Advanced Gas Turbine Control Logic Using Black Box Models for Enhancing Operational Flexibility and Stability
Abstract
:1. Introduction
2. Gas Turbine Simulation Model
2.1. Virtual Gas Turbine Modeling Using Physical Model
2.1.1. Overview
2.1.2. Properties
2.1.3. Duct
2.1.4. Compressor
2.1.5. Combustor
2.1.6. Turbine
2.1.7. Shaft
2.2. Validation of Virtual Gas Turbine
3. Gas Turbine Control Logic
3.1. Conventional Control Logic
3.2. Advanced Control Logic Using Black Box Models
3.2.1. Overview
3.2.2. Building Black Box Models Based on ANN
3.2.3. Black Box Model for Correcting Control Target Value (Black Box Model 1)
3.2.4. Black Box Model for AMPC (Black Box Model 2)
4. Results and Discussion
4.1. Effect of Correcting Control Target Value Using a Black Box Model on Partial Load Performance
4.2. Effect of Adopting AMPC on the Gas Turbine’s Response to Increased Ramp Rate
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
a | Constant of chemical species |
b | Constant of chemical species |
C | Rotor coolant charging factor |
cp | Specific heat at constant pressure (kJ/kg·K) |
e | error |
G | Manipulated variables weighting factor |
h | Specific enthalpy (kJ/kg) |
I | Inertia (kg·m2) |
K | Gain value |
L | Load (MW) |
M | Flow function (kg·K0.5/kN·s) |
Mass flow rate (kg/s) | |
n | Number of data |
p | Pressure (kPa) |
PR | Pressure ratio |
Obj | Object function |
Q | Control variables weighting factor |
R | Gas constant (kJ/kg·K) |
s | Specific entropy (kJ/kg) |
t | Time (sec) |
T | Temperature (K) |
Power (MW) | |
X | Manipulated variables |
x | Value of data |
Y | Control variables |
y | Value of predicting data |
z | Value of training and testing data |
Relative inlet guide vane angle | |
Efficiency | |
Rotation speed (RPM) | |
Semi-non-dimensional rotation speed (K0.5/RPM) | |
Subscripts | |
1,2,3,4 | Locations in the gas turbine |
AUX loss | Auxiliary loss |
comb | Combustor |
comp | Compressor |
coolant | Coolant flow |
corrected | Corrected value |
d | Design state |
D | Derivative |
exh. | Turbine exhaust |
f | Fuel |
field | Field data |
GT | Gas turbine |
I | Integral |
i | index |
in | Inlet |
initial | Initial value |
l | Number of predicting time steps |
n | Number of data |
out | Outlet |
P | Proportional |
s | Isentropic |
simulation | Simulation data |
t | Time step |
target | Control target value |
turb | Turbine |
Abbreviations | |
ANN | Artificial neural network |
AMPC | ANN model predictive control |
MSE | Mean squared error |
MPC | Model predictive control |
P2G | Power to gas |
TIT | Turbine inlet temperature |
TET | Turbine exhaust temperature |
VIGV | Variable inlet guide vane |
References
- Shahbaz, M.; Raghutla, C.; Chittedi, K.R.; Jiao, Z.; Vo, X.V. The Effect of Renewable Energy Consumption on Economic Growth: Evidence from the Renewable Energy Country Attractive Index. Energy 2020, 207, 118162. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, L. Renewable energy consumption and economic growth in OECD countries: A nonlinear panel data analysis. Energy 2020, 207, 118200. [Google Scholar] [CrossRef]
