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Abstract: This paper presents a multiagent system (MAS) day-ahead co-operation framework between
renewable energy resources (RESs) and Battery Energy Storage Systems (BESSs) owned by different
stakeholders. BESSs offer their storage services to RESs by shifting RES power to sell it during
profitable peak-hours (aka; time-shifting). The MAS framework consists of three phases. Phase-one
is a pre-auction phase that defines the maximum charging and discharging BESS power limits.
These limits guarantee a reliable distribution system operation without violating the buses’ voltage
limits or the ampacity of the branches. Phase-two is an auctioning phase between the BESS-agents
and the RES-agents. Each agent has a different owner with a specific profit agenda and risk levels.
The agent tries to maximize the profit potential of the owner. The agents use historical trade data
and expected weather conditions to maximize profitability. Phase-three is called the post-auctioning
phase, in which the agreement between the BESS- and RES-agents is finalized, and the agents are
ready for another 3-phases trade. Case studies compare different auctioning strategies and prove the
effectiveness of the proposed MAS system.

Keywords: energy trading; multiagent system (MAS); energy management; energy storage systems;
smart grid; time-shifting

1. Introduction

In the future, power distribution systems will contain many renewable energy resources (RESs)
and Battery Energy Storage Systems (BESSs) with different owners. Co-operation between the
RESs and BESSs is possible by power shifting, which maximizes all owners’ profit while conveying
many benefits for the utility. This co-operation scheme needs to work under a distributed system for
the following reasons:

1 BESSs and RESs are owned by different stakeholders who have a unique trading strategy and
risk level.

2 Each system has a different model, operational costs, and technical constraints.
3 With a large number of participants, a centralized energy management solution might not

be feasible.

Motivated by the reasons above, this work proposes a multiagent system (MAS) trading framework
for co-operation between RESs and BESSs. The MAS framework is performed under the supervision
of the distributed network operator (DNO). The DNO guarantees no power flow violations without
interfering in the economic part of the MAS trades.
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In literature, MAS has many applications in the area of distributed control [1]. An MAS has
been adopted in [2] for droop control of multi BESS to control active and reactive power. MAS has
been adopted for power balance in [3] using the particle swarm algorithm. An MAS investigated the
current chattering problem of distributed BESS in a DC microgrid in [4]. The idea of a community
energy storage system (CESS) is discussed in [5], where different microgrids can achieve power balance
via trading with the CESS plus using other methods like demand response. The work in [6] has
proposed an MAS power exchange and trading between different microgrids. State of charge (SOC)
balance of BESSs in an AC microgrid was solved by an MAS frequency scheduling control [7]. An MAS
is proposed in islanded microgrid [8] for reactive power sharing between ESSs via two levels framework.
An internal market for islanded microgrids’ trading has been proposed in [9] using MAS. Wind power
intermittency may affect the frequency stability at high penetration; the authors of [10] proposed
an MAS for BESSs to solve this problem while maximizing the BESS profit. MAS has been proposed for
microgrid restoration in [11] using mobile energy storage and distributed generators. Power restoration
has also been proposed in [12] using a consensus algorithm to maximize system reliability and define
the optimal power restoration plan. An MAS has been used to improve the transient stability of the
power system, as in [9], ESSs have been controlled to accommodate angle and frequency disturbance.
In [10], the MAS successfully implemented EV collaboration to minimize energy cost while overloading
the transformer, using reinforcement learning (RL). The authors of [13] represented an MAS framework
of ESS participation in the market using RL. Recently, MAS was adopted in the electricity market
negotiations. In [14], the authors propose a trading framework between virtual power plants (VPPs)
using MAS. The negotiations consist of three levels. First, the internal negotiations are between the
load and generation agents of the same VPP. Second, the negotiations are between VPP agents that
sell any energy surplus or buy any shortage. Finally, the VPPs with power imbalance trade with the
grid. The authors used the Multiagent Scheme of Competitive Electricity Markets (MASCEM) software
to validate the results. In the electricity market, intelligent auctioning MAS has been investigated
by the Electric Power Research Institute [15]. Their MAS software [15] Simulator for Electric Power
Industry Agents (SEPIA) can simulate power market scenarios between intelligent agents with different
auctioning techniques.

In [16], each agent aims to maximize his profit and minimize the fuel cost using IPSO optimization.
A risk management- auction agent is designed to adjust the risk level in bid/ask prices. Another auction
strategy between grid-connected microgrids is proposed in [17]. The authors of [17] propose a demand
response agent (DRA) that implements peak shaving by trading between the microgrids agents.
The DRA initiates an auction scheme between different microgrids. It adopts a continuous double
auction (CDA) protocol to maximize the generating microgrids’ profit. The storage cluster agent
regulates any power imbalance. Another auction algorithm, like naïve auction, is discussed in [18].
This auction aims at maximizing the profit for all parties fairly by applying a constraint on the
difference between the maximum profit and any other profit. A naïve algorithm is proposed in [19]
with a two-level MAS structure. The first level is the field level, which consists of the load and the
generator agents who aim to fuel cost reduction. These agents bid in the market by sending their bid/ask
offers to a higher level (market level). A naïve auction algorithm is applied to trade with the agents
or with the grid at the market level. Unfortunately, the techniques above do not consider the prediction
error of RESs or the market price uncertainty during agents’ negotiations. The power flow constraints
(voltage limits, power losses, lines ampacity, and reversal power flow) are not addressed in the previous
works during the auctioning strategy.

