Effect on the Thermal Properties of Mortar Blocks by Using Recycled Glass and Its Application for Social Dwellings
Abstract
:1. Introduction
1.1. Effect of Crushed Glass on Thermal and Mechanical Properties of Mortars
1.2. Low-Cost Materials and Its Application to Energy-Efficient Dwellings
2. Materials and Methods
2.1. Thermopyshical Properties of the Material
2.2. Constructive Solutions and Static Thermal Properties
2.3. Assumption of Periodic Thermal Transmittance and Dynamic Thermal Properties
2.4. Case Study and Thermal Model
2.5. Climate Zones
2.6. Thermal Comfort and Energy Analysis
3. Results and Discussion
3.1. Periodical Thermal Properties
3.2. Thermal Comfort and Energy Saving Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Federation of Glass Packaging Makers Record Collection of Glass Containers for Recycling hits 76% in the EU—FEVE. Available online: https://feve.org/record-collection-of-glass-containers-for-recycling-hits-76-in-the-eu/ (accessed on 17 May 2020).
- European Federation of Glass Packaging Makers Glass Recycling Statistics Year 2017. Available online: http://feve.org/about-glass/statistics/ (accessed on 17 May 2020).
- Harder, J. Glass recycling—Current market trends. Recovery 2018, 5. [Google Scholar]
- Hogland, W. Remediation of an old landsfill site. Environ. Sci. Pollut. Res. 2002, 9, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Saillio, M.; Frohard, F.; Chaussadent, T.; Divet, L.; Tagnit-Hamou, A. Durability of concrete with alternative supplementary cementitious materials. In Proceedings of the 10th ACI/RILEM International Conference on Cementitious Materials and Alternative Binders for Sustainable Concrete, Montreal, QU, Canada, 2–4 October 2017. [Google Scholar]
- Aliabdo, A.A.; Abd Elmoaty, A.E.M.; Aboshama, A.Y. Utilization of waste glass powder in the production of cement and concrete. Constr. Build. Mater. 2016, 124, 866–877. [Google Scholar] [CrossRef]
- Salim, M.N.; Jenal, R.B.; Ismail, M.P. Reflected guided wave in plate with flaw using civa simulation software. In Proceedings of the 6th International Engineering Conference (ENCON 2013), Kuching Sarawak, Malaysia, 4 July 2013; pp. 978–981. [Google Scholar]
- Chen, Z.; Wang, Y.; Liao, S.; Huang, Y. Grinding kinetics of waste glass powder and its composite effect as pozzolanic admixture in cement concrete. Constr. Build. Mater. 2020, 239, 117876. [Google Scholar] [CrossRef]
- Chen, G.; Lee, H.; Young, K.L.; Yue, P.L.; Wong, A.; Tao, T.; Choi, K.K. Glass recycling in cement production-an innovative approach. Waste Manag. 2002, 22, 747–753. [Google Scholar] [CrossRef]
- Idir, R.; Cyr, M.; Tagnit-Hamou, A. Use of fine glass as ASR inhibitor in glass aggregate mortars. Constr. Build. Mater. 2010, 24, 1309–1312. [Google Scholar] [CrossRef]
- Carles-Gibergues, A.; Cyr, M.; Moisson, M.; Ringot, E. A simple way to mitigate alkali-silica reaction. Mater. Struct. Constr. 2008, 41, 73–83. [Google Scholar] [CrossRef]
- Cassar, J.; Camilleri, J. Utilisation of imploded glass in structural concrete. Constr. Build. Mater. 2012, 29, 299–307. [Google Scholar] [CrossRef]
- Shayan, A.; Xu, A. Value-added utilisation of waste glass in concrete. Cem. Concr. Res. 2004, 34, 81–89. [Google Scholar] [CrossRef]
- Sikora, P.; Augustyniak, A.; Cendrowski, K.; Horszczaruk, E.; Rucinska, T.; Nawrotek, P.; Mijowska, E. Characterization of mechanical and bactericidal properties of cement mortars containingwaste glass aggregate and nanomaterials. Materials (Basel) 2016, 9, 701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poon, C.S.; Cheung, E. NO removal efficiency of photocatalytic paving blocks prepared with recycled materials. Constr. Build. Mater. 2007, 21, 1746–1753. [Google Scholar] [CrossRef]
- Ajdukiewicz, A.; Kliszczewicz, A. Influence of recycled aggregates on mechanical properties of HS/HPC. Cem. Concr. Compos. 2002, 24, 269–279. [Google Scholar] [CrossRef]
- Mohajerani, A.; Vajna, J.; Cheung, T.H.H.; Kurmus, H.; Arulrajah, A.; Horpibulsuk, S. Practical recycling applications of crushed waste glass in construction materials: A review. Constr. Build. Mater. 2017, 156, 443–467. [Google Scholar] [CrossRef]
