Time-Frequency Image Analysis and Transfer Learning for Capacity Prediction of Lithium-Ion Batteries
Abstract
:1. Introduction
1.1. Motivation
1.2. Previous Work
1.3. Contributions
1.4. Structure
2. Randomised Battery Dataset
2.1. Random Walk Cycling Mode
2.2. Reference Charge and Discharge Cycle Mode
3. The Proposed Capacity Imaging Analysis Scheme
3.1. Time–Frequency Image (TFI) Analysis
3.2. Time-Frequency Image Analysis and Classification Using Deep Learning Algorithm
4. Results and Discussion
4.1. Time–Frequency Image (TFI) Results
4.2. DL-CNN Results
4.2.1. AlexNet Neural Network
4.2.2. VGG-16 Neural Network
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ren, G.; Ma, G.; Cong, N. Review of electrical energy storage system for vehicular applications. Renew. Sustain. Energy Rev. 2015, 41, 225–236. [Google Scholar] [CrossRef]
- Waag, W.; Fleischer, C.; Sauer, D.U. Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles. J. Power Sources 2014, 258, 321–339. [Google Scholar] [CrossRef]
- Zhang, R.; Xia, B.; Li, B.; Cao, L.; Lai, Y.; Zheng, W.; Wang, H.; Wang, W. State of the Art of Lithium-Ion Battery SOC Estimation for Electrical Vehicles. Energies 2018, 11, 1820. [Google Scholar] [CrossRef] [Green Version]
- Cadini, F.; Sbarufatti, C.; Cancelliere, F.; Giglio, M. State-of-life prognosis and diagnosis of lithium-ion batteries by data-driven particle filters. Appl. Energy 2019, 235, 661–672. [Google Scholar] [CrossRef]
- Vetter, J.; Novák, P.; Wagner, M.R.; Veit, C.; Möller, K.C.; Besenhard, J.O.; Winter, M.; Wohlfahrt-Mehrens, M.; Vogler, C.; Hammouche, A. Ageing mechanisms in lithium-ion batteries. J. Power Sources 2005, 147, 269–281. [Google Scholar] [CrossRef]
- Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272–288. [Google Scholar] [CrossRef]
- Farmann, A.; Waag, W.; Marongiu, A.; Sauer, D.U. Critical review of on-board capacity estimation techniques for lithium-ion batteries in electric and hybrid electric vehicles. J. Power Sources 2015, 281, 114–130. [Google Scholar] [CrossRef]
- Tian, H.; Qin, P.; Li, K.; Zhao, Z. A review of the state of health for lithium-ion batteries: Research status and suggestions. J. Clean. Prod. 2020, 261, 120813. [Google Scholar] [CrossRef]
- Berecibar, M.; Gandiaga, I.; Villarreal, I.; Omar, N.; Van Mierlo, J.; Van den Bossche, P. Critical review of state of health estimation methods of Li-ion batteries for real applications. Renew. Sustain. Energy Rev. 2016, 56, 572–587. [Google Scholar] [CrossRef]
- Lipu, M.S.H.; Hannan, M.A.; Hussain, A.; Hoque, M.M.; Ker, P.J.; Saad, M.H.M.; Ayob, A. A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: Challenges and recommendations. J. Clean. Prod. 2018, 205, 115–133. [Google Scholar] [CrossRef]
- Xiong, R.; Li, L.; Tian, J. Towards a smarter battery management system: A critical review on battery state of health monitoring methods. J. Power Sources 2018, 405, 18–29. [Google Scholar] [CrossRef]
- Meng, H.; Li, Y.-F. A review on prognostics and health management (PHM) methods of lithium-ion batteries. Renew. Sustain. Energy Rev. 2019, 116, 109405. [Google Scholar] [CrossRef]
- Plett, G.L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation. J. Power Sources 2004, 134, 277–292. [Google Scholar] [CrossRef]