Recently, the authors of [20] proposed an MAS trading scheme between smart homes and the utility,
taking into account the RES and market uncertainty. Using data-based random models, the market
and RES data are predicted from former trades and previous days’ measurements. The smart home
has three agents to switch between three modes (the load agent who exports power from the grid to the
house; the storage agent who stores energy in the battery; and the sell agent who imports power from
the house to the grid). These agents compromise between the house comfort level and the potential
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profit from the energy market to decide the appropriate trading mode. The parameter uncertainty
is considered by a two levels MAS scheme in [21]. The higher level is the day-ahead level. In this
level, the RES, load, and market predictions are assumed to be exact. These predictions are utilized
in a profit maximization dispatch, where the predictions are used for demand-side management (DSM)
for load shifting using a genetic algorithm (GA). The second level is for real-time control with a five
minute sampling time. The second level measures the short term load, RES, and market forecasts,
and it corrects the setpoints assigned by the day-ahead level. However, power flow constraints are not
considered in [21]. The previous works do not consider the battery expended life cost and the effect
of the daily number of batteries’ charging cycles. The authors of [22,23] designed an event-driven
MAS system for a grid-connected microgrid. The microgrid combines a battery with a diesel engine.
The authors consider the expended life cost and the round trip efficiency; however, the real contribution
of MAS flexibility cannot appear with such a small system, and the topology has not considered the
RES uncertain generation. In DC microgrid, the authors of [24] proposed a secondary voltage controller
using MAS. The proposed MAS regulates the voltage while balancing the SOC of different storages.
The work in [25] proposed an ESS trading scheme in microgrids. Q-learning is used to develop the
agent’s learning strategy. The technique accounts for the power losses during the trading, but the RES
was not represented by an agent. The authors of [26] proposed a two-level MAS framework for RES
energy utilization. The technique maximizes the use of RES energy by storing it on the microgrid level
using ESS and demand-side management. The second level shares the rest of the RES energy with
other microgrids.

Motivated by the reasons above, this works proposes a comprehensive MAS trading scheme for
BESSs and RESs to cooperate and bid in the energy market. This work has the following contributions
to the research:

1 Considering the power flow model in the MAS framework.
2 Proposing the idea of the MAS trading packages; as each ESS-MAS has different packages

of storage plans with varying prices. The price of any package depends on the storage depth
of discharge (DOD) and the daily number of cycles (DNC).

3 Developing MAS agents with learning capabilities. The learning process takes into account the
market status, MAS trade history, and the RES generation.

4 Proposing different auctioning strategies between the agents. The strategies represent the diverse
risk levels and bargaining ways to give the agent variety of choices during trading.

This paper is arranged as follows: Section 2 briefly describes the system model, while Section 3
explains the different energy management modes of the agents. Section 4 proposes the trading strategies
between the agents. To evaluate and validate the proposed algorithms, Section 5 presents a case study
for the system on a typical 41-bus real distribution feeder. Finally, the conclusions are drawn in
Section 5.

2. Problem Formulation

This work proposes a co-operation between different BESSs and RESs scattered in a power
distribution system for the time-shifting of the RES energy to be sold during peak-hours. The MAS
agents are driven by the profit resulting from the energy price difference. The trading process needs
to include the power flow model; otherwise, it may lead to serious power quality and reliability
issues, such as over/under voltage, reverse power flow, branches overcurrent, etc. [27]. The DNO is
represented by an agent to guarantee an acceptable power system quality and reliability. The proposed
MAS has the following agents:

1 The ESS-agent: it targets maximizing the BESS owners’ net profit. The ESS-agent accounts
for the ESS storage cost [28] and the ESS expended life cost (depletion cost) [29] of the battery
(which is a function of the DOD and the daily number of cycles (DNC). The agent applies the
auctioning strategy and risk management levels when dealing with RES-agents.
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2 The RES-agent: this agent aims at maximizing the owner’s profit either by trading directly with
the grid as a price taker or by cooperating with other ESS-agents to make a higher profit from
the daily energy price’s difference. The RES-agent accounts for its expected energy prediction
error as it represents a risk factor for his profit.

3 The grid agent: it represents the energy market. It contracts with any ESS-agent or buys energy
from any RES directly as a price taker. It provides the expected market price to all agents.

4 The distributed network operator (DNO): it guarantees that all the trading deals will not violate
the power system constraints.

2.1. MAS Modes

Different agents can work together through three operating modes: The Energy-Arbitrage Mode,
The Price Taker Mode, and The Time Shifting Mode.

2.1.1. Energy-Arbitrage Mode (EA)

In this mode, the expected agent profit results from the daily energy price difference. The BESS
day-ahead dispatch is defined by (1).

max
ps

k

(proEA
s) (1)

s.t.



0 ≤ chs
k ≤ prs

− prs
≤ dcs

k ≤ 0 (2)
ps

k = chs
k + dcs

k (3)
dlsk ≤ ps

k ≤ clsk (4)

NS
k+1 = NS

k +
(ηcschs

k−ηdsdcs
k)

2E
s 0 ≤ Ns

k ≤ N (5)

SOCS
k+1 = SOCS

k +
(ηcschs

k+ηdsdcs
k)

E
s SOC ≤ SOCs

k ≤ 1 (6)

The energy arbitrage profit
(
pros

EA

)
for a storage unit s results from the income of selling the power

for a higher market price Mpk while charging power dcs
k during cheap hours as in (7), the storage cost

includes the fixed storage cost (FSCs) plus a variable daily expended life cost (ELCs). The FSCs accounts
for the power conversion cost, the balance of operation, the replacement cost, and the maintenance cost.
The FSCs is calculated per charged unit of power ($/kW). The ELCs depends on the daily number of
cycles (Ns

k=24) and the minumum state of charge SOCs [30] as shown in (8) where SUCs, as, and bs are
the storage ($), and constants depends on the battery type [30].

pros
EA = (

24∑
k=1

Mpk
(
chs

k − dcs
k

)
− FSCschs

k − ELCs (7)

ELCs = SUCs Ns

as
(
1− SOCs

)
+ bs

(8)

The optimization constraints (2)–(6) represent the BESS model and operational constraints.
First, the charge and discharge power are limited in (2). The discharge power is negative while the
charge power is positive; both powers are limited by the BESS rated power. The total BESS power is the
sum of the charge and the discharge power (3). The BESS power is limited in (4) by power flow limits
dlsk, and clsk which are imposed by the DNO. These limits are explained in detail in the pre-auction
phase. The BESS daily number of charging cycles (NS

k ) is calculated and limited in (5). If by the end of
the day (k = 24), the BESS has a sum of charged power chs

k and discharged power dcs
k, both equal to the

rated BESS energy E
s
, then the number of cycles is incremented by one. The state of charge is calculated

in (6). Both the charging and discharging efficiencies ηcs, ηds are considered.
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Each ESS-agent offers a package of storage plans (PKG) as in (9); each plan is defined by a maximum
DNC and a maximum DOD (DOD = 1− SOC, N), as a result each storage plan has a different cost and
profit. The best plan of these z plans is the one that achieves the maximum profit, as expressed in (10).