- Kumarappan, N. Partial replacement cement in concrete using waste glass. Int. J. Eng. Res. Technol. 2013, 2, 1880–1883. [Google Scholar]
- McNeil, K.; Kang, T.H.K. Recycled concrete aggregates: A review. Int. J. Concr. Struct. Mater. 2013, 7, 61–69. [Google Scholar] [CrossRef] [Green Version]
- De Castro, S.; de Brito, J. Evaluation of the durability of concrete made with crushed glass aggregates. J. Clean. Prod. 2013, 41, 7–14. [Google Scholar] [CrossRef]
- Lu, J.X.; Zhou, Y.; He, P.; Wang, S.; Shen, P.; Poon, C.S. Sustainable reuse of waste glass and incinerated sewage sludge ash in insulating building products: Functional and durability assessment. J. Clean. Prod. 2019, 236, 117635. [Google Scholar] [CrossRef]
- Alani, A.; MacMullen, J.; Telik, O.; Zhang, Z.Y. Investigation into the thermal performance of recycled glass screed for construction purposes. Constr. Build. Mater. 2012, 29, 527–532. [Google Scholar] [CrossRef]
- Sikora, P.; Horszczaruk, E.; Skoczylas, K.; Rucinska, T. Thermal properties of cement mortars containing waste glass aggregate and nanosilica. Procedia Eng. 2017, 196, 159–166. [Google Scholar] [CrossRef]
- Xiao, Z.; Ling, T.C.; Poon, C.S.; Kou, S.C.; Wang, Q.; Huang, R. Properties of partition wall blocks prepared with high percentages of recycled clay brick after exposure to elevated temperatures. Constr. Build. Mater. 2013, 49, 56–61. [Google Scholar] [CrossRef]
- Khan, M.N.N.; Saha, A.K.; Sarker, P.K. Reuse of waste glass as a supplementary binder and aggregate for sustainable cement-based construction materials: A review. J. Build. Eng. 2020, 28, 101052. [Google Scholar] [CrossRef]
- Flores-Alés, V.; Jiménez-Bayarri, V.; Pérez-Fargallo, A. Influencia de la incorporación de vidrio triturado en las propiedades y el comportamiento a alta temperatura de morteros de cemento. Boletín Soc. Española Cerámica Vidr. 2018, 57, 257–265. [Google Scholar] [CrossRef]
- Flores-Alés, V.; Alducin-Ochoa, J.M.; Martín-del-Río, J.J.; Torres-González, M.; Jiménez-Bayarri, V. Physical-mechanical behaviour and transformations at high temperature in a cement mortar with waste glass as aggregate. J. Build. Eng. 2020, 29, 101158. [Google Scholar] [CrossRef]
- Yilmaz, Z. Evaluation of energy efficient design strategies for different climatic zones: Comparison of thermal performance of buildings in temperate-humid and hot-dry climate. Energy Build. 2007, 39, 306–316. [Google Scholar] [CrossRef]
- Rodrigues, E.; Fernandes, M.S.; Gaspar, A.R.; Gomes, Á.; Costa, J.J. Thermal transmittance effect on energy consumption of Mediterranean buildings with different thermal mass. Appl. Energy 2019, 252, 113437. [Google Scholar] [CrossRef]
- Dodoo, A.; Gustavsson, L.; Sathre, R. Effect of thermal mass on life cycle primary energy balances of a concrete-and a wood-frame building. Appl. Energy 2012, 92, 462–472. [Google Scholar] [CrossRef]
- AENOR. UNE-EN ISO 13786:2011. Prestaciones Térmicas de los Productos y Componentes para Edificación. Características Térmicas Dinámicas. Métodos de Cálculo; Asociacion Espanola de Normalizacion: Madrid, Spain, 2011. [Google Scholar]
- AENOR. UNE-EN ISO 6946:2012. Componentes y Elementos para la Edificación. Resistencia Térmica y Transmitancia Térmica. Método de Cálculo; Asociacion Espanola de Normalizacion: Madrid, Spain, 2012. [Google Scholar]
- Stazi, F.; Ulpiani, G.; Pergolini, M.; Di Perna, C. The role of areal heat capacity and decrement factor in case of hyper insulated buildings: An experimental study. Energy Build. 2018, 176, 310–324. [Google Scholar] [CrossRef]
- Rubio-Bellido, C.; Pérez-Fargallo, A.; Pulido-Arcas, J.A.; Trebilcock, M. Application of adaptive comfort behaviors in Chilean social housing standards under the influence of climate change. Build. Simul. 2017, 10, 933–947. [Google Scholar] [CrossRef]
- MINVU Estadisticas Históricas. Available online: http://www.observatoriohabitacional.cl/ (accessed on 28 April 2016).
