand power for the distribution system under normal loading conditions,

c is the electricity price, λ is the interest rate, q is the number of years, cSOP is the SOP capital cost per
unit capacity, and α is the SOP annual operation cost coefficient.

The solution procedure of the proposed optimization problem starts by inserting DGs at specific
DG nodes (indicated by LDG

u ), and SOPs instead of specific candidate tie-lines (indicated by LSOP
y ) at the

upper level, then the rest of the tie-lines (non-SOP tie-lines) are changed at the lower level by the DSR
algorithm to minimize Closs, as a result, the power loss minimization is improved and hence choosing
the best tie-lines locations for the next planning stage at the upper level. At the end of the optimization
process, the technique for order of preference by similarity to ideal solution (TOPSIS) [32] algorithm
takes place to choose the best solution (alternative) among the Pareto solutions, including the HC and
the total annual cost quantities by a ratio of 75% and 25%, respectively.

3.1. Deterministic HC

For the deterministic case, the total power loss (PLoss) is formulated as follows:

PLoss =

Nb∑
b=1

(
|Ib|

2
· rb

)
+ PSOP−loss

tot (26)

CLoss = 8760.c.PLoss (27)

where, |Ib| is the magnitude of the current passing through the bth line and Nb is the total number
of lines.

3.1.1. Upper Level

At this level, a multi-objective optimization problem is formulated to maximize HC and
minimize CA. The objective functions

{
f1, f2

}
are formulated as follows:{
max f1 = HC
min f2 = CA

(28)

subject to (1)–(3), (5), (7)–(13), and the following operational limits:

VL
≤

∣∣∣V j
∣∣∣ ≤ VU, ∀ j ∈ B (29)

|Ib| ≤ IU
b , ∀b ∈W (30)

Pslack
≥ 0 (31)

where HC is the hosting capacity, VL and VU are the upper and lower voltage limits of the jth node,
respectively. IU

b is the thermal current limit for the bth line. W is the set of lines. Pslack is the active
power delivered from the substation.
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3.1.2. Lower Level

The objective function ( f3) at this level aims to minimize CLoss by DSR to obtain the best
operational point. The objective function is expressed as follows:

min f3 = CLoss (32)

subject to (1)–(4), (26)–(27), and (29)–(31).

3.2. Probabilistic HC

In this case, the optimization problem is solved for several different scenarios S. The expected
total annual energy loss (Pexp

Loss) and the probabilistic HC (PHC) are expressed as follows:

Pexp
Loss =

Ns∑
s=1


 Nb∑

b=1

(∣∣∣Ib,s
∣∣∣2· rb,s

)
+ PSOP−loss

tot,s

.ps

 (33)

CLoss = 8760.c.Pexp
Loss (34)

PHC = 100·
Ns∑

s=1


NDG∑

u=1

PDG
u,s

.ps

/PL
tot (35)

where
∣∣∣Ib,s

∣∣∣ is the magnitude of the current in the sth scenario. rb,s is the bth line resistance at the sth
scenario. PSOP−loss

tot,s is the total SOPs losses in the sth scenario. ps is the probability of the sth scenario.
The bilevel multi-objective optimization for this case is formulated as follows:

3.2.1. Upper Level

At this level, the objective function f4 = PHC is maximized and f5 = CA is minimized subject to
(1)–(3), (6), (10)–(11), (15)–(19), (33)–(35), and the following constraints:

VL
≤

∣∣∣V j,s
∣∣∣ ≤ VU, ∀ j ∈ B, s ∈ S (36)∣∣∣Ib,s

∣∣∣ ≤ IU
b , ∀b ∈W, s ∈ S (37)

Pslack
s ≥ 0, s ∈ S (38)

where,
∣∣∣V j,s

∣∣∣ is the magnitude of the jth node, at the sth scenario. Pslack
s is the injected power to the

slack node, at the sth scenario.

3.2.2. Lower Level

At this level, the objective function CLoss is minimized using DSR subject to (1)–(4), (26)–(27),
and (36)–(38).

The interaction between the upper and the lower optimization problems during the solution of
the current case study is illustrated as follows:

Step 1: Initialize the multi-objective optimization problem at the upper level, including the number
of populations, number of iterations, also, the number of decision variables is given and their upper
and lower limits.