PKGs =
{
sps

1

(
DOD1, N1

)
, . . . , sps

z

(
DODz, Nz

)}
(9)

sps
best = argsp

(
max

(
pros

EA

))
(10)

It is worth mentioning that the market price for the day-ahead is uncertain. The profit is expressed
by uncertain value within an interval or range. The profit range depends on the market price range,
with a minimum, maximum, and expected profit values as in (11) and (12).

pros
EA ∈

[
pros

EA , pros
EA

]
, E

(
pros

EA

)
= PROs

EA (11)

PROs
EA = argPRO

(
(problem(1)

∣∣∣Mpk = E(Mpk))
)

(12)

2.1.2. Price Taker Mode (PT)

In this mode, the RES-agent sells its energy directly to the grid agent and is treated as a price
taker. The RES-agent obligates to keep the upper limit of the generated power and uses necessary
curtailment techniques to cut off any off-limit generated power or power rate. The resulting profit
in the PT mode is calculated in (13).

pror
PT =

24∑
k=1

(Mpk −Cr)pr
k (13)

where pror
pt, Cr, pr

k are the agent r profit in from the mode pt, the RES r Levelized generation cost
in $/kWh, and the RES r expected generated power at the time k. Without the loss of generality,
the sampling time is assumed to be 1 h, so the power (kW) value equals the energy (kWh). Both the
RES power and the market price are uncertain. The profit is an uncertain variable expressed by an
interval and expected value as in (14), (15).

pror
PT ∈

[
pror

PT , pror
PT

]
, E

(
pror

PT

)
= PROr

PT (14)

PROr
PT = argPRO

(
Equation (13)

∣∣∣ (Mpk, pr
k

)
= E

(
Mpk, pr

k

))
(15)

In some markets, such as the Spanish energy market, there is a penalty for violating the contracted
energy limits [31]. In such a case, this penalty can be added to the problem (13), as explained in [31].
The maximum and minimum profits pror

PT , pror
PT will be used by the RES-agent to define the risk

management strategy. The maximum profit (pror
pt) occurs at maximum RES generation when energy

market price is maximum, and vice versa for the minimum expected profit (pror
PT).

2.1.3. Time Shifting Mode (TS)

In this mode, there is a co-operation deal between the RES and ESS-agents. The RES stores part
of its energy in a BESS during high generation, off-peak hours [32]. Later, The BESS sells this energy
back to the grid when the price is higher. As a result, the BESS and RES act as a single hybrid system.
The profit of the TS mode is calculated in (16).

prosr
TS =

24∑
k=1

Mpkpsr
k −

(
FSCschs

k + ELCs + Crpr
k

)
(16)



Energies 2020, 13, 5517 6 of 24

where psr
k is the total power imported or exported by the hybrid system as in (18). The profit is

calculated similarly to the problem (1) as given in (17).

max
(
prosr

TS

)
(17)

s.t.


cpsr

k = pr
k − ps

k (18)
ps

k ≤ pr
k (19)

(2) − (6) (20)

The constraint (19) ensures that the BESS only buys the RES energy without buying more energy
from the grid. The maximum profit plan is chosen by comparing the different storage plans from (9),
(10). The profit range is calculated as an interval, including both the RES and market price uncertainty.
The expected TS mode profit is calculated in (21), (22)

prosr
TS ∈

[
prosr

TS , prosr
TS

]
, E

(
prosr

TS

)
= PROsr

TS (21)

PROsr
TS = argPRO

(
problem (17)

∣∣∣ (Mpk, pr
k

)
= E

(
Mpk, pr

k

))
(22)

Since RES and BESS are owned by different stakeholders, the profit PROsr
TS is shared according to

auctioning negotiation between both RES- and ESS-agents, as explained in Section 3.

3. Proposed MAS Trading Strategy

Energy markets are either day-ahead or intra-day markets where (DERs) are rescheduled to fit with
price changes and the RES intermittent generation. For day-ahead markets, the negotiations period
ends when all the deals are finalized between the different agents before midnight. The negotiation
period is proposed in three phases (pre-auction, auction, post-auction). First, in the pre-auction phase,
the expected day-ahead market price is announced. At the same time, the RES day-ahead predictions
are ready. The DNO calculates the power operating limits for each BESS (dlsk, clsk). Second, during the
auction phase, each BESS- and RES-agent decides the best operation mode (EA, PT, or TS). Finally,
the post-auction is when all the deals are finalized and approved by the DNO; then, the operation
period starts with the day’s start. More details are mentioned in [16].

3.1. Phase-A (The Pre-Auction Phase)

In this phase, the DNO-agent assigns the charging and discharge power limits (dlsk, clsk) for all
ESSs. These limits define the safe charge and discharge powers for DSs without technical constraints
violation (voltage limits, cables ampacity, and reversal power flow). The limits are generated by solving
the optimal power flow problems (23).

max
ps

k, qs
k

(∑
s

∑
k

ps
k

prs

)
s.t. (23)

pi
k =

nb∑
j=1

∣∣∣vi
k

∣∣∣∣∣∣∣v j
k

∣∣∣∣(Gi j cos
(
δ

i j
k

))
+

(
Bi j sin

(
δ

i j
k

))
(24)

qi
k =

nb∑
j=1

∣∣∣vi
k

∣∣∣∣∣∣∣v j
k

∣∣∣∣(Gi j sin
(
δ

i j
k

))
−

(
Bi j cos

(
δ

i j
k

))
(25)

pi
k = pli

k + psi
k + pri

k + pgi
k (26)

qi
k = qli

k + qsi
k + qri

k + qgi
k (27)
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It
k =

∣∣∣∣vi
k − v j

k

∣∣∣∣∣∣∣Gi j + jBi j
∣∣∣, ∀t : i→ j (28)

plossk =

nT∑
t=1

It
k

2Zt (29)

vmin ≤ vi
k ≤ vmax (30)

It
k ≤ It (31)

plossk ≤ ploss (32)

p
grid
≤ pl=grid

k ≤ pgrid (33)

ps
k

2 + qs
k

2
≤ prs2 (34)

0 ≤ ps
k ≤ prs (35)

