Mass Transfer Correlation and Optimization of Carbon Dioxide Capture in a Microchannel Contactor: A Case of CO2-Rich Gas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. CO2 Capture Process
2.3. Mass Transfer Coefficient Calculation
3. Results and Discussion
3.1. Main Effect of Absorption Variables
3.2. Interaction Effect of Absorption Variables
3.3. Flow Pattern of CO2 Capture Process
3.4. Correlation Model
3.5. Optimization
3.6. Comparison of the Liquid-Side Volumetric Mass Transfer Coefficient for Different Systems
3.7. Physicochemical Absorption
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature and Units
a | Interfacial area per reactor volume, m2 m−3 |
C | CO2 concentrations, M |
Ca | Capillary number |
d | Absorber diameter, m |
D | Diffusivity, m2 s−1 |
H | Henry’s Law constant, mol Pa−1 m−3 |
h | Height of absorber, m |
kG | Gas-side mass transfer coefficient, mol m−2 s−1 Pa−1 |
KL | Overall liquid-side mass transfer coefficient, m s−1 |
KLa | Overall gas-liquid volumetric mass transfer coefficient, s−1 |
kL | Liquid-side mass transfer coefficient, m s−1 |
n | Molar flow rate, mol h−1 |
CO2 absorption flux, mol m−2 h−1 | |
P | Partial pressure, Pa |
Q | Volumetric flow rate, m3 s−1 |
Re | Reynold number |
Sc | Schmidt number |
Sh | Sherwood number |
Sh* | Modified Sherwood number |
T | Temperature, °C |
VR | Reactor volume, m3 |
LHSV | Liquid Hourly Space Velocity, h−1 |
GHSV | Gas Hourly Space Velocity, h−1 |
LMPD | Logarithmic mean pressure difference, Pa |
μ | Viscosity, kg m−1 s−1 |
ρ | Density, kg m−3 |
G | Gas phase |
L | Liquid phase |
CO2 | Carbon dioxide |
H2O | Water |
H2O | Water |
in | Inlet |
out | Outlet |
i | At interface |
bulk | At bulk phase |
References
- Noorollahi, Y.; Kheirrouz, M.; Asl, H.F.; Yousefi, H.; Hajinezhatd, A. Biogas production potential from livestock manure in Iran. Renew. Sustain. Energ. Rev. 2015, 50, 748–754. [Google Scholar] [CrossRef]
- Khraisheh, M.; Mukherjee, S.; Kumar, A.; Momani, F.A.; Walker, G.; Zaworotko, M.J. An overview on trace CO2 removal by advanced physisorbent materials. J. Environ. Manag. 2020, 255, 109874. [Google Scholar] [CrossRef] [PubMed]
- Pashaei, H.; Ghaemi, A. CO2 absorption into aqueous diethanolamine solution with nano heavy metal oxide particles using stirrer bubble column: Hydrodynamics and mass transfer. J. Environ. Chem. Eng. 2020, 8, 104110. [Google Scholar] [CrossRef]
- Ma, D.; Zhu, C.; Fu, T.; Yuan, X.; Ma, Y. An effective hybrid solvent of MEA/DEEA for CO2 absorption and its mass transfer performance in microreactor. Sep. Purif. Technol. 2020, 242, 116795. [Google Scholar] [CrossRef]
- Sahraie, S.; Rashidi, H.; Sheyda, P.V. An optimization framework to investigate the CO2 capture performance by MEA: Experimental and statistical studies using Box-Behnken design. Process Saf. Environ. Prot. 2019, 122, 161–168. [Google Scholar] [CrossRef]
- Hemmati, A.; Rashidi, H.; Behradfar, K.; Kazem, A. A comparative study of different mass transfer and liquid hold-up correlations in modeling CO2 absorption with MEA. J. Nat. Gas Sci. Eng. 2019, 62, 92–100. [Google Scholar] [CrossRef]