- Bian, X.; Liu, L.; Yan, J. A model for state-of-health estimation of lithium ion batteries based on charging profiles. Energy 2019, 177, 57–65. [Google Scholar] [CrossRef]
- Zou, Y.; Hu, X.; Ma, H.; Li, S.E. Combined State of Charge and State of Health estimation over lithium-ion battery cell cycle lifespan for electric vehicles. J. Power Sources 2015, 273, 793–803. [Google Scholar] [CrossRef]
- Bartlett, A.; Marcicki, J.; Onori, S.; Rizzoni, G.; Yang, X.G.; Miller, T. Electrochemical Model-Based State of Charge and Capacity Estimation for a Composite Electrode Lithium-Ion Battery. IEEE Trans. Control Syst. Technol. 2016, 24, 384–399. [Google Scholar] [CrossRef]
- Lotfi, N.; Li, J.; Landers, R.G.; Park, J. Li-ion Battery State of Health Estimation based on an improved Single Particle model. In Proceedings of the 2017 American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017; pp. 86–91. [Google Scholar]
- Wu, B.; Han, S.; Shin, K.G.; Lu, W. Application of artificial neural networks in design of lithium-ion batteries. J. Power Sources 2018, 395, 128–136. [Google Scholar] [CrossRef]
- Hu, C.; Jain, G.; Zhang, P.; Schmidt, C.; Gomadam, P.; Gorka, T. Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery. Appl. Energy 2014, 129, 49–55. [Google Scholar] [CrossRef]
- Hu, X.; Li, S.; Peng, H. A comparative study of equivalent circuit models for Li-ion batteries. J. Power Sources 2012, 198, 359–367. [Google Scholar] [CrossRef]
- Li, J.; Adewuyi, K.; Lotfi, N.; Landers, R.G.; Park, J. A single particle model with chemical/mechanical degradation physics for lithium ion battery State of Health (SOH) estimation. Appl. Energy 2018, 212, 1178–1190. [Google Scholar] [CrossRef]
- Lin, C.; Xing, J.; Tang, A. Lithium-ion Battery State of Charge/State of Health Estimation Using SMO for EVs. Energy Procedia 2017, 105, 4383–4388. [Google Scholar] [CrossRef]
- Li, Y.; Liu, K.; Foley, A.M.; Zülke, A.; Berecibar, M.; Nanini-Maury, E.; Van Mierlo, J.; Hoster, H.E. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review. Renew. Sustain. Energy Rev. 2019, 113, 109254. [Google Scholar] [CrossRef]
- Ng, M.-F.; Zhao, J.; Yan, Q.; Conduit, G.J.; Seh, Z.W. Predicting the state of charge and health of batteries using data-driven machine learning. Nat. Mach. Intell. 2020, 2, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Nuhic, A.; Terzimehic, T.; Soczka-Guth, T.; Buchholz, M.; Dietmayer, K. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. J. Power Sources 2013, 239, 680–688. [Google Scholar] [CrossRef]
- Severson, K.A.; Attia, P.M.; Jin, N.; Perkins, N.; Jiang, B.; Yang, Z.; Chen, M.H.; Aykol, M.; Herring, P.K.; Fraggedakis, D.; et al. Data-driven prediction of battery cycle life before capacity degradation. Nat. Energy 2019, 4, 383–391. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.; Lü, Z.; Wang, H.; Wei, H.; Chen, L. Novel battery state-of-health online estimation method using multiple health indicators and an extreme learning machine. Energy 2018, 160, 466–477. [Google Scholar] [CrossRef]
- Hu, C.; Jain, G.; Schmidt, C.; Strief, C.; Sullivan, M. Online estimation of lithium-ion battery capacity using sparse Bayesian learning. J. Power Sources 2015, 289, 105–113. [Google Scholar] [CrossRef]