Problem (23) aims at maximizing the BESSs power participation in the system for day-ahead.
For a fair maximization of all BESS units, the sum of the per-unit power of all BESSs is maximized.
The AC-power flow model is presented in (24), (25) for each bus i active and reactive power pi

k, qi
k,

while each bus power balance is expressed in (26), (27), where the bus power is the sum of the load
power pli

k , the storage power psi
k , the RES power pri

k , and the DER power pgi
k at the bus i. For each

branch t, the current magnitude is calculated in (28). The total power losses plossk is the sum of all
branchs’ losses as given in (29). The power flow constraints are stated in (30)–(31) for the voltage,
cables ampacity, power losses, and the grid power. Finally, the apparent power limits for each BESS are
defined by (34), (35). Problem (23) is a nonconvex problem due to the power flow voltage constraints.
Problem (23) is linearized by the power-voltage flow Jacobian. The decision variables are the maximum
BESS active and reactive power ps

k, qs
k. Resolving problem (23) as a minimization problem results in

the maximum BESS discharge power (since discharge power has a negative sign). Finally, the BESS
limits (charging and discharging maximum powers) are expressed as in (36) and (37).

clsk = argps
k
max(23)st. (24) − (35) (36)

dlsk = argps
k
min(23)st. (24) − (34),−prs

≤ ps
k ≤ 0 (37)

The pre-auction phase shows that the proposed MAS framework is not entirely decentralized
because all the BESS-agents need to communicate with the DNO to define the permissible charging
and discharging limits clsk, dlsk before performing any trade.

3.2. Phase-B (The Auction Phase)

After the ESS-agent knows the power limits (clsk, dlsk), the agent starts negotiating with the
RES-agents one by one. Each ESS-agent has a trading list of the RES-agents. The ESS-agent acts as
a selling agent who offers the storage plans to different RES-agents. Most probably, the first RES trade
in the list will have the highest power share. Such a trade will happen to shift the RES energy to be
sold during the most profitable times. The ESS-agent decides its favorable RES-agents by a trading list,
as explained in the next section.

3.2.1. The Trading List

The trading list shows the order of the RES-agents that a specific ESS-agent will conduct.
The trading list may have different design criteria. First, the list can be designed according to RESs’
distance to the ESS. This criterion will be called the (distance rank). In the distance rank, the ESS-agent
always starts negotiations with his nearer RES neighbors first and proceed to the next closer RES.
Although distance rank is convenient and easy to develop, it does not guarantee a maximum profit
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for the ESS-agent. This paper proposes a learning algorithm for the ESS-agent; an adaptive fuzzy
expert is suggested to organize the trading list for the ESS-agent according to the most profitable trades.
This rank is called (profitability rank).

Profitability rank is arranging the trading list for the RES-agents according to their trade history
and their expected generation. Expected RES generated power is estimated from the weather conditions.
A higher-rank RES-agent will have a high expected generation and probably share a high profit of the
TS trade with the ESS-agent. Previous deals or (trade history) are a good indication for the profit share
ratio between the RES- and ESS-agents.

In this work, a fuzzy expert uses the trade history and expected weather data as inputs to defines
each RES rank as an output. For the first input, assume L RES-agents in the trading list, each RES trade
history is estimated by the average historical profit as in (38);

thi =

∑Di
j=1 pro j

Di
∀ i = [1, l] (38)

where thi, pro j, Di are the trade history of the RES I, the profit made from storing power unit ($/kWh)
at the historical trade j, and the total number of deals made with the RES.

The second input is the expected weather at each RES area. This information is fetched easily from
public weather websites. The fuzzy expert uses these two inputs to predict the RES rank. The expert is
designed as a Sugeno rule-based model as the rank is inferred according to the rules in Table 1.

Table 1. Fuzzy expert rules.

Trade History
Weather Bad (B1) Moderate (B2) Good (B3)

Low revenue (A1) Low1 Low2 Medium3
Medium revenue (A2) Low3 Medium2 High2

High revenue (A3) Medium1 High1 High3

Each input has three Gaussian bell membership functions [33]. The normalized trade history is
defined as x, and a normalized value y expresses the weather condition. x and y are between [0,1],
The RES rank z is inferred by the expert as in (39).

x = {A1, A2, A3} y = {B1, B2, B3}
x = A1, y = B1 ⇒ z1 = a1x + b1y + c1; rule(1)
x = A2, y = B2 ⇒ z2 = a2x + b2y + c2; rule(2)
x = A3, y = B3 ⇒ z3 = a3x + b3y + c3; rule(3)

z =
r∑

i=1
wizi wi =

λi∑3
i=1 λi

λi = poss(x, Ai )̂poss(y, Bi)

(39)

Given the set of inputs x and y, the fuzzy rules are defined in Table 1. According to the input
values, each rule is activated by a certain weight w, and the output is a weighted sum of all rules
output. The weight of a rule reflects the degree of its membership activation or firing; λ, which is the
minimum possibility (poss) of the rule’s membership activation [33]. The resulting surface for this
expert is as in Figure 1. The proposed fuzzy model is an expert-based model. It has the advantage
of transparency and excellent utilization of the experts’ knowledge to formulate the rules. However,
it lacks high accuracy and may face completeness and consistency issues [33].
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Figure 1. Fuzzy expert surface.

Another family of the fuzzy models is the data-driven fuzzy model. In this type, a data set of inputs
and actual outputs is utilized to derive the fuzzy model (e.g., fuzzy clustering). Although data-driven
models are more accurate than expert-models, it lacks transparency. A mix between expert-based
and the data-driven models convey the advantages of both types. A useful tool for improving the
expert-based fuzzy models’ accuracy is by using Adaptive Neuro-Fuzzy Inference System (ANFIS) for
expert learning. Expert learning is possible in ANFIS by tuning the membership function parameters
to increase expert accuracy [34]. The back-propagation technique [31] is used to adjust the Gaussian
bell memberships’ parameters for our expert training. Finally, the resulting neural network is shown
in Figure 2.
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Figure 2. Fuzzy experts’ structure after training, generated by the Adaptive Neuro-Fuzzy Inference
System (ANFIS) toolbox, MATLAB [34].