- MINVU. MINVU DS 01. Reglamento del Sistema Integrado de Subsidio Habitacional; MINVU: Santiago de Chile, Chile, 2011. [Google Scholar]
- MINVU. MINVU DS 49. Reglamento del Programa Fondo Solidario de Elección de Vivienda; MINVU: Santiago de Chile, Chile, 2011. [Google Scholar]
- MOP Decreto con Fuerza de Ley N° 2 Sobre Plan Habitacional. Available online: http://www.sii.cl/pagina/jurisprudencia/legislacion/basica/dfl2_1.htm (accessed on 16 November 2016).
- MINVU. MINVU DS 47. Ordenanza General de la Ley General de Urbanismo y Construcciones; MINVU: Santiago de Chile, Chile, 1992. [Google Scholar]
- MINVU (Ed.) Artículo 4.1.10. Exigencias de acondicionamiento térmico de la Ordenanza general de urbanismo y construcciones. In DS 47 Ordenanza General de la Ley General de Urbanismo y Construcciones; MINVU: Santiago, Chile, 2007. [Google Scholar]
- MINVU and Building Research Establishment. Estándares de Construcción Sustentable para Viviendas en Chile; MINVU and Building Research Establishment: Santiago de Chile, Chile, 2018. [Google Scholar]
- Pérez-Fargallo, A.; Pulido-Arcas, J.A.; Rubio-Bellido, C.; Trebilcock, M.; Piderit, M.B.; Attia, S. Development of a new adaptive comfort model for low income housing in the central-south of chile. Energy Build. 2018, 178, 94–106. [Google Scholar] [CrossRef] [Green Version]
- Porras-Salazar, J.A.; Contreras-Espinoza, S.; Cartes, I.; Piggot-Navarrete, J.; Pérez-Fargallo, A. Energy poverty analyzed considering the adaptive comfort of people living in social housing in the central-south of Chile. Energy Build. 2020, 223, 110081. [Google Scholar] [CrossRef]
- American Society of Heating, R.A.C.E. (ASHRAE) (Ed.) ASHRAE Standard 55-2017. Thermal Environmental Conditions for Human Occupancy; ASHRAE Inc. American Society of Heating, Refrigerating and Air Conditioning Engineers: Atlanta, GA, USA, 2017; ISBN 1041–2336. [Google Scholar]
- Flores-Alés, V.; Martín-del-Río, J.J.; Alducin-Ochoa, J.M.; Torres-González, M. Rehydration on high temperature-mortars based on recycled glass as aggregate. J. Clean. Prod. 2020, 275, 124139. [Google Scholar] [CrossRef]
- Blumm, J.; Lindeman, A.; Niedrig, B. Measurement of the thermophysical properties of an NPL thermal conductivity standard Inconel 600. High Temp. Press. 2003, 35/36, 621–626. [Google Scholar] [CrossRef] [Green Version]
- Carslaw, H.S.; Jaeger, J.C. Conduction of Heat in Solids, 2nd ed.; Oxford Clarendon Press: Oxford, UK, 1959. [Google Scholar]
- Ministerío de Vivienda y Urbanísmo. Artículo 4.1.10. Exigencias de Acondicionamiento Térmico de la Ordenanza General de Urbanismo y Construcciones; Ministerío de Vivienda y Urbanísmo: Santiago, Chile, 2011. [Google Scholar]