- Venugopal, P.; Vigneswaran, T. State-of-Health Estimation of Li-ion Batteries in Electric Vehicle Using IndRNN under Variable Load Condition. Energies 2019, 12, 4338. [Google Scholar] [CrossRef] [Green Version]
- Khaleghi, S.; Firouz, Y.; Van Mierlo, J.; Van den Bossche, P. Developing a real-time data-driven battery health diagnosis method, using time and frequency domain condition indicators. Appl. Energy 2019, 255, 113813. [Google Scholar] [CrossRef]
- Kim, J. Discrete Wavelet Transform-Based Feature Extraction of Experimental Voltage Signal for Li-Ion Cell Consistency. IEEE Trans. Veh. Technol. 2016, 65, 1150–1161. [Google Scholar] [CrossRef]
- Cai, Y.; Yang, L.; Deng, Z.; Zhao, X.; Deng, H. Online identification of lithium-ion battery state-of-health based on fast wavelet transform and cross D-Markov machine. Energy 2018, 147, 621–635. [Google Scholar] [CrossRef]
- You, G.-W.; Park, S.; Oh, D. Real-time state-of-health estimation for electric vehicle batteries: A data-driven approach. Appl. Energy 2016, 176, 92–103. [Google Scholar] [CrossRef]
- Shen, S.; Sadoughi, M.; Chen, X.; Hong, M.; Hu, C. A deep learning method for online capacity estimation of lithium-ion batteries. J. Energy Storage 2019, 25, 100817. [Google Scholar] [CrossRef]
- Shen, S.; Sadoughi, M.; Li, M.; Wang, Z.; Hu, C. Deep convolutional neural networks with ensemble learning and transfer learning for capacity estimation of lithium-ion batteries. Appl. Energy 2020, 260, 114296. [Google Scholar] [CrossRef]
- Bole, B.; Kulkarni, C.S.; Daigle, M. Randomized battery usage data set. NASA AMES Progn. Data Repos. 2014, 70. Available online: https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/ (accessed on 10 October 2020).
- Bole, B.; Kulkarni, C.S.; Daigle, M. Adaptation of an electrochemistry-based Li-ion battery model to account for deterioration observed under randomized use. Proc. Annu. Conf. Progn. Health Manag. Soc. 2014, 2, 1–9. [Google Scholar]
- Yu, J.; Mo, B.; Tang, D.; Yang, J.; Wan, J.; Liu, J. Indirect State-of-Health Estimation for Lithium-Ion Batteries under Randomized Use. Energies 2017, 10, 2012. [Google Scholar] [CrossRef] [Green Version]
- Feltane, A. Time-Frequency Based Methods for Non-Stationary Signal Analysis with Application To EEG Signals. Ph.D. Thesis, The University of Rhode Island, Kingston, RL, USA, 2016. [Google Scholar]
- Sejdić, E.; Orović, I.; Stanković, S. Compressive sensing meets time–frequency: An overview of recent advances in time–frequency processing of sparse signals. Digit. Signal Process. 2018, 77, 22–35. [Google Scholar] [CrossRef]
- Li, X.; Ding, Q.; Sun, J.-Q. Remaining useful life estimation in prognostics using deep convolution neural networks. Reliab. Eng. Syst. Saf. 2018, 172, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Boashash, B.; Ouelha, S. Automatic signal abnormality detection using time-frequency features and machine learning: A newborn EEG seizure case study. Knowl. Based Syst. 2016, 106, 38–50. [Google Scholar] [CrossRef]
- Yan, R.; Gao, R.X.; Chen, X. Wavelets for fault diagnosis of rotary machines: A review with applications. Signal Process. 2014, 96, 1–15. [Google Scholar] [CrossRef]