- Sarker, E.; Seyedmahmoudian, M.; Jamei, E.; Horan, B.; Stojcevski, A. Optimal Management of Home Loads with Renewable Energy Integration and Demand Response Strategy. Energy 2020, 210, 118602. [Google Scholar] [CrossRef]
- Chettibi, N.; Mellit, A. Intelligent Control Strategy for a Grid Connected PV/SOFC/BESS Energy Generation System. Energy 2018, 147, 239–262. [Google Scholar] [CrossRef]
- Pena-Bello, A.; Barbour, E.; Gonzalez, M.C.; Yilmaz, S.; Patel, M.K.; Parra, D. How Does the Electricity Demand Profile Impact the Attractiveness of PV-Coupled Battery Systems Combining Applications? Energies 2020, 13, 4038. [Google Scholar] [CrossRef]
- Raugei, M.; Peluso, A.; Leccisi, E.; Fthenakis, V. Life-Cycle Carbon Emissions and Energy Return on Investment for 80% Domestic Renewable Electricity with Battery Storage in California (U.S.A.). Energies 2020, 13, 3934. [Google Scholar] [CrossRef]
- Aktaş, A.; Kırçiçek, Y.A. Novel Optimal Energy Management Strategy for Offshore Wind/Marine Current/Battery/Ultracapacitor Hybrid Renewable Energy System. Energy 2020, 199, 117425. [Google Scholar] [CrossRef]
- Sikorski, T.; Jasiński, M.; Ropuszyńska-Surma, E.; Węglarz, M.; Kaczorowska, D.; Kostyla, P.; Leonowicz, Z.; Lis, R.; Rezmer, J.; Rojewski, W.; et al. A Case Study on Distributed Energy Resources and Energy-Storage Systems in a Virtual Power Plant Concept: Technical Aspects. Energies 2020, 13, 3086. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, Q.; Hu, S.; Xu, H.; Rasmussen, C.N. Review of Energy Storage System for Wind Power Integration Support. Appl. Energy 2015, 137, 545–553. [Google Scholar] [CrossRef]
- Kim, E.H.; Park, Y.G.; Roh, J.H. Competitiveness of Open-Cycle Gas Turbine and Its Potential in the Future Korean Electricity Market with High Renewable Energy Mix. Energy Policy 2019, 129, 1056–1069. [Google Scholar] [CrossRef]
- Isaiah, T.G.; Dabbashi, S.; Bosak, D.; Sampath, S.; Di Lorenzo, G.; Pilidis, P. Life Analysis of Industrial Gas Turbines Used as a Back-Up to Renewable Energy Sources. Procedia CIRP 2015, 38, 239–244. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Sun, K.; Wu, Z.; Gu, W.; Wu, G.; Li, Z.; Li, J. Optimized Operation Method of Small and Medium-Sized Integrated Energy System for P2G Equipment under Strong Uncertainty. Energy 2020, 199, 117269. [Google Scholar] [CrossRef]
- Belderbos, A.; Valkaert, T.; Bruninx, K.; Delarue, E.; D’haeseleer, W. Facilitating Renewables and Power-to-Gas via Integrated Electrical Power-Gas System Scheduling. Appl. Energy 2020, 275, 115082. [Google Scholar] [CrossRef]
- Jeong, J.H.; Yi, J.H.; Kim, T.S. Analysis of Options in Combining Compressed Air Energy Storage with a Natural Gas Combined Cycle. J. Mech. Sci. Technol. 2018, 32, 3453–3464. [Google Scholar] [CrossRef]
- Kim, M.J.; Kim, T.S. Feasibility Study on the Influence of Steam Injection in the Compressed Air Energy Storage System. Energy 2017, 141, 239–249. [Google Scholar] [CrossRef]
- Tsoutsanis, E.; Meskin, N.; Benammar, M.; Khorasani, K. A Dynamic Prognosis Scheme for Flexible Operation of Gas Turbines. Appl. Energy 2016, 164, 686–701. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Yang, C.; Yang, H.; Ma, X. Off-Design Heating/Power Flexibility for Steam Injected Gas Turbine Based CCHP Considering Variable Geometry Operation. Energy 2018, 165, 1048–1060. [Google Scholar] [CrossRef]