- Ministerío de Vivienda y Urbanísmo. Artículo 4.1.10. Manual de Aplicación. Reglamentación Térmica. Ordenanza General de Urbanísmo y Construcciones; Ministerío de Vivienda y Urbanísmo: Santiago, Chile, 2016. [Google Scholar]
- Nicol, J.F.; Humphreys, M.A. Adaptive thermal comfort and sustainable thermal standards for buildings. Energy Build. 2002, 34, 563–572. [Google Scholar] [CrossRef]
- Escandón, R.; Suárez, R.; Sendra, J.J.; Ascione, F.; Bianco, N.; Mauro, G.M. Predicting the impact of climate change on thermal comfort in a building category: The Case of Linear-type Social Housing Stock in Southern Spain. Energies 2019, 12, 2238. [Google Scholar] [CrossRef] [Green Version]
- CEN. Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air quality, Thermal Environment, Lighting and Acoustics; CEN: Brussels, Belgium, 2017; Volume 44, EN 16798. [Google Scholar]
- HTflux—Hygrig and Thermal Simulation Software. Available online: https://www.htflux.com/en/ (accessed on 17 May 2020).
Cement | % Sand | % Glass | ρ (g/cm3) | δ (W/Km) | |
---|---|---|---|---|---|
mR | 1 | 3 | 0 | 1.60 | 1.2884 |
m25 | 1 | 2.25 | 0.75 | 1.95 | 1.0589 |
m50 | 1 | 1.5 | 1.5 | 2.04 | 0.8662 |
Layer Name | Thermal Conductivity l (W/mK) | Gross Density r (kg/m3) | Spec. Heat Capacity C (J/kgK) | Layer Thickness d (m) | R (m2K/W) | |
---|---|---|---|---|---|---|
mR | Rsi (int. heat transfer resistance) | 0.13 | ||||
Plaster | 0.570 | 1150.0 | 1000 | 0.0150 | 0.026 | |
Glass mortar mR brick | 1.288 | 1603.0 | 659 | 0.1150 | 0.089 | |
Cement mortar | 1.400 | 2000.0 | 800 | 0.0200 | 0.014 | |
Rse (ext. heat transfer resistance) | 0.04 | |||||
U-value: | 3.3349 | W/m2K | ||||
m25 | Rsi (int. heat transfer resistance) | 0.13 | ||||
Plaster | 0.570 | 1150.0 | 1000 | 0.0150 | 0.026 | |
Glass mortar mR25 brick | 1.059 | 1951.0 | 671 | 0.1150 | 0.109 | |
Cement mortar | 1.400 | 2000.0 | 800 | 0.0200 | 0.014 | |
Rse (ext. heat transfer resistance) | 0.04 | |||||
U-value: | 3.1329 | W/m2K | ||||
m50 | Rsi (int. heat transfer resistance) | 0.13 | ||||
Plaster | 0.570 | 1150.0 | 1000 | 0.0150 | 0.026 | |
Glass mortar mR50 brick | 0.866 | 2039.0 | 687 | 0.1150 | 0.133 | |
Cement mortar | 1.400 | 2000.0 | 800 | 0.0200 | 0.014 | |
Rse (ext. heat transfer resistance) | 0.04 | |||||
U-value: | 2.9124 | W/m2K |
Case | U Openings (W/m2 K) | U envelope (W/m2 K) | Ventilation l/(s*Person) | Infiltrations (ACh) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Roof | Walls | Floor (m2K/W) × 100 | Time | Months 5, 6, 7, 8 | Months 4, 9, 10 | Months 1, 2, 3, 11, 12 | ||||
1 | mR | 1.94–3.16 * | 0.25–0.84 * | 3.916–0.600 * | ||||||
2 | m25 | 3.651–0.593 * | 45 | 24 h | 5.2 | 5.2 | 5.2 | 1 | ||