- Chen, P.C.; Lin, S.Z. Optimization in the absorption and desorption of co2 using sodium glycinate solution. Appl. Sci. 2018, 8, 2041. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Wang, S.; Xu, L. Screening of physical-chemical biphasic solvents for CO2 absorption. Int. J. Greenh. Gas Control 2019, 85, 199–205. [Google Scholar] [CrossRef]
- Aghel, B.; Heidaryan, E.; Sahraie, S.; Mir, S. Application of the microchannel reactor to carbon dioxide absorption. J. Clean. Prod. 2019, 231, 723–732. [Google Scholar] [CrossRef]
- Akkarawatkhoosith, N.; Kaewchada, A.; Jaree, A. High-throughput CO2 capture for biogas purification using monoethanolamine in a microtube contactor. J. Taiwan Inst. Chem. Eng. 2019, 98, 113–123. [Google Scholar] [CrossRef]
- Remacha, M.J.N.; Kulkarni, A.A.; Jensen, K.F. Gas-liquid flow and mass transfer in an advanced-flow reactor. Ind. Eng. Chem. Res. 2013, 52, 8996–9010. [Google Scholar] [CrossRef]
- Luo, X.; Hartono, A.; Svendsen, H.F. Comparative kinetics of carbon dioxide absorption in unloaded aqueous monoethanolamine solutions using wetted wall and string of discs columns. Chem. Eng. Sci. 2012, 82, 31–43. [Google Scholar] [CrossRef]
- Yusof, S.M.M.; Lau, K.K.; Shariff, A.M.; Tay, W.H.; Mustafa, N.F.A.; Lock, S.S.M. Novel continuous ultrasonic contactor system for CO2 absorption: Parametric and optimization study. J. Ind. Eng. Chem. 2019, 79, 279–287. [Google Scholar] [CrossRef]
- Wangfeng, C.; Jiao, Z.; Xubin, Z.; Yan, W. Enhancement of CO2 absorption under taylor flow in the presence of fine particles. Chin. J. Chem. Eng. 2013, 21, 135–143. [Google Scholar]
- Luo, X.; Hartono, A.; Hussain, S.; Svendsen, H.F. Mass transfer and kinetics of carbon dioxide absorption into loaded aqueous monoethanolamine solutions. Chem. Eng. Sci. 2015, 123, 57–69. [Google Scholar] [CrossRef]
- Versteeg, G.F.; Swaaij, W.P.M.V. Solubility and diffusivity of acid gases (COP, N20) in aqueous alkanolamine solutions. J. Chem. Eng. Data 1988, 33, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, H.; Svensson, H. Rate of absorption for CO2 absorption systems using a wetted wall column. Energy Procedia 2017, 114, 2009–2023. [Google Scholar] [CrossRef]
- Bhaduri, G.A.; Siller, L. Nickel nanoparticles catalyse reversible hydration of carbon dioxide for mineralization carbon capture and storage. Catal. Sci. Technol. 2013, 3, 1234–1239. [Google Scholar] [CrossRef]
- Cadogan, S.P.; Maitland, G.C.; Trusler, J.P.M. Diffusion Coefficients of CO2 and N2 in Water at Temperatures between 298.15 K and 423.15 K at Pressures up to 45 MPa. J. Chem. Eng. Data 2014, 59, 519–525. [Google Scholar] [CrossRef] [Green Version]
- Mansourizadeh, A.; Ismail, A.F.; Matsuura, T. Effect of operating conditions on the physical and chemical CO2 absorption through the PVDF hollow fiber membrane contactor. J. Membr. Sci. 2010, 353, 192–200. [Google Scholar] [CrossRef]