This network has 35 nodes, and 45 membership parameters have been tuned. ANFIS uses a data
set that contains inputs and the corresponding actual output for learning. 70% of the data set should be
used for the model training, while 30% is used as test data to avoid model over-fitting [33]. It is always
preferred to re-train the fuzzy expert periodically (e.g., every two weeks) to adapt to the market’s
environmental changes and with the RES-agents’ behavior.
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Before the ESS-agent starts trading, the incoming day expected weather for all RES is given, and the
trade history of each RES is also available. The fuzzy expert calculates each RES rank, and the trading
list is generated accordingly. Figure 3 shows the structure of the trade list generation. One limitation
of this technique is the time needed to collect the trading history data for each agent. There will be
a learning curve to train each agent to decide its optimum trading list. The proposed framework has
no plug and play feature; instead, the agents make better deals after conducting a certain number of
trades with different agents and developing extensive trading data set.
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3.2.2. The Offer

First, the ESS-agent calculates his plans’ ask prices. For trading in the time-shifting mode (TS-Mode),
the profit must be higher than the energy arbitrage (EA-Mode). The ask price for storage plans i is cSi
is calculated as follows

cSi = pros
TS i + ELCi +

24∑
k=1

FSCs
× chs

k
pros

TS i =
(
αiprosr

TS

)
, 1 > αi > 0

pros
TS i > pros

EA∀ i ∈ [1, z]
(40)

where pros
TS i , αi are the ESS profit share in $ of the storage plan i provided form a storage s to an RES r,

the ESS profit share of the total profit prosr
TS in case of collaboration with an RES in a TS-Mode. The ESS

profit pros
TS i should be higher its EA-Mode profit, as explained in (40). Choosing the profit share αi

defines storage cost ask price RES. The higher αi is, the greater the difference between the ask and bid
prices will be, and the trade may fail. On the other hand, if it is deficient, the ESS-owner may waste
potential higher profit. The parameter αi can be adjusted by the ESS owner. The parameter αi can be
set using a fuzzy expert or from the trades’ history. This issue will be investigated in future work.

3.2.3. The Offer Evaluation

As a response to the ESS-agent offer; each RES-agent calculates the profit in price taker mode
(pror

PT). When an RES-agent receives an ESS-package of offers (cDSi), it picks the optimal storage plan i,
and it calculates its profit

(
pror

TS =
(
prosr

TS − pros
TS i

))
. The RES-agent has three responses to the offer

depending on the profit difference;
ψ
(
pror

TS − pror
PT

)
< 0→ Reject the o f f er

ψ
(
pror

TS − pror
PT

)
≥ β→ Accept the o f f er

0 < ψ
(
pror

TS − pror
PT

)
< β→ countero f f er

(41)

where β is the desired RES profit share from trading with the ESS-agent. ψ is statistic operator for the
profit set (pror

TS − pror
PT). It can be (min, max, mean), and the RES owner set it according to his risk

level. If ψ = min, then the RES-owner is cautious and wants to guarantee his profit even with the worst
RES generation and lowest market price (low risk and low eagerness to trade). On the other hand,
if ψ = mean, then the RES-owner is moderate, and he trusts the market and RES generation predictions



Energies 2020, 13, 5517 11 of 24

(medium risk level and moderate eagerness to trade). Finally, if ψ = max, then the RES-owner expects
higher than an expected generation and market profile (high-risk level and willingness to complete
the trade). According to (41), the RES-agent has three possible responses:

• Reject: the first response means that the ESS-agent TS offer is not more profitable than the PT trade;
so, it is rejected.

• Accept: the second means that the TS trade revenue is so high than the PT and the TS offer is
accepted with no negotiations.

• Counter-offer: the third response means that the TS offer is profitable for the RES, but the profit is
not that worthy. In such a case, the RES sends back a counter-offer for the storage (bid price c̃S)
as in (42)

c̃S = cS −
(
β−ψ

(
pror

TS − pror
PT

))
(42)

Many bargaining techniques can be adopted to share the profit between the RES and ESS-agents [15].
The agent negotiations behavior may take different forms according to market status and the risk level.
Table 2 shows these various bargaining behaviors for both the seller (ESS-agent) and the buyer (RES).

Table 2. Different agents’ bargaining techniques.

Strategy ESS-Agent RES-Agent

Anxious Ca(k) =
c̃S−cs

k f
k + cDS Cb(k) =

cS−c̃s
k f

k + c̃DS

Cool-headed
Ca(k) = aebk + c 1 > b > 0

a = c̃S−cs

ebk f −1
c = cDS − a

Cb(k) = aebk + c 1 > b > 0
a = cS−c̃s

ebk f −1
c = c̃DS − a

Greedy
(frugal)

Ca(k) = aebk + c b ≥ 1
a = c̃S−cs

ebk f −1
c = cDS − a

Cb(k) = aebk + c b ≥ 1
a = cS−c̃s

ebk f −1
c = c̃DS − a

During the total negotiation window (k f ), each bargaining strategy emulates the agents’ eagerness
for different trade situations. For instance, the RES-agent will be anxious and eager for the deal’s
success if the market has high profitability potentials (high max to min prices ratio). On the contrary,
the RES-agent can act greedy if the trade revenue is not appealing (RES high generation is aligned with
the peak hour, or the market has a low max/min price). The trade is a success when the bid price Cb
reaches the ask price Ca. Figure 4 shows these different bargaining strategies and the resulting final
price for all possible attitudes. In the negotiations, each agent retains the same approach during the
negotiations period, regardless of the other agents’ strategy. More intelligent negotiation techniques
are proposed in [35]. The authors of [35] have developed a PSO-negotiator that uses a new factor that
considers the eagerness of the other agent. However, our used technique is much simpler and needs
less computational effort.
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Figure 4. Different bargaining strategies between renewable energy resource (RES) and energy storage
system (ESS) agents and the resulting final price.

3.2.4. The Offer Response:

If the negotiations have failed, the ESS-agent starts negotiating with the next agent in his trading
list; otherwise, the agent continues the deal as in Phase-C (post-auction phase).

3.3. Phase-C (The Post-Auction Phase)

This phase is reached in case of successful trade between RES- and ESS-agents. Both agents must
sign a digital contract for this deal with the DNO. The agreement contains the trade details (RES, BESS
shares in profits, BESS charging, discharging power for the incoming day, etc.). After the DNO-agent
rechecks that the BESS power is within power limit (clsk, dlsk) margins, it approves the contract.