- Barelli, L.; Ottaviano, A. Supercharged Gas Turbine Combined Cycle: An Improvement in Plant Flexibility and Efficiency. Energy 2015, 81, 615–626. [Google Scholar] [CrossRef]
- Buschmeier, M.; Kleinwächter, T.; Feldmüller, A.; Köhne, P.; Energy, S. Improving Flexibility of the Combined Cycle Power Plant Hamm Uentrop to Cover the Operational Profiles of the Future. In Proceedings of the POWER-GEN Europe, Cologne, Germany, 3–5 June 2014. [Google Scholar]
- Kim, T.S. Comparative Analysis on the Part Load Performance of Combined Cycle Plants Considering Design Performance and Power Control Strategy. Energy 2004, 29, 71–85. [Google Scholar] [CrossRef]
- Rowen, W.I. Operating Characteristics of Heavy-Duty Gas Turbines in Utility Service. In Proceedings of the ASME 1988 International Gas Turbine and Aeroengine Congress and Exposition, Amsterdam, The Netherlands, 6–9 June 1988. ASME paper 88-GT-150. [Google Scholar]
- Rowen, W.I. Simplified Mathematical Representations of Single Shaft Gas Turbines in Mechanical Drive Service. In Proceedings of the ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition, Cologne, Germany, 1–4 June 1992. ASME paper 92-GT-022. [Google Scholar]
- Tavakoli, M.R.B.; Vahidi, B.; Gawlik, W. An Educational Guide to Extract the Parameters of Heavy Duty Gas Turbines Model in Dynamic Studies Based on Operational Data. IEEE Trans. Power Syst. 2009, 24, 1366–1374. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, T.S. Novel Performance Diagnostic Logic for Industrial Gas Turbines in Consideration of Over-Firing. J. Mech. Sci. Technol. 2018, 32, 5947–5959. [Google Scholar] [CrossRef]
- Kim, M.J.; Kim, T.S. Integration of Compressed Air Energy Storage and Gas Turbine to Improve the Ramp Rate. Appl. Energy 2019, 247, 363–373. [Google Scholar] [CrossRef]
- Lin, H.; Leon, J.I.; Luo, W.; Marquez, A.; Liu, J.; Vazquez, S.; Franquelo, L.G. Integral Sliding-Mode Control-Based Direct Power Control for Three-Level NPC Converters. Energies 2020, 13, 227. [Google Scholar] [CrossRef] [Green Version]
- Krzywanski, J.A. General Approach in Optimization of Heat Exchangers by Bio-Inspired Artificial Intelligence Methods. Energies 2019, 12, 4441. [Google Scholar] [CrossRef] [Green Version]
- Krzywanski, J.; Fan, H.; Feng, Y.; Shaikh, A.R.; Fang, M.; Wang, Q. Genetic algorithms and neural networks in optimization of sorbent enhanced H2 production in FB and CFB gasifiers. Energy Convers. Manag. 2018, 171, 1651–1661. [Google Scholar] [CrossRef]
- Lin, H.; Sun, Q. Crude Oil Prices Forecasting: An Approach of Using CEEMDAN-Based Multi-Layer Gated Recurrent Unit Networks. Energies 2020, 13, 1543. [Google Scholar] [CrossRef] [Green Version]
- Stojčić, M.; Stjepanović, A.; Stjepanović, Đ. ANFIS model for the prediction of generated electricity of photovoltaic modules. Decis. Mak. Appl. Manag. Eng. 2019, 2, 35–48. [Google Scholar] [CrossRef]
- MathWorks, 2019, MATLAB R2019b. Available online: https://mathworks.com/products/matlab.html (accessed on 31 October 2020).