Step 2: Input the optimization parameters, including Rrec, LDG
u,s , PDG

u,s , LSOP
y , SSOP

Iy
, SSOP

Jy
, PSOP

Iy,s , QSOP
Iy,s ,

PSOP
Jy,s , and QSOP

Jy,s .

Step 3: Set SOPs locations according to LSOP
y .

Step 4: For each scenario.

(a) Apply the sth loading level to the connected loads.
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(b) Set DGs locations according to LDG
u,s .

(c) If (1)–(3), (6), (10),(11), (15)–(17), and (36)–(38) violated, then return CA, and PHC equal to infinity,
and zero, respectively. Then, the optimization process continues by setting new parameters’
values at Step 2.

(d) Set the DGs, and SOPs injected powers.
(e) Run the power flow.
(f) The lower level optimization procedure takes place at this sub-step by reconfiguring the

non-SOP tie-lines.
(g) Repeat Step 4 till finishing all the Ns scenarios.

Step 5: Evaluate Pexp
Loss, CLoss, Ccap, Cop, CA, and PHC. After that, if the number of iterations is

reached, jump to Step 6; otherwise, the upper-level optimization sets new parameters’ values and
continues from Step 2.

Step 6: Deploy the TOPSIS algorithm to choose the best solution (alternative) among the
Pareto-solutions according to the criterion that prefers PHC against CA by a ratio of 3:1.

4. Results and Discussion

In this paper, a real 59-node distribution system in Cairo [33] and the 83-node distribution
system [26] are used as test systems, shown in Figures 3 and 4, respectively. The input data
configurations used for the upcoming case studies are provided in Table 1. In the subsequent case studies,
three multi-objective optimization techniques are employed to solve the upper-level optimization
problem: the non-dominated sorting genetic algorithm (NSGA-II) [34], multi-objective particle swarm
optimization (MOPSO) [35], and multi-objective multi-verse optimization (MOMVO) [36]. The authors
in [34] proposed a new methodology to solve mixed-integer nonlinear programming problems via
integrating the surrogate and the deterministic infeasibility sorting, where it has been tested against
real-life building applications. A modified version of the MOPSO was proposed in [35] to handle
multi-objective MINLP problems, where it has been tested against several benchmark functions and
has proven its ability to find the best solution. In [36], Mirjalili et al. proposed a novel MOMVO for
solving engineering optimization applications. It has been tested in 80 multi-objective case studies,
including 49 unconstrained, 10 constrained, and 21 engineering design optimization problems.
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Table 1. Input data configurations.

Parameter Value Parameter Value Parameter Value

λ 0.08 α 0.01 ASOP
L [30,37] 0.02

c ($/kWh) 0.06 SDG (MVA) [0,30] IU
b (A) 300

cSOP ($/kVA) [30] 308.8 SSOP
max (MVA) [0,5]

VL (p.u.) 0.95
q (years) 20 VU(p.u.) 1.05

4.1. Deterministic Case Study

4.1.1. Real 59-Node Distribution System in Cairo

For the 59-node distribution system, the HC reaches >98%. Table 2 provides detailed results
for these three optimization techniques. Tie-lines, SOPs size, and locations are given in Table 3.
The installed DG nodes and their sizes are shown in Table 4 for MOMVO.

Table 2. Deterministic results for 59-node distribution system.

Oimizer HC (%) CA ($) CLoss ($) Ccap ($)

Initial - 115,056.665 115,056.665 -

NSGA-II 98.72 23,362.679 19,908.683
3145.196MOPSO 98.72 23,471.887 20,017.891

MOMVO 98.92 30,382.875 26,928.879

Table 3. Tie-lines, soft open points (SOPs) size, and locations.

Optimizer Tie-Lines SOP-Lines SOP-Size (kVA)

NSGA-II 7–8, 18–19, 28–39, 46–47, and 23–32 15–59 100

MOPSO 18–19, 46–47, 15–59, 23–32, and 28–39 7–8
100

MOMVO 100
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Table 4. Distributed generation (DG) nodes for 59-node distribution system.