3 | m50 | 3.367-0.585 * |
Living-Dining Room | Kitchen | Bedroom | Bathroom | Corridor | |
---|---|---|---|---|---|
Illumination (W/m2) | 23 | 13 | 12 | 13 | 5 |
Occupation (W/m2) | 8.9 | 8.9 | 8.9 | 8.9 | 8.9 |
Equipment (W/m2) | 12.40 | 12.40 | 12.40 | - | 12.40 |
Zone | Location | Koppen–Geiger Classification | Latitude | Longitude | Elevation | Average January | Oscil. January | Average July | Oscil. July | Heating Degree Day Based on 15 °C |
---|---|---|---|---|---|---|---|---|---|---|
1 | Antofagasta | BWk | 23.43 °S | 70.43 °W | 120 m | 20.5 | 7.3 | 14.9 | 5 | ≤500 |
2 | Valparaíso | CSbn | 30.03 °S | 71.48 °W | 41 m | 17.8 | 9.2 | 11.4 | 7.3 | >500–≤750 |
3 | Santiago | CSb | 33.38 °S | 70.78 °W | 474 m | 20.7 | 17 | 7.9 | 11.3 | >750–≤1000 |
4 | Concepción | CSbn’s | 36.77 °S | 73.05 °W | 16 m | 16.6 | 14.2 | 8.7 | 8.5 | >1000–≤1250 |
5 | Temuco | CFb | 38.75 °S | 72.63 °W | 120 m | 18.0 | 17.2 | 6.3 | 7.6 | >1250–≤1500 |
6 | Lonquimay | CFb | 38.43 °S | 71.23 °W | 925 m | 15.5 | 20.9 | 1.5 | 9.4 | >1500–≤2000 |
7 | Punta Arenas | BSk´s | 53.00 °S | 70.85 °W | 37 m | 11.2 | 8.2 | 2.2 | 4.7 | >2000 |
Parameter | Unit | mR | m25 | m50 |
---|---|---|---|---|
external thermal admittance | W/(m2K) | 7.351 | 7.732 | 7.615 |
time shift external side | h | 2.64 | 2.60 | 2.61 |
internal thermal admittance | W/(m2K) | 4.068 | 4.132 | 4.085 |
time shift internal side | h | 1.05 | 1.18 | 1.28 |
periodic thermal transmittance | W/(m2K) | 2.890 | 2.548 | 2.280 |
time shift periodic thermal transmittance | h | −2.68 | −3.26 | −3.63 |
external areal heat capacity | kJ/(m2K) | 101.822 | 110.720 | 111.165 |
Internal areal heat capacity | kJ/(m2K) | 47.083 | 53.592 | 56.158 |
decrement factor f | 0.866 | 0.813 | 0.783 |
ZONE | Mortar | Transmittance (W/m2K) | Hours in Comfort (h) | Distance to Tn (°C) | |||
---|---|---|---|---|---|---|---|
Reduction (%) | Difference (h) | Difference (°C) | |||||
Z1 | mR | 3.916 | 6351 | 21,157 | |||
m25 | 3.651 | 7% | 6454 | 103 | 20,728 | −429 | |
m50 | 3.367 | 14% | 6550 | 199 | 20,293 | −864 | |
Z2 | mR | 3.004 | 4128 | 35,404 | |||
m25 | 2.846 | 5% | 4151 | 23 | 34,995 | −409 | |
m50 | 2.670 | 11% | 4198 | 70 | 34,583 | −822 | |
Z3 | mR | 1.903 | 4390 | 32,583 | |||
m25 | 1.839 | 3% | 4437 | 47 | 32,327 | −255 | |
m50 | 1.764 | 7% | 4464 | 74 | 32,083 | −500 | |
Z4 | mR | 1.701 | 5031 | 28,727 | |||
m25 | 1.649 | 3% | 4998 | −33 | 28,897 | 170 | |
m50 | 1.589 | 7% | 5056 | 25 | 28,544 | −183 | |
Z5 | mR | 1.599 | 4238 | 35,646 | |||
m25 | 1.553 | 3% | 4238 | 0 | 35,888 | 242 | |
m50 | 1.499 | 6% | 4275 | 37 | 35,523 | −122 | |
Z6 | mR | 1.101 | 4296 | 36,363 | |||
m25 | 1.079 | 2% | 4330 | 34 | 36,096 | −267 | |
