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Abstract: Owing to some nonlinear characteristics in the permanent-magnet synchronous motor (SM),
such as nonlinear friction, cogging torque, wind stray torque, external load torque, and unmodeled
systems, fine control performances cannot be accomplished by utilizing the general linear controllers.
Thereby, the backstepping approach adopting three adaptive rules and a swapping function is
brought forward for controlling the rotor motion in the permanent-magnet SM drive system to reduce
nonlinear uncertainties effects. To improve the chattering phenomenon, the backstepping control
with three adaptive rules using a revised recurring sieved Pollaczek polynomials neural network
(RRSPPNN) with reformed grey wolf optimization (RGWO) and a recouped controller is proposed to
estimate the internal collection and external collection torque uncertainties, and to recoup the smallest
fabricated error of the appraised rule. In the light of the Lyapunov stability, the on-line parametric
training method of the RRSPPNN can be derived through an adaptive rule. Furthermore, to obtain a
beneficial learning rate and improve the convergence of the weights, the RGWO algorithm adopting
two exponential-functional adjustable factors is applied to adjust the two learning rates of the weights.
Then, the efficiency of the used controller is validated by test results.

Keywords: backstepping control; Lyapunov stability theorem; grey wolf optimization; permanent-magnet
synchronous motor; Sieved-Pollaczek polynomials neural network

1. Introduction

The permanent-magnet synchronous motors (SMs) [1] with many merits are superior to the
switched reluctance motors (SRMs) and induction motors (IMs). The permanent-magnet SMs [2] can
offer higher efficiency, higher power density, lower power loss, and higher robustness in comparsion
with the SRMs and the IMs at the same volume. The permanent-magnet SMs have mostly adopted
the field-oriented control technique owing to their easy implementation. Thereby, output torque
can result in lower ripple torque in comparison with the SRMs and IMs at the same output torque.
On the other hand, the permanent-magnet SMs controlled by field-oriented control [1,2], which can
achieve fast four-quadrant operation, are much less sensitive to the parameter variations of the
motor. Therefore, they have been widely used in many industrial applications such as robotics [1],
computer numerical control (CNC) tools [2], and other mechatronics [3].

The backstepping designs [4] are befitting for a large type of linearizable nonlinear systems.
Each backstepping phase can produce a novel fictitious-control design denoted by previous design
phases. When the procedure ends, a feedback design can achieve the primitive design aim by utilizing
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the last Lyapunov function that made up by adding into the Lyapunov functions regarding all individual
design phases [4]. Moreover, the backstepping control with an adaptive law has been applied in
a microgyroscope [5], automatic train operation [6], aircraft flight control [7], power switcher [8],
and synchronous generator [9]. Further, the backstepping control by using the modified recurrent
Rogers–Szego polynomials neural network with decorated gray wolf optimization (DGWO) has been
used in the permanent-magnet synchronous linear motor drive system [10]. The recouped mechanisms
in these methods were absent for the estimated uncertainty. Therefore, the main aim of this paper is to
improve control performances by using the proposed backstepping control with three adaptive rules
using a revised recurring sieved Pollaczek polynomials neural network (RRSPPNN) with reformed
grey wolf optimization (RGWO) and recouped controller.

Neural networks (NNs) have better approximation behavior in modeling [11], identification [12]
and control [13] of systems. These NNs were the feedforward network structures with static mapping
functions. They may not exactly respond the dynamic behavior in real time because of absent feedback
loop. The recurrent NNs with feedback loop have been broadly used in the prediction of photovoltaic
power output [14], an accurate electricity spot price prediction scheme [15], a photovoltaic power
forecasting approach [16], and an adaptive energy management control [17] as result of higher
certification and finer control performance. The primary significant property of the recurrent NN is to
recollect feedback message of the foretime effect in the same neuron via its self-link. Moreover, in the
general recurrent NNs, the specific self-link feedback of the hidden neuron or output neuron is in charge
of recollecting the designated preceding activation of the hidden neuron or output neuron and provender
to itself only. Therefore, the outputs of the other neurons have no capacity to infect the designated neuron.
However, in a complex nonlinear dynamic system such as the permanent-magnet SM with nonlinear
wind stray torque, flux saturation torque, cogging torque, external load torque, and interference of
time-varying uncertainties, in general, seriously effect system performances. Hence, if each neuron in the
recurring neural networks is considered as a state in the nonlinear dynamic systems, the self-connection
feedback type is unable to approximate the dynamic systems efficiently. Due to the recurring neurons,
it has certain dynamical merits over static NN and it also has been proverbially applied in photovoltaic
power forecasting and electricity spot price prediction. However, these NNs take a longer time
to process the online training procedure. Hence, some functional-type NNs, such as the amended
recurrent Gegenbauer-functional-expansions NN [18], reformed recurrent Hermite polynomial NN [19],
and mended recurrent Romanovski polynomials NN [20], have been broadly applied in the control and
identification of nonlinear systems as a result of less calculation complexity. However, the adjustment
mechanics of weights were not discussed in these control methods that combined with NNs. It is leads
to larger error in control and identification for system. Moreover, the sieved Pollaczek polynomials [21]
belong to the sieved orthogonal polynomials, according to Ismail [21]. However, the sieved Pollaczek
polynomials combined with the NN have never presented in any control of nonlinear systems.
Although the feedforward sieved Pollaczek polynomials neural network (SPPNN) can approximate
nonlinear function, it may not be an approximated dynamic act of nonlinear uncertainties as a result of
lacking a reflect loop. Because of the many benefits compared to the feedforward SPPNN, the revised
recurring sieved Pollaczek polynomials neural network (RRSPPNN) control is not introduced yet for
controlling the permanent-magnet SM drive system to improve the performances of the nonlinear
system and computation complexity. However, the backstepping technique utilizing the RRSPPNN
with error recouped agency to decrease uncertainties is thus the main motivation in this topic.
Additionally, these learning rates, by utilizing acceleration factors, did not present that the convergent
speed of weights is tardy.