Node Size (MVA) Node Size (MVA) Node Size (MVA)

2 2.0 16 2.0 41 2.4
6 2.1 18 2.1 43 2.2
9 2.3 22 2.4 45 2.5

12 2.7 26 2.7 49 2.8
13 2.7 27 2.1 50 2.9
14 2.2 35 2.5 53 2.1
15 2.5 37 2.4 57 2.2

4.1.2. Real 83-Node Distribution System in Taiwan

For the 83-node distribution system, the HC reaches >98%. Table 5 gives detailed results for these
three optimization techniques. It is evident that MOPSO outperformed against NSGA-II, and MOMVO
by providing the best HC, and the lowest CA. Tie-lines, SOPs size, and locations are given in Table 6.
The installed DG nodes and ratings are shown in Table 7 for MOPSO. Figure 5 shows the voltage
profile improvement after allocating DGs and SOPs.

Table 5. Deterministic hosting capacity (HC) results for 83-node distribution system.

Optimizer HC (%) CA ($) CLoss ($) Ccap ($)

Initial - 279,692.043 279,692.043 -
NSGA-II 99.118 169,294.656 152,024.675 15,725.981
MOPSO 99.118 154,374.821 144,012.833 9435.5886

MOMVO 98.765 171,268.356 15,0544.379 18,871.177

Table 6. Tie-lines, SOPs size, and locations.

Optimizer Tie-Lines SOP-Lines SOP-Size (kVA)

NSGA-II 6–7, 12–13, 38–39, 54–55, 71–72, 11–43, 14–18, 16–26,
and 28–32

82–83 100
41–42 200
33–34 100
61–62 100

MOPSO
6–7, 12–13, 33–34, 38–39, 41–42, 54–55, 61–62, 82–83,

14–18, 16–26, and 28–32
71–72 200
11–43 100

MOMVO
12–13, 33–34, 38–39, 41–42, 54–55, 61–62, 71–72,

82–83, 11–43, 14–18, and 16–26
6–7 200

28–32 400

Table 7. DGs for 83-node distribution system.

Node Size (MVA) Node Size (MVA) Node Size (MVA)

7 1.9 30 1.8 66 1.6

8 1.7 36 1.8 67 1.6

15 1.9 38 1.8 74 1.7

19 1.9 52 1.9 75 1.6

20 1.7
65 1.7 78 1.8

22 1.8
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4.2. Probabilistic Case Study

For the probabilistic case study, the uncertainty in the load over the year is considered, as shown
in Figure 6. The most crucial load scenarios are generated using the scenario reduction algorithm
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Table 8. Load Scenarios.

s LL (%) ps s LL (%) ps s LL (%) ps

1 94.18 0.1489 5 67.73 0.0846
9 38.83 0.0848

2 87.53 0.0779 6 61.40 0.0779

3 78.82 0.1154 7 56.85 0.0917
10 32.86 0.0898

4 73.82 0.0912 8 46.35 0.1379
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4.2.1. Real 59-Node Distribution System in Cairo

For the 59-node distribution system, the HC reaches >62%, which is lower than the deterministic
case study. Table 9 gives detailed results for these three optimization techniques. Tie-lines, SOPs size,
and locations are given in Table 10. HCs and total power losses for the studied scenarios are shown
in Figures 7 and 8, respectively, and the installed DG ratings for each node are shown in Figure 9.
The voltage profiles before and after allocation of DGs and SOPs for the different scenarios are shown
in Figure 10.

Table 9. Probabilistic results for the 59-node distribution system.

Optimizer PHC (%) CA ($) CLoss ($) Ccap ($)

NSGA-II 62.78 26,331.52 22,877.18 3145.196
MOPSO 62.80 28,174.36 24,720.02 3145.196

MOMVO 62.56 26,509.23 19,600.55 6290.392

Table 10. Tie-lines, SOPs size, and locations.

Optimizer Tie-Lines SOP-Lines SOP-Size (kVA)

NSGA-II 22–23, 38–39, 45–46, 58–59, and 20–56 10–11 100MOPSO

MOMVO 22–23, 38–39, 45–46, and 58–59 10–11 100
19–20 100
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4.2.2. 83-Node Distribution System

For the 83-node distribution system, the HC reaches >57%. Table 11 gives detailed results for these
three optimization techniques. Tie-lines, SOPs size, and locations are given in Table 12. HCs and total
power losses for the studied scenarios are shown in Figures 11 and 12, respectively, and the installed
DG ratings for each node are shown in Figure 13. The voltage profiles are shown in Figure 14 for the
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different scenarios before and after the allocation of DGs and SOPs. Also, the 83-node distribution
network tie-lines, DGs and SOPs locations using MOPSO are shown in Figure 15.