(1) After the contract approval, the ESS-agent updates the available power constraint and the initial
state of charge (remaining capacity) in the battery to make another trade with another agent.
The constraints update ensures that the BESS cannot discharge power for one RES while charging
power for another RES and vice versa. It guarantees the power flow constraints and the state
of charge limits for the new deal (d). On the other hand, The RES-agent updates its available
power for trade by subtracting the contracted power with the BESS from its expected generation.
The available RES power can be bought directly to the grid (PT-Mode) or contract with other
BESS (TS-Mode) clsk, dlsk.

(2) After updating the power constraint, the ESS-agent starts trading with the next RES-agent in its
trading list. The three phases are repeated until the list finishes, or the BESS capacity is fully occupied.

(3) After the first BESS-agent finishes negotiations, the DNO calls the next member in the BESS
trading list, and so on till all ESSs finish trading.

(4) Finally, for all agents cooperate in a TS-Mode, all the bids are combined and traded in the global
market. The profits of these trades are shared according to the auctioning results.

Figure 5 shows the interaction in the proposed MAS. MAS scheme has the advantage of being
robust; if any ESS or RES is out of service, the scheme operation will not be affected. The MAS strategy
has the merit of plug and play feature, as any RES- or ESS-agents can easily add the system.
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4. Case Study

This study tested the proposed MAS on a real 41-bus radial feeder in Ontario [36]. The feeder
rating is a 20 MVA, 16 kV, as shown in Figure 6. It combines various loads (40% residential, 20%
commercial, and 40% industrial) as per [37]. The system has five RESs with a gross power penetration
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of 30% (6 MVA). Two ESS-agents are added to the network; battery storage (DS1) and a PEV parking
lot (DS2). The total distributed storage represents (25%) of the RES nominal power. The RES and
storage allocation are adopted as in [36].
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Figure 6. Distribution feeder diagram.

According to the DNO-agenda, the BESS starts trading first and then the parking lot, and they
switch in the following day. In this simulation, real market price and the wind and PV powers are
used from the Alberta electricity market [38]. The BESS costs are taken from [28]. The RES-agents are
simulated with different risk strategies. WT1 represents a moderate agent, while WT2 acts as a greedy
agent taking advantage of a location near DS1. On the other hand, WT3 is anxious to trade with any
BESS as it has a far position from all DSs. Both PVs are eager to TS-Mode trade as the PV energy is
only generated during daylight, which does not align with the market peak-hours. The bargaining
attitude affects the trade history of each RES as it decides the profit share it splits with the BESS.

The trade history is related to previous deals’ success. For instance, although PV1, PV2 are
generous agents, they have a low rank in the PEV lot parking lot as it is allowed to charge energy
only after mid-night, while the PV generation starts in the morning. On the other hand, all wind
agents are assumed to have moderate weather except WT3, which has good weather. Figure 7 shows
the RES power (min, expected, and max) and the corresponding PT profit range. Table 3 shows the
different RES ranks. The distance rank is related to the physical distance from each BESS, while the
proposed technique generates the profitability rank. Table 3 shows BESS storage plans and the
DERs’ different ratings.
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Figure 7. (a) shows the pool price range.(b) depicts RESs’ power and its uncertainty. (c) shows the
resulting profit of RESs in the case of PT mode trading.

Table 3. DERs rating, Battery Energy Storage System (BESS) storage plans, BESS trading list.

Ratings
pWT1=2MW,pWT2=1.5MW,pWT3=1.5MW,

ppv1=0.5MW,ppv2=0.5MW,
pDS1=1MW/6MWh,pDS2max

=0.5MW/2.5MWh

Storage
plans

Plan
Symbol sp1 sp2 sp3 sp4 sp5 sp6

DNC 1 1 1 1 1 2
DOD 0.5 0.55 0.6 0.65 0.7 0.5

RES
agent

Bargaining
strategy

Trade history Profitability rank Distance rank
DS1 DS2 DS1 DS2 DS1 DS2

WT1 Cool-headed Med Med 3 2 2 2
WT2 Greedy Low Low 5 3 1 3
WT3 Anxious High High 1 1 4 5
PV1 Cool-headed Med Low 4 5 5 1
PV2 anxious high low 2 4 3 4

To validate the proposed work’s effectiveness, four case studies are conducted; two use the
distance rank (with and without including the DNO), and the other two use the profitability rank
(with and without including the DNO). The MAS frame is evaluated economically by the ESS achieved
profit and technically by checking the power flow limit after conducting the trades. Tables 4–7 show
the trade results in the four cases. Table 8 summarizes the storage units’ net profit in the four cases.
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Table 4. Trade results in case of distance rank with a distributed network operator (DNO) and energy
storage system (ESS) power flow limits.

ESS-Agent Trading List
Order

Best Storage
Plan

Net Profit $
{Min Expected Max}

ESS Profit Share: pros
TS %)

DS1

WT2 sp3 {$1157.6 $1210.6 $1268.7} 35.5%
WT1 sp1 {$507 $538 $567.1} 39.96%
PV2 sp1 {$202.8 $218.5 $232.6} 44.81%
WT3 Non {−$89 −$83.4 −$81} Failure trade
PV2 Non {−$89 −$83.4 −$81} Failure trade

DS2

PV1 Non {−$70.9 −$70.7 −$69.9} Failure trade
WT1 sp1 {$420.7 $462.26 $445.68} 39.96%
WT2 Non {−$103 −$98 −$96.3} Failure trade
PV2 Non {−$103 −$98 −$96.3} Failure trade
WT3 Non {−$103 −$98 −$96.3} Failure trade

Table 5. Trade results in case of distance rank without a DNO and no ESS power flow limits.