- Diamond, L.W.; Akinfiev, N.N. Solubility of CO2 in water from −1.5 to 100 °C and from 0.1 to 100 MPa: Evaluation of literature data and thermodynamic modelling. Fluid Phase Equilibria 2003, 208, 265–290. [Google Scholar] [CrossRef]
- Hassan, I.; Vaillancourt, M.; Pehlivan, K. Two-phase flow regime transitions in microchannels: A comparative experimental study. Microscale Thermophys. Eng. 2005, 9, 165–182. [Google Scholar] [CrossRef]
- Kashid, M.N.; Renken, A.; Minsker, L.K. Gas-liquid and liquid-liquid mass transfer in microstructured reactors. Chem. Eng. Sci. 2011, 66, 3876–3897. [Google Scholar] [CrossRef]
- Shao, N.; Gavriilidis, A.; Angeli, P. Flow regimes for adiabatic gas-liquid flow in microchannels. Chem. Eng. Sci. 2009, 64, 2749–2761. [Google Scholar] [CrossRef]
- Yue, J.; Chen, G.; Yuan, Q.; Luo, L.; Gonthier, Y. Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel. Chem. Eng. Sci. 2007, 62, 2096–2108. [Google Scholar] [CrossRef]
- Sheyda, P.V.; Afshari, A. A detailed screening on the mass transfer modeling of the CO2 absorption utilizing silica nanofluid in a wetted wall column. Process Saf. Environ. Prot. 2019, 127, 125–132. [Google Scholar] [CrossRef]
- Puxty, G.; Rowland, R.; Attalla, M. Comparison of the rate of CO2 absorption in to aqueous ammonia and monoethanolamine. Chem. Eng. Sci. 2010, 65, 915–992. [Google Scholar] [CrossRef]
- Arachchige, U.S.P.R.; Aryal, N.; Eimer, D.A.; Melaaen, M.C. Viscosities of pure and aqueous solutions of monoethanolamine (MEA), diethanolamine (DEA) and N-methyldiethanolamine (MDEA). Nord. Rheol. Soc. 2013, 21, 299–306. [Google Scholar]
- Li, C.; Zhu, C.; Ma, Y.; Liu, D.; Gao, X. Experimental study on volumetric mass transfer coefficient of CO2 absorption into MEA aqueous solution in a rectangular microchannel reactor. Int. J. Heat Mass Transf. 2014, 78, 1055–1059. [Google Scholar] [CrossRef]
- Ji, X.Y.; Ma, Y.G.; Fu, T.T.; Zhu, C.Y.; Wang, D.J. Experimental investigation on liquid volumetric mass transfer coefficient for upward gas-liquid two-phase flow in rectangular microchannels. Br. J. Chem. Eng. 2010, 27, 573–582. [Google Scholar] [CrossRef] [Green Version]
- Isa, F.; Suleman, H.; Zabiri, H.; Maulud, A.S.; Ramasamy, M.; Tufa, L.D.; Shariff, A.M. An overview on CO2 removal via absorption: Effect of elevated pressures in counter-current packed column. J. Nat. Gas Sci. Eng. 2016, 33, 666–677. [Google Scholar] [CrossRef]
- Guangwen, C.; Jun, Y.; Quan, Y. Gas-Liquid Microreaction Technology: Recent Developments and Future Challenges. Chin. J. Chem. Eng. 2008, 16, 663–669. [Google Scholar]
- Zhu, K.; Yao, C.; Liu, Y.; Chen, G. Theoretical approach to CO2 absorption in microreactors and reactor volume prediction. Chem. Eng. Process. 2020, 150, 107904. [Google Scholar] [CrossRef]
- Elhajj, J.; Hindi, M.A.; Azizi, F. A Review of the absorption and desorption processes of carbon dioxide in water systems. Ind. Eng. Chem. Res. 2014, 53, 2–22. [Google Scholar] [CrossRef]
- Yao, C.; Dong, Z.; Zhao, Y.; Chen, G. Gas-liquid flow and mass transfer in a microchannel under elevated pressures. Chem. Eng. Sci. 2015, 123, 137–145. [Google Scholar] [CrossRef]