Table 11. Probabilistic results for the 83-node distribution system.

Optimizer PHC (%) CA ($) CLoss ($) Ccap ($)

NSGA-II 59.96 118,598.771 104,781.4 12,580.784
MOPSO 60.71 97,069.876 83,252.51 12,580.784

MOMVO 57.24 98,612.446 95,158.1 3145.1960

Table 12. Tie-lines, SOPs size, and locations.

Optimizer Tie-Lines SOP-Lines SOP-Size (kVA)

NSGA-II
6–7, 12–13, 25–26, 27–28, 32–33,

37–38, 39–40, 54–55, 61–62,
82–83, 12–72 and 14–18

11–43 400

MOPSO
6–7, 12–13, 39–40, 61–62, 81–82,
12–72, 14–18, 28–32, and 29–39

11–43

100
16–26
33–34
5–55

MOMVO
6–7, 12–13, 33–34, 39–40, 61–62,

5–55, 11–43, 12–72, 14–18, 16–26,
28–32, and 29–39

81–82 100
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Figure 13. DG sizes at each node: 83-node distribution system.
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Figure 14. Voltage profile for the 83-node system for different scenarios.



Energies 2020, 13, 5446 17 of 20

Energies 2020, 13, x FOR PEER REVIEW 19 of 23 

 

Figure 14. Voltage profile for the 83-node system for different scenarios. 

As shown in this probabilistic study, it is clear that MOPSO outperformed against NSGA-II and 

MOPSO in maximizing the 𝑃𝐻𝐶 of the studied distribution networks up to >62%, and >60 for the 59- 

and the 83-node distribution systems, respectively. Thus, it is clear that the proposed DGs planning 

strategy has been successfully assisted via simultaneous DSR and SOPs allocation, where the 59-node 

distribution system accepted allocation of DGs among the distribution system nodes, and the 83-node 

distribution system accepted allocation of DGs among 68 nodes of the distribution network. Besides, 

the radiality of the non-SOP feeders is ensured, as shown in Figure 15. Also, MOPSO succeeded in 

maximizing the expected HC for the 59- and the 83-node distribution systems, and minimizing the 

expected total annual cost better than NSGA-II and MOMVO for the 83-node distribution system. 

Thus, in most of the study cases, MOPSO has outperformed against NSGA-II and MOPSO. To sum 

up, SOPs insertion, along with the reconfiguration of the non-SOP tie-lines has provided a new 

perspective in promoting the concept of meshed networks in the distribution grids from the planning 

and the economic viewpoints. Also, the proposed planning strategy was applied to real distribution 

feeders to step on its validity before using it on real large distribution feeders like the 415-, 880-, 1760-

, and 4400-node distribution systems, which will be considered in future works. 

DG Node

~ ~

A
1

5

8

9

10

11 12 13

14

16

B

C

D

E

F

18

20

21

26

28

32

46

43

29

39

40

42

4138

34

G

H

I

J

K

64

55

53

60 56

47

65

72

7376

7783

23 24

22

7

2 3 4 6

15 17 19

25 27

30 31 33 35 36 37

44 45

484950515254

575859616263

666768697071

7475

7879808182

~
~

C

~
~

~ ~

 

Figure 15. 83-node distribution network after SOPs and DGs allocation. 

5. Conclusions 

In this work, a bilevel multi-objective optimization approach is proposed to maximize the HCs 

of two real distribution systems using simultaneous DSR and SOP allocation. Two case studies are 

conducted using both systems, including both deterministic and probabilistic optimization 

approaches. From the obtained results, it is clear that HC was maximized efficiently while 

considering the load uncertainties, and the system is expected to accommodate greater than 62% and 

57% DG penetration in the 59- and 83-node distribution systems. The use of DSR with SOPs 

Figure 15. 83-node distribution network after SOPs and DGs allocation.