A multi-objective grey wolf optimization (GWO) proposed by Emary et al. [22] was used to attribute
the reduction of system. A GWO and conventional NN training method proposed by Mosavi et al. [23]
was used in a sonar dataset category. Khandelwal et al. [24] proposed to track the programming question
of transmitting network by utilizing the modified GWO. Mirjalili et al. [25] put forward a hunting
mechanism of GWO to mimic the social behavior. Even though these algorithms are highly competitive
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and have been used in certain fields, such as distribution system [26], melanoma detection [27],
and feature selection in classification [28], they have poor exploration capability and suffer from local
optima stagnation. So, to improve the explorative abilities of GWO, a reformed grey wolf optimization
(RGWO) algorithm adopting two exponential-functional adjustable factors is put forward as the novel
method in this paper. This newly proposed algorithm makes up two revisions: Firstly, it can explore
new regions in the look for space because of diverse locations assigned to the leaders. This can increase
the exploration and avoid local perfect stagnation problem. Secondly, an opposition-based learning
method has been used in the initial half of iterations to provide diversity among the search agents.
To speed up the convergence of weights in the RRSPPNN, the RGWO with two exponential-functional
adjustable factors, that is the novel method, is used to adjust the two learning rates of the weights.
This novel method can prevent premature convergence and to acquire optimal learning rates with
fast convergence.

The better control performance of the permanent-magnet SM drive system cannot be reached
by utilizing the linear controller due to the influences of these uncertainties. To heighten robustness,
the backstepping approach with three adaptive rules and a swapping function is proposed to
control the permanent-magnet SM drive system to trace different periodical references. With the
backstepping approach with three adaptive rules and a swapping function, the rotor position of the
permanent-magnet SM drive system preserves the merits of fine transient control performance and
robustness to uncertainties for the tracedifferent periodical references. Moreover, to improve the
large chattering influence under uncertainties, the backstepping control with three adaptive rules by
utilizing RRSPPNN with RGWO is proposed to estimate the internal bunched uncertainty and external
bunched force uncertainty and the recouped controller to recoup the smallest fabricated error of the
appraised rule.

Furthermore, the RGWO algorithm by using two exponential-functional adjustable factors that is
applied for regulating two learning rates of the weights in the RRSPPNN is a novel method to speed up
the convergence of weights in this paper. Finally, the efficiency of the backstepping control with three
adaptive rules using RRSPPNN with RGWO and recouped controller is validated by some test results.

The important issue in this paper is described below. Section 2 presents the models and
conformation of the permanent-magnet SM drive. Section 3 describes the backstepping control with
three adaptive rules using RRSPPNN with RGWO and the recouped controller. Section 4 is the
examination consequences for the permanent-magnet SM utilizing three control methods at five tested
events. Section 5 is the conclusion.

2. Models and Conformation of Permanent-Magnet SM Drive

2.1. Models of Permanent-Magnet SM

For simplicity, in the three-phase as − bs − cs axis coordinate frames via the Clarke and Park
transformations, the voltage equations in the coordinate frames transformation from the three-phase
as− bs− cs axis to the qs− ds axis in the permanent-magnet SM [1] are typified by

uqs = rsiqs + Lqsdiqs/dt +ωes(Ldsids + λps) (1)

uds = rsids + (Ldsdids/dt + λps) −ωesLqsiqs (2)

ωes = psωr1 (3)

θes = psθr1 (4)

The electromagnetic power Pes in the air gap as well as the electromagnetic torque de1 [1] can be
typified by:

Pes = de1ωes = 3ps[λpsiqs + (Lds − Lqs)idsiqs]ωes/2 (5)

de1 = 3ps[λpsiqs + (Lds − Lqs)idsiqs]/2 (6)
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The dynamic equation can be typified by:

Hsdωr1/dt + Usωr1 = de1 − dl1 − dw1 − d f 1 − dc1 (7)

where uds − uqs, ids − iqs and Lds − Lqs stand for the qs− ds axis voltages, the qs− ds axis currents, and the
qs− ds axis inductances; rs and ps stand for the phase winding resistance and the number of pole pairs;
λps, ωes, and ωr1 stand for the permanent-magnet flux linkage, the electric angular speed, and the
angular speed of the rotor; θes and θr1 stand for the electrical angular position and the mechanical
angular position of the rotor; de1, dl1, d f 1, dc1, and dw1 stand for the electromagnetic torque, the external
load torque, the flux saturation torque, the cogging torque, and the wind stray torque; Hs and Us stand
for total moment of inertia of permanent-magnet SM and the total viscous frictional coefficient of
permanent-magnet SM.

2.2. Conformation of Permanent-Magnet SM Drive

The decoupled control technology of the permanent-magnet SM drive system is general adopting
the field-oriented control (FOC) [1,2] to raise dynamic performance. The electromagnetic torque is
produced by the qs− axis current based on the FOC and the rotor flux is generated by the ds− axis
current only. When ids is equal to zero and λps is equal to a constant in Equations (5) and (6), then the
electromagnetic torque de1 will be direct ratio to iqs for a permanent-magnet SM drive in the closed-loop
control. When the generated torque is linearly direct ratio to the qs− axis current, and the ds− axis
rotor flux is a fixed value, the larger torque per ampere can be reached. The electromagnetic torque
Equation (6) can be typified by

de1 = 3λpsi∗qs/2 = ksi∗qs (8)

where ks = 3psλps/2 stands for the propulsion coefficient and i∗qs stands for the mandate of control
current. The permanent-magnet SM drive system can be predigested as Wt(s) = 1/(sHs + Us).

Figure 1 is the conformation of FOC permanent-magnet SM drive system, which makes up
an encoder and three Hall sensors, a permanent-magnet SM, a sinusoidal pulse-width-modulation
(SPWM) current control, a coordinate transformation including inverse Park and Clarke coordinate’s
transformations, cos/sin generator, a speed control loop and a position control loop. The control
technologies in the real-time realization are realized by utilizing the digital signal processor (DSP)
controller. Rotor of permanent-magnet SM is equipped on magnet force brake that is mounted with
different sizes of iron disks to change the total moment of inertia and the total viscous frictional
coefficient, and to add load torque.

The FOC was realized by a digital signal processor (DSP) controller. The nominal values of used
permanent-magnet SM are given as 3-phase, 2-poles, 60 Hz, 220 V, 1 kW, 2.8 A, and 3600 r/min. For the
convenience of controller design, the position and speed signals in the control loop are set at 1 V = 50 rad
and 1 V = 50 rad/s, respectively. The mechanical and electrical parameters of the permanent-magnet
SM are given as Hs = 2.142 × 10−3 Nm sec2 = 0.1071 Nm sec rad/V, Us = 5.86 × 10−3 Nms/rad
= 0.293 Nm/V, rs = 2.5 Ω, Lds = Lqs = 4.62 mH, ks = 0.947 Nm/A by means of an open circuit
test, short circuit test, blocked rotor test, and added load test. With the fulfillment of FOC [1–3],
the permanent-magnet SM drive system can be predigested as the control block diagram portrayed
in Figure 2. The perfect electromagnetic property for the drive system is hence implemented by
controlling the torque current distributions to lie in the qs− axis current when the d-axis current is
equal to zero. Then, the torque per amp property for the drive system will generate.
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3. Design of the Controller

When the permanent-magnet SM drive system with the electromagnetic torque, the wind stray
torque, the flux saturation torque, the cogging torque, the parametric variations, and the external load
torque disturbance is enacted, then Equation (7) is typified by

dvs/dt = (es + ∆es)vs + ( fs + ∆ fs)ls + gs(dl1 + dw1 + d f 1 + dc1) (9)

dθr1/dt = ωr1 = vs (10)

bs = θr1 (11)

where θr1 and vs stand for the rotor position and rotor speed of the SM to be presumed bounded; ∆es and
∆ fs stand for two parametric uncertainties from Hs and Us to be presumed bounded; es = −Us/Hs;
fs = ks/Hs > 0; gs = −1/Hs stand for three real numbers to be presumed bounded; ls = iqs is the
control propulsion of the permanent-magnet SM drive system, i.e., the propulsion current. Equation (9)
can be typified by

dvs/dt = esvs + fsls + dl1 + dw1 + d f 1 + dc1 (12)

where w1 = ∆esvs and w2 = ∆ fsds stand for two parametric variation that are to be presumed bounded;
w3 = gs(d f 1 + dc1) and w4 = gs(dl1 + dw1) stand for the internal bunched uncertainty and external
bunched force uncertainty to be presumed bounded.