- Shao, S.; McAleer, S.; Yan, R.; Baldi, P. Highly Accurate Machine Fault Diagnosis Using Deep Transfer Learning. IEEE Trans. Ind. Inform. 2019, 15, 2446–2455. [Google Scholar] [CrossRef]
- Boashash, B.; Ouelha, S. Designing high-resolution time–frequency and time–scale distributions for the analysis and classification of non-stationary signals: A tutorial review with a comparison of features performance. Digit. Signal Process. 2018, 77, 120–152. [Google Scholar] [CrossRef]
- Nielsen, M.A. Neural Networks and Deep Learning; Determination press: San Francisco, CA, USA, 2015; Volume 2018. [Google Scholar]
- Yoo, Y.; Baek, J.-G. A Novel Image Feature for the Remaining Useful Lifetime Prediction of Bearings Based on Continuous Wavelet Transform and Convolutional Neural Network. Appl. Sci. 2018, 8, 1102. [Google Scholar] [CrossRef] [Green Version]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, C.C. Neural Networks and Deep Learning; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Liao, Y.; Zeng, X.; Li, W. Wavelet transform based convolutional neural network for gearbox fault classification. In Proceedings of the 2017 Prognostics and System Health Management Conference (PHM-Harbin), Harbin, China, 9–12 July 2017; pp. 1–6. [Google Scholar]
- Zhang, Y.; Tang, Q.; Zhang, Y.; Wang, J.; Stimming, U.; Lee, A.A. Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning. Nat. Commun. 2020, 11, 1706. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems 25 (NIPS 2012), Lake Tahoe, NV, USA, 3–8 December 2012; pp. 1097–1105. [Google Scholar]
- Patil, M.A.; Tagade, P.; Hariharan, K.S.; Kolake, S.M.; Song, T.; Yeo, T.; Doo, S. A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation. Appl. Energy 2015, 159, 285–297. [Google Scholar] [CrossRef]
- Ali, M.U.; Zafar, A.; Nengroo, S.H.; Hussain, S.; Park, G.-S.; Kim, H.-J. Online Remaining Useful Life Prediction for Lithium-Ion Batteries Using Partial Discharge Data Features. Energies 2019, 12, 4366. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
Battery Properties | 18650 LIBs |
---|---|
Manufacture | LG Chem |
Chemistry | 18650 lithium cobalt oxide vs. graphite |
Nominal capacity | 2.10 Ah |
Capacity range | 2.10 Ah–0.80 Ah |
Voltage range | 4.2–3.2 V |
Capacity (Ah) | RW10 | RW11 | RW12 |
---|---|---|---|
2.1 | |||
1.8 | |||
1.6 | |||
1.4 | |||
1.2 |
Hyperparameters | Values |
---|---|
Momentum | 0.9 |
Initial learning rate | 0.0001 |
Learning rate drop factor | 0.1 |
Learning rate drop period | 10 |
Number of epochs | 50 |
Batch size | 15 |
Optimiser | SGDM, ADAM |
Name | Type | Activations | Learnable |
---|---|---|---|
Data 227 × 227 × 3 images | Image input | 227 × 227 × 3 | - |
Conv 1 | Convolution | 55 × 55 × 96 | Weights 11 × 11 × 3 × 96 Bias 1 × 1 × 96 |
Pool 1 | Max Pooling | 27 × 27 × 96 | - |
Conv 2 | Convolution | 27 × 27 × 256 | Weights 5 × 5 × 48 × 256 Bias 1 × 1x256 |
Pool 2 | Max Pooling | 13 × 13 × 256 | - |
Conv 3 | Convolution | 13 × 13 × 384 | Weights 3 × 3 × 256 × 384 Bias 1 × 1 × 384 |
Conv 4 | Convolution | 13 × 13 × 384 | Weights 3 × 3 × 192 × 384 Bias 1 × 1 × 384 |
Conv 5 | Convolution | 13 × 13 × 256 | Weights 3 × 3 × 192 × 256 Bias 1 × 1x256 |
Pool 5 | Max Pooling | 6 × 6 × 256 | - |