As shown in this probabilistic study, it is clear that MOPSO outperformed against NSGA-II
and MOPSO in maximizing the PHC. of the studied distribution networks up to >62%, and >60 for
the 59- and the 83-node distribution systems, respectively. Thus, it is clear that the proposed DGs
planning strategy has been successfully assisted via simultaneous DSR and SOPs allocation, where the
59-node distribution system accepted allocation of DGs among the distribution system nodes, and the
83-node distribution system accepted allocation of DGs among 68 nodes of the distribution network.
Besides, the radiality of the non-SOP feeders is ensured, as shown in Figure 15. Also, MOPSO succeeded
in maximizing the expected HC for the 59- and the 83-node distribution systems, and minimizing
the expected total annual cost better than NSGA-II and MOMVO for the 83-node distribution system.
Thus, in most of the study cases, MOPSO has outperformed against NSGA-II and MOPSO. To sum
up, SOPs insertion, along with the reconfiguration of the non-SOP tie-lines has provided a new
perspective in promoting the concept of meshed networks in the distribution grids from the planning
and the economic viewpoints. Also, the proposed planning strategy was applied to real distribution
feeders to step on its validity before using it on real large distribution feeders like the 415-, 880-, 1760-,
and 4400-node distribution systems, which will be considered in future works.

5. Conclusions

In this work, a bilevel multi-objective optimization approach is proposed to maximize the HCs
of two real distribution systems using simultaneous DSR and SOP allocation. Two case studies are
conducted using both systems, including both deterministic and probabilistic optimization approaches.
From the obtained results, it is clear that HC was maximized efficiently while considering the load
uncertainties, and the system is expected to accommodate greater than 62% and 57% DG penetration
in the 59- and 83-node distribution systems. The use of DSR with SOPs succeeded in improving
the indices of the systems and also in minimizing the expected total annual costs by more than
75.5126% and 57.5967% compared to the initial annual cost for the 59- and 83-node distribution systems,
respectively, at the maximum DGs penetration while considering the load uncertainties. It is therefore
clear that allocating SOPs with the use of DSR succeeded in improving both the HC and the system
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indices. In future work, we will demonstrate the insertion of multi-terminal SOPs along with hourly
DSR and energy storage system allocation for large practical distribution feeders with uncertainties.

Author Contributions: I.M.D. and S.H.E.A.A. designed the problem under study; I.M.D. performed the simulations
and obtained the results. S.H.E.A.A. analyzed the obtained results. I.M.D. wrote the paper, which was further
reviewed by S.H.E.A.A., A.E.-R., A.Y.A. and A.F.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Input Data
ASOP

L Loss coefficient of each VSC
B Set of nodes
c Electricity price
cSOP SOP capital cost per unit capacity
IU
b Maximum line current of the bth line

Nb Total number of lines
Nn Total number of nodes
Nt Total number of tie-lines
Ns Total number of scenarios
NSOP Number of the installed SOPs
PL

j+1 Demanded active power at node j + 1
ps Probability of the sth scenario
q Number of years
S Set of all scenarios
SDG Maximum size of the installed DGs
SSOP

max Maximum SOP size
T Set of tie-lines
VL Lower voltage limit
VU Upper voltage limit
W Set of lines
Zb Impedance of the bth line
α SOP annual operation cost coefficient
Decision Variables of the DSR, the SOP size and location

Rrec
A binary vector indicates the best open/close status of the
distribution system tie-lines

Rtemp
rec

A temporary binary vector indicates open/close status of the
system tie-lines

LSOP
y Binary variable allows SOP allocation instead of the yth tie-line

SSOP
Iy

, SSOP
Jy

VSC size at the Ith, and Jth feeders
Decision Variables of the Deterministic Case Study

LDG
u

Binary variable allows DG allocation at the uth node when its
value equals to one.