ESS-Agent Trading List
Order

Best Storage
Plan

Net Profit $
{Min Expected Max}

ESS Profit Share: pros
TS %)

DS1

WT2 sp3 {$1368.6 $1436.3 $1368.6} 35.5%
WT1 sp1 {$637.4 $667.3 $693.9} 39.96%
PV2 sp1 {$259.8 $280.15 $298.2} 44.81%
WT3 Non Full capacity is reached Failure trade
PV2 Non Full capacity is reached Failure trade

DS2

PV1 Non {−$70.9 −$70.7 −$69.9} Failure trade
WT1 sp1 {$610.7 $641.3 $664.9} 39.96%
WT2 Non {−$103 −$98 −$96.3} Failure trade
PV2 Non {−$103 −$98 −$96.3} Failure trade
WT3 Non {−$103 −$98 −$96.3} Failure trade

Table 6. Trade results in case of profitability rank with a DNO and ESS power flow limits.

ESS-Agent Trading List
Order

Best Storage
Plan

Net Profit $
{Min Expected Max}

ESS Profit Share: pros
TS %)

DS1

WT3 sp3 {$1368.6 $1436.3 $1491.6} 44.81%
PV2 sp1 {$371.7 $410.29 $430.50} 44.81%
WT1 sp1 {$393.6 $418.14 $436.15} 39.96%
WT2 Non {−$289 −$283.4 −$281} Failure trade
PV1 Non {−$289 −$283.4 −$281} Failure trade

DS2

WT3 Non {−$70.9 −$70.7 −$69.9} Failure trade
WT1 sp1 {$420.7 $462.26 $445.68} 44.81%
WT2 Non {−$103 −$98 −$96.3} Failure trade
PV2 Non {−$103 −$98 −$96.3} Failure trade
PV1 Non {−$103 −$98 −$96.3} Failure trade
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Table 7. Trade results in case of profitability rank without a DNO and no ESS power flow limits.

ESS-Agent Trading List
Order

Best Storage
Plan

Net Profit $
{Min Expected Max}

ESS Profit Share: pros
TS %)

DS1

WT3 sp3 {$1368.6 $1436.3 $1491.6} 44.81%
PV2 sp1 {$496.8 $530.89 $560.62} 44.81%
WT1 sp1 {$393.6 $418.14 $436.15} 39.96%
WT2 Non Full capacity is reached Failure trade
PV1 Non Full capacity is reached Failure trade

DS2

WT3 Non {−$70.9 −$70.7 −$69.9} Failure trade
WT1 sp1 {$610.7 $641.3 $664.9} 44.81%
WT2 Non {−$103 −$98 −$96.3} Failure trade
PV2 Non {−$103 −$98 −$96.3} Failure trade
PV1 Non {−$103 −$98 −$96.3} Failure trade

Table 8. Storage units’ total profit with different strategies.

Trading Strategy DS1Total Profit ($) DS2Total Profit ($)

Distance rank—with DNO and
ESS power limits $742.65 $184.72

Distance rank—without DNO and
no ESS power limits $902 $256.14

Profitability rank—with DNO and
ESS power limits $994.54 $207.138

Profitability rank—without DNO
and no ESS power limits $1048.58 $287.36

We assume that the desired BESS-profit in TS-Mode is 50% of the profit share given it is
greater than the profit with the grid (EA-Mode). In such a case, the BESS ask price is calculated
as pros

TS = max
(
0.5

(
prosr

TS − pror
PT

)
, pros

EA

)
. On the other hand, we assume that the mentality of all

RESs is given 30% of the profit to the ESS-agent; β = 0.7
(
prosr

TS − pror
PT

)
. As a result, BESS- and

RES-agents will always bargain according to each agent attitude until the final BESS profit share
is reached.

As in Table 3, all the BESS-agents act as cool-headed, while the mentality of RES-agents has
different risk levels. Due to market price, RES uncertainty, the net profit is defined by a minimum,
maximum, and most expected values. During the trade, all RES- and ESS-agents have adopted the
most expected value in the calculation.

In the case of distance rank (Tables 4 and 5), DS1 starts with the nearest RES-agent WT2. As WT2
acts as a greedy, DS1 only manages to get a 35.5% share of the net profit. The most profitable plan
for DS1 is Sp3, since the other plans will lead to less TS-Mode profit. The second RES in the distance
rank is WT1, which represents a cool-headed agent. Thus, DS1 manages to get higher profit than WT2;
however, the net profit for WT1 is less than WT2, although there wind generation is not so different;
This is because WT2 has a higher rank in the trading list than WT1; so it managed to sell its energy in
the highest peak-hours. The third RES-agent is PV2, which acts as an anxious agent, and the BESS
has managed to get a 44.81% profit share. It should be noticed that without DNO, no power flow
constraints are imposed on the BESSs; therefore, the trade revenue increases but a power flow limit
violation may occur. After the third deal, the BESS capacity has reached its 6 MWh limit (in case of No
DNO) or has a low capacity in case of using DNO, and the profit becomes negative, and no more deals
are conducted.

In the case of distance rank, regarding DS2, it represents a parking lot with charging hours between
(2:7 am) according to the charging strategy proposed in [39]. Thus, trading with PV in TS-Mode was
not successful (negative profit). As a result, DS2 has moved to the next RES in his list, which is WT1 to
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achieve a successful trade since WT1 generates its power after midnight. Although DS2 has not reached
its full capacity, WT1 has occupied all its charging hours leading to a following unsuccessful trades.

For the profitability trade (Tables 6 and 7), the generous RES-agents occupied a higher rank in the
trading list, selling their energy during the most attractive peak hours and achieving a higher net profit
margin. As these generous agents share a high-profit margin with the BESS-agents, the BESS gains
higher profit than the distance rank as highlighted in Table 8. The agent DS1 has achieved $994.54
with profitability rank instead of $742.65 with a distance rank representing a 33.3% increase in profit.
The agent DS2 has achieved $207.138 with profitability rank instead of $184.7 with a distance rank
representing a 12.14% increase in profit.

Figure 8 shows the effect of the trades on the power flow in case of adopting the distance rank
(Figure 8a–f) and profitability rank (Figure 8g–m). It is noticed that the battery charging limits and
capacity limits (SOC) are acceptable due to the post-auction phase. For the BESS power flow charging
limits, as shown in Figure 8c,e,h,l, without considering the DNO, the power flow limits are violated
during trading (highlighted by circles), leading to the under-voltage occurrence as shown in Figure 9,
which depicts the voltage profile in case of profitability rank with and without DNO. Voltage violations
(under-voltage less than 0.95) have occurred from (11 am: 1 pm), which align with the BESS power
flow charging limits violation in Figure 8h. On the other hand, when the DNO-agent is considered,
the voltage profit stays within limits.