- Charpentier, J.C. Mass-transfer rates in gas–liquid absorbers and reactors. Adv. Chem. Eng. 1981, 11, 1–133. [Google Scholar]
- Kies, F.K.; Benadda, B.; Otterbein, M. Experimental study on mass transfer of a co-current gas–liquid contactor performing under high gas velocities. Chem. Eng. Process. 2004, 43, 1389–1395. [Google Scholar] [CrossRef]
- Salimi, J.; Salimi, F. CO2 capture by water-based Al2O3 and Al2O3-SiO2 mixture nanofluids in an absorption packed column. Rev. Mex. Ing. Quim. 2016, 15, 185–192. [Google Scholar]
- Hill, G.A. measurement of overall volumetric mass transfer coefficients for carbon dioxide in a well-mixed reactor using a pH probe. Ind. Eng. Chem. Res. 2006, 45, 5796–5800. [Google Scholar] [CrossRef]
- Wang, F.; Kang, G.; Liu, D.; Li, M.; Cao, Y. Enhancing CO2 Absorption Efficiency Using a Novel PTFE Hollow Fiber Membrane Contactor at Elevated Pressure. AIChE J. 2018, 64, 2135–2145. [Google Scholar] [CrossRef]
- Belaissaoui, B.; Baro, J.C.; Hernando, A.L.; Zaidiza, D.A.; Chabanon, E.; Castel, C.; Rode, S.; Roizard, D.; Favre, E. Potentialities of a dense skin hollow fiber membrane contactor for biogas purification by pressurized water absorption. J. Membr. Sci. 2016, 513, 236–249. [Google Scholar] [CrossRef]
- Vandu, C.O.; Liu, H.; Krishna, R. Mass transfer from Taylor bubbles rising in single capillaries. Chem. Eng. Sci. 2005, 60, 6430–6437. [Google Scholar] [CrossRef]
- Constantinou, A.; Gavriilidis, A. CO2 absorption in a microstructured mesh reactor. Ind. Eng. Chem. Res. 2010, 49, 1041–1049. [Google Scholar] [CrossRef]
Variable | Unit | Symbol | Range and Level | ||
---|---|---|---|---|---|
−1 | 0 | 1 | |||
Independent Variables | |||||
CO2 Fraction | vol.% | F | 40 | 50 | 60 |
Total gas volumetric flow rate | mL min−1 | G | 150 | 175 | 200 |
Liquid volumetric flow rate | mL min−1 | L | 1.0 | 1.5 | 2.0 |
Temperature | °C | T | 30 | 40 | 50 |
Dependent Variable | |||||
%Absorption | %E | % |
Variable | DF | Seq SS | Adj SS | Adj MS | p-Value |
---|---|---|---|---|---|
F | 2 | 216.96 | 216.96 | 108.48 | 0.144 |
G | 2 | 6587.36 | 6587.36 | 3293.68 | 0 |
L | 2 | 12,334.79 | 12,334.79 | 6167.4 | 0 |
T | 2 | 665.8 | 665.8 | 332.9 | 0.008 |
F × G | 4 | 314.59 | 314.59 | 78.65 | 0.225 |
F × L | 4 | 52.59 | 52.59 | 13.15 | 0.895 |
F × T | 4 | 302.21 | 302.21 | 75.55 | 0.241 |
G × L | 4 | 1410.61 | 1410.61 | 352.65 | 0.002 |
G × T | 4 | 282.32 | 282.32 | 70.58 | 0.27 |
L × T | 4 | 146.72 | 146.72 | 36.68 | 0.577 |
F × G × L | 8 | 216.02 | 216.02 | 27 | 0.805 |
F × G × T | 8 | 920.61 | 920.61 | 115.08 | 0.071 |
F × L × T | 8 | 495.67 | 495.67 | 61.96 | 0.332 |
G × L × T | 8 | 634.36 | 634.36 | 79.3 | 0.2 |
Error | 16 | 790.51 | 790.51 | 49.41 | |
Total | 80 | 25,371.12 |
Reactor | Conditions | KLa (s−1) | Efficiency (%) | Reference |
---|---|---|---|---|
Packed Tower | System: CO2-water Diameter of Column: 30 mm Length of column: 900 mm Gas flow rate: 1000 mL min−1 Liquid flow rate: 300 mL min−1 Temperature: 25 °C Pressure: 1 bar GHSV: 93.75 h−1 LHSV: 28.125 h−1 Contact Time: 30 s | 0.0055 | - | [38] |