PDG
u Injected active power by the uth DG

PSOP
Iy

SOP active power injected at the Ith feeder
QSOP

Iy
, QSOP

Jy
SOP reactive power injected at the Ith and the Jth feeders

Decision Variables of the Probabilistic Case Study
LDG

u,s Binary variable indicates DG allocation
PDG

u,s Injected active power by the uth DG
PSOP

Iy,s SOP active power injected to the Ith feeder
QSOP

Iy,s SOP reactive power injected to the Ith feeder
QSOP

Jy,s SOP reactive power injected at the Jth feeder



Energies 2020, 13, 5446 19 of 20

References

1. Shukla, A.K.; Ahmad, Z.; Sharma, M.; Dwivedi, G.; Verma, T.N.; Jain, S.; Verma, P.; Zare, A. Advances of
Carbon Capture and Storage in Coal-Based Power Generating Units in an Indian Context. Energies 2020,
13, 4124. [CrossRef]

2. Zsiborács, H.; Baranyai, N.H.; Vincze, A.; Zentkó, L.; Birkner, Z.; Máté, K.; Pintér, G. Intermittent Renewable
Energy Sources: The Role of Energy Storage in the European Power System of 2040. Electronics 2019,
8, 729. [CrossRef]

3. Zappa, W.; Junginger, M.; Broek, M.V.D. Is a 100% renewable European power system feasible by 2050?
Appl. Energy 2019, 233–234, 1027–1050. [CrossRef]

4. Aleem, S.A.; Hussain, S.S.; Ustun, T.S. A Review of Strategies to Increase PV Penetration Level in Smart Grids.
Energies 2020, 13, 636. [CrossRef]

5. Ismael, S.M.; Aleem, S.H.A.; Abdelaziz, A.Y.; Zobaa, A.F. State-of-the-art of hosting capacity in modern
power systems with distributed generation. Renew. Energy 2019, 130, 1002–1020. [CrossRef]

6. Fatima, S.; Püvi, V.; Lehtonen, M. Review on the PV Hosting Capacity in Distribution Networks. Energies
2020, 13, 4756. [CrossRef]

7. Mulenga, E.; Bollen, M.H.J.; Etherden, N. A review of hosting capacity quantification methods for
photovoltaics in low-voltage distribution grids. Int. J. Electr. Power Energy Syst. 2020, 115, 105445. [CrossRef]

8. Abideen, M.Z.U.; Ellabban, O.; Al-Fagih, L. A Review of the Tools and Methods for Distribution Networks’
Hosting Capacity Calculation. Energies 2020, 13, 2758. [CrossRef]

9. Pandi, V.R.; Zeineldin, H.H.; Xiao, W.; Zobaa, A.F. Optimal penetration levels for inverter-based distributed
generation considering harmonic limits. Electr. Power Syst. Res. 2013, 97, 68–75. [CrossRef]

10. Ismael, S.M.; Aleem, S.H.E.A.; Abdelaziz, A.Y.; Zobaa, A.F. Probabilistic Hosting Capacity Enhancement in
Non-Sinusoidal Power Distribution Systems Using a Hybrid PSOGSA Optimization Algorithm. Energies
2019, 12, 1018. [CrossRef]

11. Ismael, S.M.; Aleem, S.H.E.A.; Abdelaziz, A.Y.; Zobaa, A.F. Practical Considerations for Optimal Conductor
Reinforcement and Hosting Capacity Enhancement in Radial Distribution Systems. IEEE Access 2018,
6, 27268–27277. [CrossRef]

12. Alalamat, F. Increasing the Hosting Capacity of Radial Distribution Grids in Jordan. Bachelor’s Thesis,
Uppsala University, Uppsala, Sweden, 2015. Available online: http://www.diva-portal.org/smash/record.jsf?
pid=diva2%3A833570&dswid=5802 (accessed on 5 October 2020).

13. Alturki, M.; Khodaei, A. Increasing Distribution Grid Hosting Capacity through Optimal Network Reconfiguration.
In Proceedings of the 2018 North American Power Symposium (NAPS), Fargo, ND, USA, 9–11 September 2018;
pp. 1–6.

14. Falabretti, D.; Merlo, M.; Delfanti, M. Network reconfiguration and storage systems for the hosting
capacity improvement. In Proceedings of the 22nd International Conference on Electricity Distribution,
Stockholm, Sweden, 10–13 June 2013; pp. 10–13.

15. Fu, Y.Y.; Chiang, H.D. Toward optimal multi-period network reconfiguration for increasing the hosting
capacity of distribution networks. In Proceedings of the IEEE Power Energy Society General Meeting 2018,
Portland, OR, USA, 5–9 August 2018; pp. 1–5.