Fc6 | Fully Connected | 1 × 1 × 4096 | Weights 4096 × 9216 Bias 4096 × 1 |
Fc7 | Fully Connected | 1 × 1 × 4096 | Weights 4096 × 4096 Bias 4096 × 1 |
Fc8 | Fully Connected | 1 × 1 × 1000 | Weights 1000 × 4096 Bias 1000 × 1 |
Prob Softmax layer | Softmax | 1 × 1 × 1000 | - |
Output | Classification | - | - |
RW9 | RW10 | RW11 | RW12 | |||||
---|---|---|---|---|---|---|---|---|
Optimiser | SGDM | Adam | SGDM | ADAM | SGDM | ADAM | SGDM | ADAM |
Accuracy | 95.0673% | 95.69% | 91.96% | 94.20% | 93.39% | 94.27% | 90.25% | 91.5% |
Name | Type | Activations | Learnable |
---|---|---|---|
Data 224 × 224 × 3 images | Image input | 224 × 224 × 3 | - |
Block 1-Conv 1 | Convolution | 224 × 224 × 64 | Weights 3 × 3 × 3 × 64, Bias 1 × 1x 64 |
Block 1-Conv 2 | Convolution | 224 × 224 × 64 | Weights 3 × 3 × 3 × 64, Bias 1 × 1 × 64 |
Block 1-Pool | Max Pooling | 112 × 112 × 64 | - |
Block 2-Conv 1 | Convolution | 112 × 112 × 128 | Weights 3 × 3 × 64 × 128, Bias 1 × 1 × 128 |
Block 2-Conv 2 | Convolution | 112 × 112 × 128 | Weights 3 × 3 × 128 × 128, Bias 1 × 1 × 128 |
Block 2-Pool | Max Pooling | 56 × 56 × 128 | - |
Block 3-Conv 1 | Convolution | 56 × 56 × 256 | Weights 3 × 3 × 128 × 256, Bias 1 × 1 × 256 |
Block 3-Conv 2 | Convolution | 56 × 56 × 256 | Weights 3 × 3 × 128 × 256, Bias 1 × 1 × 256 |
Block 3-Pool | Max Pooling | 28 × 28 × 256 | - |
Block 4-Conv 1 | Convolution | 28 × 28 × 512 | Weights 3 × 3 × 256 × 512, Bias 1 × 1 × 512 |
Block 4-Conv 2 | Convolution | 28 × 28 × 512 | Weights 3 × 3 × 256 × 512, Bias 1 × 1 × 512 |
Block 4-Pool | Max Pooling | 14 × 14 × 512 | - |
Block 5-Conv 1 | Convolution | 14 × 14 × 512 | Weights 3 × 3 × 512 × 512, Bias 1 × 1 × 512 |
Block 5-Conv 2 | Convolution | 14 × 14 × 512 | Weights 3 × 3 × 512 × 512, Bias 1 × 1 × 512 |
Block 5-Pool | Max Pooling | 7 × 7 × 512 | - |
Fc1 | Fully Connected | 1 × 1 × 4096 | Weights 4096 × 4096, Bias 4096 × 1 |
Fc2 | Fully Connected | 1 × 1 × 4096 | Weights 4096 × 4096, Bias 4096 × 1 |
Prob Softmax layer | Softmax | 1 × 1 × 1000 | - |
Output | Classification | - | - |
RW9 | RW10 | RW11 | RW12 | |||||
---|---|---|---|---|---|---|---|---|
Optimiser | SGDM | ADAM | SGDM | ADAM | SGDM | ADAM | SGDM | ADAM |
Accuracy | 95.52% | 95.52% | 95.09% | 95.60% | 94.29% | 94.92% | 92.25% | 95.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Dalahmeh, M.; Al-Greer, M.; El-Dalahmeh, M.; Short, M. Time-Frequency Image Analysis and Transfer Learning for Capacity Prediction of Lithium-Ion Batteries. Energies 2020, 13, 5447. https://doi.org/10.3390/en13205447
El-Dalahmeh M, Al-Greer M, El-Dalahmeh M, Short M. Time-Frequency Image Analysis and Transfer Learning for Capacity Prediction of Lithium-Ion Batteries. Energies. 2020; 13(20):5447. https://doi.org/10.3390/en13205447
Chicago/Turabian StyleEl-Dalahmeh, Ma’d, Maher Al-Greer, Mo’ath El-Dalahmeh, and Michael Short. 2020. "Time-Frequency Image Analysis and Transfer Learning for Capacity Prediction of Lithium-Ion Batteries" Energies 13, no. 20: 5447. https://doi.org/10.3390/en13205447
APA StyleEl-Dalahmeh, M., Al-Greer, M., El-Dalahmeh, M., & Short, M. (2020). Time-Frequency Image Analysis and Transfer Learning for Capacity Prediction of Lithium-Ion Batteries. Energies, 13(20), 5447. https://doi.org/10.3390/en13205447