To sum up, from an economic perspective, the proposed profitability rank has achieved a higher
profit than the distance rank for the ESS-agents. The profit-sharing between the agents is related to
their auctioning strategy and eagerness for this trade. Adopting a DNO adds more limits to the BESS
power leading to some profit reduction, which is a necessary price paid to guarantee power quality and
reliability. In terms of the long-term techno-economic impacts, the following behaviors are expected
after adopting many trades:

• ESS-agents will develop a mature and well-investigated trading list. Each ESS-agent may even
have favorable RES trading partners.

• With the increasing number of ESS- and RES-agents, the computation time of the MAS algorithm
will be longer. The solution to this problem is either by increasing the negotiations window time
or improving the computers’ processing power.

• Some ESS-agents can have longer than one day-ahead contract with RES-agents. It will be interesting
to have a weekly or monthly collaboration. The problem that faces long time trading is the uncertainty
of the market price and RES power.

The optimization problems (1) and (17) have been solved using YALMIP [40] and MATLAB linear
programming solver with a 3.50 GHz Intel-i5 processor. The processing time is summarized as follows:

• During the pre-auction phase, the DNO solves a power flow problem. The communication delay
is the network delay and the solver time for the power flow problem, which is around 4.166 s.

• During the auction phase, for a specific plan (TS- or ES-Modes), the linear programming solver
time is around 0.7–0.9 s per trade.

• During the post-auction phase, updating the BESSs power limits takes around 0.076 s for this system.

Given the processing time, assuming the negotiation window is one hour or several minutes,
an ESS-agent has sufficient time to complete various negotiations with many RES-agents. Multi-second
communication delay would not introduce an issue for this day-ahead trading model. The DNO can
impose a time limit for the auctioning phase to avoid such a problem.
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5. Conclusions

This work presents a multiagent framework for collaboration between BESSs and RESs owned
by different owners. The owners have different trading strategies and risk levels. The RES-agents
can trade with the grid directly (Price Taker Mode) or a BESS-agent (Energy Time-Shifting Mode).
The ESS-agent can trade with the grid (Energy-Arbitrage Mode), or an RES-agent. The framework
represents a decentralized auctioning strategy between the grid, ESS-, and RES-agents. The agents can
pick between the different three modes (price taker, time-shifting, or energy arbitrage) to maximize
their profit. The market and RES energy uncertainty are modeled by min, average, and max values.
The DNO agent guarantees a proper power system flow. The RES- and ESS-agents learn from previous
trades using a proposed ANFIS learning expert. The expert aims at maximizing the agent profit while
considering the system uncertainties. The trading is conducted through three phases (pre-auction,
auction, and post-auction).

A case study on a real distribution feeder has been conducted to validate this work. The case study
compared the proposed MAS framework with a distance-based MAS. The simulation results show
that the proposed MAS provided higher profits to the owners and accommodates different risk levels.
The proposed MAS framework enables the DNO to keep a safe power system operation. The DNO
does not intervene in the owners’ trading strategy or profit. The MAS framework has the advantages
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of being robust, distributed, and scalable since adding more or removing BESS- or RES-agents is
conducted without affecting the system operation.
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Nomenclature

A. Acronyms
BESSs Battery Energy Storage Systems
DNC Daily Number of Cycles
DNO Distributed Network Operator
DOD Depth of Discharge
DSM Demand-Side Management
EA Energy Arbitrage
EA Energy-Arbitrage Mode
ESSs Energy Storage Systems
MAS Multiagent System
PT Price Taker Mode
RESs Renewable Energy Resources
SOC State of Charge
TS Time Shifting Mode
VPP Virtual power Plant

B. Parameters
prs BESS s rated power
β Desired RES profit share from trading with the BESS agent
SUCs BESS s storage bank unit cost ($/kW)
PKGs BESS s set of storage plans
Mpk Market price at time k ($)
FSCs BESS s fixed storage cost ($/kW)
ELCs BESS s expended life cost ($)
ηcs, ηds BESS s charging and discharging efficiency
αi BESS profit share of the total profit pro in case of time-shifting trade (PU)
vmin, vmax Minimum and maximum permissible voltage levels (V)
qli

k , qgi
k

Load and generators reactive power at bus i at time k (VAR)
pr

k RES r generated power at time k (kW)

pli
k , pgi

k
Load and generators active power at bus i at time k (W)

nb Number of buses
asbs BESS s storage cost constants
Zt Impedance of the branch t (Ω)

SOC Storage minimum state of charge
N BESS s maximum number of charging cycles
Gi j Conductance of line i j

(
Ω−1

)
DOD Storage maximum depth of discharge
Bi j Susceptance of line i j

(
Ω−1

)
Cr RES r Levelized generation cost ($/kWh)
ploss Maximum permissible power losses (W)
p

grid
, pgrid Maximum power to import or export to the grid (W)

It Ampacity of the branch t (A)
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C. Decision Variables
c̃S Bid price to the storage s for a specific time-shifting trading
cSi Ask price from the storage s to a RES r for as specific storage plans i
It
k RMS current of the branch t at time k (A)

NS
k BESS s number of charging cycles at time k

SOCS
k BESS s state of charge at time k (PU)

chs
k BESS s charging power at time k (kW)

clsk BESS s charging power limit at time k (kW)
dcs

k BESS s discharging power at time k (kW)
pi

k Active power of the bus i at time k (kW)
ps

k BESS s active power at time k (kW)
psr

k BESS s and the RES r total power in case of time-shifting (kW)
pros

EA BESS s profit in case of energy arbitrage trading ($)
qi

k Reactive power of the bus i at time k (kW)
qs

k BESS s reactive power at time k
vi

k RMS voltage of the bus i at time k (V)

δ
i j
k

Voltage angle difference between the buses i and j (deg)
dlsk BESS s discharging power limit at time k (kW)
plossk Total power losses at time k (kW)
pros

EA BESS s profit in case of energy arbitrage ($)
pror

PT RES r profit in case of price taker trading mode ($)
prosr

TS BESS s and the RES r profit in case of time-shifting ($)
sps

best BESS s optimal profit charging plan
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