- Kim, M.J.; Kim, J.H.; Kim, T.S. Program Development and Simulation of Dynamic Operation of Micro Gas Turbines. Appl. Therm. Eng. 2016, 108, 122–130. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, T.S.; Moon, S.J. Development of a Program for Transient Behavior Simulation of Heavy-Duty Gas Turbines. J. Mech. Sci. Technol. 2016, 30, 5817–5828. [Google Scholar] [CrossRef]
- Kim, M.J.; Kim, J.H.; Kim, T.S. The effects of internal leakage on the performance of a micro gas turbine. Appl. Energy 2018, 212, 175–184. [Google Scholar] [CrossRef]
- Kang, D.W.; Kim, T.S. Model-Based Performance Diagnostics of Heavy-Duty Gas Turbines Using Compressor Map Adaptation. Appl. Energy 2018, 212, 1345–1359. [Google Scholar] [CrossRef]
- Gay, R.R.; Palmer, C.A.; Erbes, M.R. Power Plant Performance Monitoring; Techniz Books International: New Delhi, India, 2006; pp. 110–116. ISBN 0-9755876-0-9. [Google Scholar]
- Moon, S.W.; Kwon, H.M.; Kim, T.S.; Kang, D.W.; Sohn, J.L. A Novel Coolant Cooling Method for Enhancing the Performance of the Gas Turbine Combined Cycle. Energy 2018, 160, 625–634. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, T.S.; Kim, E. Prediction of Power Generation Capacity of a Gas Turbine Combined Cycle Cogeneration Plant. Energy 2017, 124, 187–197. [Google Scholar] [CrossRef]
- McBride, B.J. NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species; National Aeronautics and Space Administration, John H. Glenn Research Center at Lewis Field: Cleveland, OH, USA, 2002.
- Moran, M.J.; Shapiro, H.N.; Boettner, D.D.; Bailey, M.B. Fundamentals of Engineering Thermodynamics; John Wiley & Sons: Hoboken, NJ, USA, 2010; ISBN 978-0470495902. [Google Scholar]
- Saravanamuttoo, H.I.; Rogers, G.F.C.; Cohen, H. Gas Turbine Theory; Pearson Education: London, UK, 2001; ISBN 978-1292093093. [Google Scholar]
- Song, T.W.; Kim, T.S.; Kim, J.H.; Ro, S.T. Performance Prediction of Axial Flow Compressors Using Stage Characteristics and Simultaneous Calculation of Interstage Parameters. Proc. Inst. Mech. Eng. Part A J. Power Energy 2001, 215, 89–98. [Google Scholar] [CrossRef]
- Lee, J.J.; Kang, D.W.; Kim, T.S. Development of a Gas Turbine Performance Analysis Program and Its Application. Energy 2011, 36, 5274–5285. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, T.S. Development of a Program to Simulate the Dynamic Behavior of Heavy-Duty Gas Turbines during the Entire Start-up Operation Including Very Early Part. J. Mech. Sci. Technol. 2019, 33, 4495–4510. [Google Scholar] [CrossRef]
- Choi, B.S.; Kim, M.J.; Ahn, J.H.; Kim, T.S. Influence of a Recuperator on the Performance of the Semi-Closed Oxy-Fuel Combustion Combined Cycle. Appl. Therm. Eng. 2017, 124, 1301–1311. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, T.S. A New Approach to Generate Turbine Map Data in the Sub-Idle Operation Regime of Gas Turbines. Energy 2019, 173, 772–784. [Google Scholar] [CrossRef]
- Palmer, C.A.; Erbes, M.R. Simulation Methods Used to Analyze the Performance of the GE PG6541B Gas Turbine Utilizing Low Heating Value Fuels. In Proceedings of the CONF-941024, New York, NY, USA, 25–27 October 1994. [Google Scholar]
- California Energy Commission. Redondo Beach Energy Project-Appendix 3A CAISO Interconnection Request and Payment; 2012; Report for certification, LA, CA. Available online: https://ww2.energy.ca.gov/sitingcases/redondo_beach/documents/applicant/AFC/Vol_2/ (accessed on 31 October 2020).