Well-mixed Reactor | System: CO2-water Impeller speed: 150–600 rpm Gas flow rate: 200–2000 mL min−1 CO2 concentration: 10 vol.% Temperature: 15–40 °C Pressure: 0.003–0.2 bar GHSV: 4.9–49 h−1 Contact Time: N/A | 0.0056–0.0333 | - | [39] |
Hollow Fiber Membrane | System: CO2-water Length 580 mm, diameter 25 mm Liquid Flow Rate: 0.2–0.8 L min−1 Gas Flow Rate: 0.7–2.8 L min−1 CO2 concentration: 40 vol.% Temperature: 25 °C | - | 55–97 | [40] |
Hollow Fiber Membrane | System: CO2-water Length 240 mm, diameter 36 mm Liquid Flow Rate: 3 × 10−3–1 × 10−2 m s−1 Gas Flow Rate: 1 × 10−4–4 × 10−4 m s−1 CO2 concentration: 30 vol.% Temperature: 22 °C | - | 10–80 | [41] |
Microtube | System: Air-water Diameter of channel: 1 mm Length of channel: 200 mm Temperature: 25 °C Pressure: 1 bar GHSV: 1782 h−1 LHSV: 15,330 h−1 Contact Time: 1.08 s | 0.38 | - | [42] |
Microchannel | System: CO2-NaOH Width of channel: 5.48 mm Depth of channel: 1.05 mm Length of channel: 90 mm Liquid Flow Rate: 1.2–2.5 mL min−1 Gas Flow Rate: 177–354 mL min−1 CO2 concentration: 20 vol.% NaOH concentration: 2 M Temperature: 20 °C Pressure: 1 bar | - | 15–50 | [43] |
Microchannel a | System: CO2-DEA Diameter of channel: 0.6 mm Length of channel: 100 mm Liquid Flow Rate: 0.9–1.2 mL min−1 Gas Flow Rate: 150–300 mL min−1 CO2 concentration: 16.4 vol.% DEA concentration: 30 wt.% Temperature: 25 °C Pressure: 1 bar GHSV: 3.18 × 105–6.37 × 105 h−1 LHSV: 1.91 × 103–2.55 × 103 h−1 Contact Time: 3.3 × 10−5 –6.7 × 10−5 s | - | 5–10 | [33] |
Microchannel | System: CO2-water Diameter of channel: 0.5 mm Length of channel: 60 mm Liquid Flow Rate: 1–2 mL min−1 Gas Flow Rate: 150–200 mL min−1 CO2 concentration: 40–60 vol.% Temperature: 30–50 °C Pressure: 1.7 bar GHSV: 6 × 105–8 × 105 h−1 LHSV: 4 × 103–8 × 103 h−1 Contact Time: 4.4 × 10−3–5.9 × 10−3 s | 0.02–0.26 | 4.8–70.9 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akkarawatkhoosith, N.; Nopcharoenkul, W.; Kaewchada, A.; Jaree, A. Mass Transfer Correlation and Optimization of Carbon Dioxide Capture in a Microchannel Contactor: A Case of CO2-Rich Gas. Energies 2020, 13, 5465. https://doi.org/10.3390/en13205465
Akkarawatkhoosith N, Nopcharoenkul W, Kaewchada A, Jaree A. Mass Transfer Correlation and Optimization of Carbon Dioxide Capture in a Microchannel Contactor: A Case of CO2-Rich Gas. Energies. 2020; 13(20):5465. https://doi.org/10.3390/en13205465
Chicago/Turabian StyleAkkarawatkhoosith, Nattee, Wannarak Nopcharoenkul, Amaraporn Kaewchada, and Attasak Jaree. 2020. "Mass Transfer Correlation and Optimization of Carbon Dioxide Capture in a Microchannel Contactor: A Case of CO2-Rich Gas" Energies 13, no. 20: 5465. https://doi.org/10.3390/en13205465
APA StyleAkkarawatkhoosith, N., Nopcharoenkul, W., Kaewchada, A., & Jaree, A. (2020). Mass Transfer Correlation and Optimization of Carbon Dioxide Capture in a Microchannel Contactor: A Case of CO2-Rich Gas. Energies, 13(20), 5465. https://doi.org/10.3390/en13205465