16. Fu, Y.-Y.; Chiang, H.-D. Toward Optimal Multiperiod Network Reconfiguration for Increasing the Hosting
Capacity of Distribution Networks. IEEE Trans. Power Deliv. 2018, 33, 2294–2304. [CrossRef]

17. Capitanescu, F.; Ochoa, L.F.; Margossian, H.; Hatziargyriou, N.D. Assessing the Potential of Network
Reconfiguration to Improve Distributed Generation Hosting Capacity in Active Distribution Systems.
IEEE Trans. Power Syst. 2015, 30, 346–356. [CrossRef]

18. Takenobu, Y.; Yasuda, N.; Minato, S.; Hayashi, Y. Scalable enumeration approach for maximizing hosting
capacity of distributed generation. Int. J. Electr. Power Energy Syst. 2019, 105, 867–876. [CrossRef]

19. Xu, X.; Li, J.; Xu, Z.; Zhao, J.; Lai, C.S. Enhancing photovoltaic hosting capacity—A stochastic approach
to optimal planning of static var compensator devices in distribution networks. Appl. Energy 2019,
238, 952–962. [CrossRef]

20. Divshali, P.H.; Soder, L. Improving Hosting Capacity of Rooftop PVs by Quadratic Control of an LV-Central
BSS. IEEE Trans. Smart Grid 2017, 10, 919–927. [CrossRef]

http://dx.doi.org/10.3390/en13164124
http://dx.doi.org/10.3390/electronics8070729
http://dx.doi.org/10.1016/j.apenergy.2018.08.109
http://dx.doi.org/10.3390/en13030636
http://dx.doi.org/10.1016/j.renene.2018.07.008
http://dx.doi.org/10.3390/en13184756
http://dx.doi.org/10.1016/j.ijepes.2019.105445
http://dx.doi.org/10.3390/en13112758
http://dx.doi.org/10.1016/j.epsr.2012.12.003
http://dx.doi.org/10.3390/en12061018
http://dx.doi.org/10.1109/ACCESS.2018.2835165
http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A833570&dswid=5802
http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A833570&dswid=5802
http://dx.doi.org/10.1109/TPWRD.2018.2801332
http://dx.doi.org/10.1109/TPWRS.2014.2320895
http://dx.doi.org/10.1016/j.ijepes.2018.09.010
http://dx.doi.org/10.1016/j.apenergy.2019.01.135
http://dx.doi.org/10.1109/TSG.2017.2754943


Energies 2020, 13, 5446 20 of 20

21. Alturki, M.; Khodaei, A.; Paaso, A.; Bahramirad, S. Optimization-based distribution grid hosting capacity
calculations. Appl. Energy 2018, 219, 350–360. [CrossRef]

22. Al-Saadi, H.; Zivanovic, R.; Al-Sarawi, S.F. Probabilistic Hosting Capacity for Active Distribution Networks.
IEEE Trans. Ind. Inform. 2017, 13, 2519–2532. [CrossRef]

23. Ji, H.; Li, P.; Wang, C.; Song, G.; Zhao, J.; Su, H.; Wu, J. A Strengthened SOCP-based Approach for
Evaluating the Distributed Generation Hosting Capacity with Soft Open Points. Energy Procedia 2017,
142, 1947–1952. [CrossRef]

24. Thomas, L.J.; Burchill, A.; Rogers, D.J.; Guest, M.; Jenkins, N. Assessing distribution network hosting
capacity with the addition of soft open points. In Proceedings of the IET Conference Publications;
IEEE: Piscataway, NJ, USA, 2016.

25. Ji, H.; Wang, C.; Li, P.; Zhao, J.; Song, G.; Wu, J. Quantified flexibility evaluation of soft open points to improve
distributed generator penetration in active distribution networks based on difference-of-convex programming.
Appl. Energy 2018, 218, 338–348. [CrossRef]

26. Mohamed Diaaeldin, I.; Abdel Aleem, S.H.E.; El-Rafei, A.; Abdelaziz, A.Y.; Zobaa, A.F. A Novel
Graphically-Based Network Reconfiguration for Power Loss Minimization in Large Distribution Systems.
Mathematics 2019, 7, 1182. [CrossRef]

27. Bloemink, J.M.; Green, T.C. Increasing photovoltaic penetration with local energy storage and soft
normally-open points. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting,
Detroit, MI, USA, 24–28 July 2011; pp. 1–8.