- Rowen, W.I.; Van Housen, R.L. Gas turbine airflow control for optimum heat recovery. J. Eng. Power 1983, 105, 72–79. [Google Scholar] [CrossRef]
- Beale, M.H.; Hagan, M.T.; Demuth, H.B. Neural network toolbox. User’s Guide. MathWorks 2010, 2, 77–81. [Google Scholar]
- Kim, M.J.; Kim, T.S.; Flores, R.J.; Brouwer, J. Neural-Network-Based Optimization for Economic Dispatch of Combined Heat and Power Systems. Appl. Energy 2020, 265, 114785. [Google Scholar] [CrossRef]
- Kim, J.S.; Powell, K.M.; Edgar, T.F. Nonlinear Model Predictive Control for a Heavy-Duty Gas Turbine Power Plant. In Proceedings of the 2013 American Control Conference, Washington, DC, USA, 17–19 June 2013; pp. 2952–2957. [Google Scholar]
- Asgari, H.; Chen, X. Gas Turbines Modeling, Simulation, and Control: Using Artificial Neural Networks; CRC Press: Boca Raton, FL, USA, 2015; pp. 133–135. [Google Scholar]
- Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J. Optim. 1998, 9, 112–147. [Google Scholar] [CrossRef] [Green Version]
- General Electric Company GE 7FA Power Plant Fact Sheet 2020; GE32930A. Available online: http://www.ge.com/power/gas/gas-turbines/7f-05 (accessed on 30 October 2020).
Parameters | 7FA | Type of the Parameter in the Simulation | |
---|---|---|---|
Field Data | Modeling | ||
Ambient temperature (°C) | 15 | 15 | Input |
Ambient pressure (kPa) | 101.3 | 101.3 | Input |
Fuel flow rate (kg/s) | 9.03 | 9.03 | Input |
Pressure ratio | 15.0 | 15.0 | Input |
Compressor polytropic efficiency (%) | 0.89 | 0.89 | input |
Turbine inlet temperature (°C) | Unknown | 1420 | Assumed input |
Turbine polytropic efficiency (%) | Unknown | 0.88 | Assumed input |
Total coolant flow relative to inlet air (%) | Unknown | 20 | Calculated |
Exhaust gas flow rate (kg/s) | 420 | 420 | Input |
Exhaust gas temperature (°C) | 603 | 603 | Calculated |
Net power (MW) | 160 | 160 | Calculated |
Gas turbine LHV efficiency (%) | 36 | 36 | Calculated |
Input Data | Output Data | |
---|---|---|
Parameters | Range (Unit) | Parameters(unit) |
Ambient temperature | −15~30 (°C) | Corrected target TET (°C) |
Compressor inlet pressure | 95~105 (kPa) | |
Load of gas turbine | 50~100 (%) |
Input Data | Output Data | |
---|---|---|
Parameters | Range (unit) | Parameters (unit) |
Ambient temperature | −15~30 (°C) | Inlet flow rate (kg/s) |
Ambient Pressure | 95~105 (kPa) | Pressure ratio |
Fuel flow rate | 7~9.5 (kg/s) | TET (°C) |
Relative VIGV angle | 50~100 | TIT (°C) |
Rotational speed | 3500~3700 (RPM) | Gas turbine power (kW) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, S.W.; Kim, T.S. Advanced Gas Turbine Control Logic Using Black Box Models for Enhancing Operational Flexibility and Stability. Energies 2020, 13, 5703. https://doi.org/10.3390/en13215703
Moon SW, Kim TS. Advanced Gas Turbine Control Logic Using Black Box Models for Enhancing Operational Flexibility and Stability. Energies. 2020; 13(21):5703. https://doi.org/10.3390/en13215703
Chicago/Turabian StyleMoon, Seong Won, and Tong Seop Kim. 2020. "Advanced Gas Turbine Control Logic Using Black Box Models for Enhancing Operational Flexibility and Stability" Energies 13, no. 21: 5703. https://doi.org/10.3390/en13215703
APA StyleMoon, S. W., & Kim, T. S. (2020). Advanced Gas Turbine Control Logic Using Black Box Models for Enhancing Operational Flexibility and Stability. Energies, 13(21), 5703. https://doi.org/10.3390/en13215703