m50 | 1.053 | 4% | 4361 | 65 | 35,875 | −488 | |
Z7 | mR | 0.600 | 2676 | 55,647 | |||
m25 | 0.593 | 1% | 2605 | −71 | 56,178 | 531 | |
m50 | 0.585 | 3% | 2618 | −58 | 56,048 | 401 |
ZONE | Mortar | Heating | Cooling | ||||||
---|---|---|---|---|---|---|---|---|---|
Peak Demand (KWh) | Peak Reduction (%) | Total (KWh/Year) | Annual Reduction (%) | Peak Demand (KWh) | Peak Reduction (%) | Total (KWh/Year) | Annual Reduction (%) | ||
Z1 | mR | 2.97 | 2667 | 4.14 | 1871 | ||||
m25 | 2.85 | 4.3% | 2460 | 7.8% | 3.78 | 8.7% | 1721 | 8.0% | |
m50 | 2.75 | 7.6% | 2259 | 15.3% | 3.64 | 12.2% | 1689 | 9.7% | |
Z2 | mR | 3.39 | 7047 | 6.45 | 3746 | ||||
m25 | 3.31 | 2.6% | 6806 | 3.4% | 6.14 | 4.8% | 3462 | 7.6% | |
m50 | 3.22 | 5.1% | 6557 | 7.0% | 6.01 | 6.8% | 3380 | 9.8% | |
Z3 | mR | 2.74 | 5611 | 4.47 | 2953 | ||||
m25 | 2.70 | 1.5% | 5477 | 2.4% | 4.23 | 5.4% | 2739 | 7.3% | |
m50 | 2.66 | 2.8% | 5339 | 4.8% | 4.13 | 7.6% | 2693 | 8.8% | |
Z4 | mR | 0.92 | 1403 | 0.00 | 0.00 | ||||
m25 | 0.92 | 0.6% | 1391 | 0.8% | 0.00 | - | 0.00 | - | |
m50 | 0.91 | 1.3% | 1364 | 2.7% | 0.00 | - | 0.00 | - | |
Z5 | mR | 1.07 | 1902 | 0.00 | 0.00 | ||||
m25 | 1.07 | 0.4% | 1891 | 0.6% | 0.00 | - | 0.00 | - | |
m50 | 1.06 | 1.0% | 1863 | 2.1% | 0.00 | - | 0.00 | - | |
Z6 | mR | 1.03 | 1755 | 0.00 | 0.00 | ||||
m25 | 1.03 | 0.3% | 1756 | 0.0% | 0.00 | - | 0.00 | - | |
m50 | 1.03 | 0.8% | 1739 | 0.9% | 0.00 | - | 0.00 | - | |
Z7 | mR | 1.10 | 3176 | 0.00 | 0.00 | ||||
m25 | 1.10 | 0.1% | 3187 | −0.4% | 0.00 | - | 0.00 | - | |
m50 | 1.09 | 0.3% | 3178 | −0.1% | 0.00 | - | 0.00 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores-Alés, V.; Pérez-Fargallo, A.; Pulido Arcas, J.A.; Rubio-Bellido, C. Effect on the Thermal Properties of Mortar Blocks by Using Recycled Glass and Its Application for Social Dwellings. Energies 2020, 13, 5702. https://doi.org/10.3390/en13215702
Flores-Alés V, Pérez-Fargallo A, Pulido Arcas JA, Rubio-Bellido C. Effect on the Thermal Properties of Mortar Blocks by Using Recycled Glass and Its Application for Social Dwellings. Energies. 2020; 13(21):5702. https://doi.org/10.3390/en13215702
Chicago/Turabian StyleFlores-Alés, Vicente, Alexis Pérez-Fargallo, Jesús A. Pulido Arcas, and Carlos Rubio-Bellido. 2020. "Effect on the Thermal Properties of Mortar Blocks by Using Recycled Glass and Its Application for Social Dwellings" Energies 13, no. 21: 5702. https://doi.org/10.3390/en13215702
APA StyleFlores-Alés, V., Pérez-Fargallo, A., Pulido Arcas, J. A., & Rubio-Bellido, C. (2020). Effect on the Thermal Properties of Mortar Blocks by Using Recycled Glass and Its Application for Social Dwellings. Energies, 13(21), 5702. https://doi.org/10.3390/en13215702