28. Bloemink, J.M.; Green, T.C. Benefits of Distribution-Level Power Electronics for Supporting Distributed
Generation Growth. IEEE Trans. Power Deliv. 2013, 28, 911–919. [CrossRef]

29. Diaaeldin, I.M.; Aleem, S.H.E.A.; El-Rafei, A.; Abdelaziz, A.Y.; Zobaa, A.F. Optimal Network Reconfiguration
in Active Distribution Networks with Soft Open Points and Distributed Generation. Energies 2019,
12, 4172. [CrossRef]

30. Wang, C.; Song, G.; Li, P.; Ji, H.; Zhao, J.; Wu, J. Optimal siting and sizing of soft open points in active
electrical distribution networks. Appl. Energy 2017, 189, 301–309. [CrossRef]

31. Growe-Kuska, N.; Heitsch, H.; Romisch, W. Scenario reduction and scenario tree construction for power
management problems. In Proceedings of the 2003 IEEE Bologna Power Tech Conference Proceedings,
Bologna, Italy, 23–26 June 2003; Volume 3, pp. 152–158.

32. Hwang, C.-L.; Lai, Y.-J.; Liu, T.-Y. A new approach for multiple objective decision making. Comput. Oper. Res.
1993, 20, 889–899. [CrossRef]

33. Saleh, O.A.; Elshahed, M.; Elsayed, M. Enhancement of radial distribution network with distributed
generation and system reconfiguration. J. Electr. Syst. 2018, 14, 36–50.

34. Brownlee, A.E.I.; Wright, J.A. Constrained, mixed-integer and multi-objective optimisation of building
designs by NSGA-II with fitness approximation. Appl. Soft Comput. 2015, 33, 114–126. [CrossRef]

35. Zhao, X.; Jin, Y.; Ji, H.; Geng, J.; Liang, X.; Jin, R. An improved mixed-integer multi-objective particle swarm
optimization and its application in antenna array design. In Proceedings of the 2013 5th IEEE International
Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications,
Chengdu, China, 29–31 October 2013; pp. 412–415.

36. Mirjalili, S.; Jangir, P.; Mirjalili, S.Z.; Saremi, S.; Trivedi, I.N. Optimization of problems with multiple objectives
using the multi-verse optimization algorithm. Knowl. Based Syst. 2017, 134, 50–71. [CrossRef]

37. PCS 6000 for Large Wind Turbines: Medium Voltage, Full Power Converters Up to 9 MVA.
ABB, Brochure 3BHS351272 E01 Rev. A. Available online: http://new.abb.com/docs/default-source/ewea-doc/

pcs6000wind.pdf (accessed on 10 October 2020).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.apenergy.2017.10.127
http://dx.doi.org/10.1109/TII.2017.2698505
http://dx.doi.org/10.1016/j.egypro.2017.12.394
http://dx.doi.org/10.1016/j.apenergy.2018.02.170
http://dx.doi.org/10.3390/math7121182
http://dx.doi.org/10.1109/TPWRD.2012.2232313
http://dx.doi.org/10.3390/en12214172
http://dx.doi.org/10.1016/j.apenergy.2016.12.075
http://dx.doi.org/10.1016/0305-0548(93)90109-V
http://dx.doi.org/10.1016/j.asoc.2015.04.010
http://dx.doi.org/10.1016/j.knosys.2017.07.018
http://new.abb.com/docs/default-source/ewea-doc/pcs6000wind.pdf
http://new.abb.com/docs/default-source/ewea-doc/pcs6000wind.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Power Flow Equations 
	Distribution System Reconfiguration 
	DG Modeling 
	SOP Modeling 
	Deterministic Case 
	Probabilistic Case 

	Scenario Reduction 

	Problem Formulation 
	Deterministic HC 
	Upper Level 
	Lower Level 

	Probabilistic HC 
	Upper Level 
	Lower Level 


	Results and Discussion 
	Deterministic Case Study 
	Real 59-Node Distribution System in Cairo 
	Real 83-Node Distribution System in Taiwan 

	Probabilistic Case Study 
	Real 59-Node Distribution System in Cairo 
	83-Node Distribution System 


	Conclusions 
	References