The trace reference locus bm = θm1 is the control goal. The design procedure is as below.
The trace error is typified by

em1 = bm − bs = θm1 − θr1 (13)

Take differential of (13) by

dem1/dt = dθm1/dt− dθr1/dt = dθm1/dt− vs (14)

The stabilizing function is typified by:

εm1 = km1em1 + dθm1/dt + km2µm (15)

where km1 and km2 stand for two positive constants; µm =
∫

em1(t)dt stands for the integral factor.
The fictitious trace error is typified by:

em2 = vs − εm1 (16)

Take the differential of (16) by

dem2/dt = dvs/dt− dεm1/dt = (esvs + fsls + w1 + w2 + w3 + w4) − dεm1/dt (17)

where w1, w2, and w3 stand for three unknown parameters. The estimated errors are typified by

ew1 = ŵ1 −w1 (18)

ew2 = ŵ2 −w2 (19)

ew3 = ŵ3 −w3 (20)

where ew1, ew2, and ew3 are the estimated errors; ŵ1, ŵ2, and ŵ3 are the estimated values of w1, w2 and
w3. The internal bunched uncertainty and external bunched force uncertainty w4 satisfies the condition
|w4| ≤ β1 and is to be presumed bounded.
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3.1. Design of the Backstepping Control with Three Adaptive Rules and a Swapping Function

So, to design the backstepping control with three adaptive rules and a swapping function,
the Lyapunov function can be typified by:

ym1 = e2
m1/2 + e2

m2/2 + e2
w1/(2ς1) + e2

w2/(2ς2) + e2
w3/(2ς3) + cm2µ

2
m/2 (21)

By taking the differential of ym1 and by utilizing Equations (14)–(20) and the integral factor
µm =

∫
em1(t)dt, Equation (21) can be typified by

dym1/dt = em1dem1/dt + em2dem2/dt + ew1ς
−1
1 dew1/dt + ew2ς

−1
2 dew2/dt

+ew3ς
−1
3 dew3/dt + km2µmdµm/dt

= em1(dθm1/dt− vs) + em2((esvs + fsls + w1 + w2 + w3 + w4) − dεm1/dt)
+ew1ς

−1
1 dew1/dt + ew2ς

−1
2 dew2/dt + ew3ς

−1
3 dew3/dt + km2µmdµm/dt

= em1(−km1em1 + εm1 − vs) + em2(esvs + fsls + w1 + w2 + w3 + w4) − dεm1/dt) + ew1ς
−1
1 dew1/dt

+ew2ς
−1
2 dew2/dt + ew3ς

−1
3 dew3/dt + km2µmdµm/dt

= em1(−km1em1 − em2) + em2(esvs + fsls + w4 − dεm1/dt) + ŵ1ς
−1
1 dŵ1/dt + (em2w1 −w1ς

−1
1 dŵ1/dt)

+ŵ2ς
−1
1 dŵ2/dt + (em2w2 −w2ς

−1
1 dŵ2/dt) + ŵ3ς

−1
1 dŵ3/dt + (em2w3 −w3ς

−1
1 dŵ3/dt)

(22)
In accordance with Equation (22), the control propulsion ls in the backstepping control with three

adaptive rules and a swapping function can be typified by

ls = i∗qs = f−1
s [em1 − km3em2 − esvs + dεm1/dt− β1sgn(em2) − (ŵ1 + ŵ2 + ŵ3)] (23)

where km3 stands for a positive constant; β1 stands for upper bound that is a constant, and f−1
s β1sgn(em2)

stands for a swapping function. By utilizing Equation (23), Equation (22) can be typified by:

dym1/dt = −km1e2
m1 − cm3e2

m2 − em2[β1sgn (em2) −w4] − em2[ŵ1 + ŵ2 + ŵ3] + ŵ1ς
−1
1 dŵ1/dt

+w1(em2 − ς
−1
1 dŵ1/dt) + ŵ2ς

−1
1 dŵ2/dt + w2(em2 − ς

−1
1 dŵ2/dt) + ŵ3ς

−1
1 dŵ3/dt + w3(em2 − ς

−1
1 dŵ3/dt)

(24)
For reaching dym1(t)/dt ≤ 0, three adaptive rules dŵ1/dt, dŵ2/dt, and dŵ3/dt can be typified by

dŵ1/dt = ς1em2 (25)

dŵ2/dt = ς2em2 (26)

dŵ3/dt = ς3em2 (27)

By utilizing Equations (25)–(27), and |w4| ≤ β1, then Equation (24) can be typified by

dym1/dt = −km1e2
m1 − km3e2

m2 − em2[β1sgn (em2) −w4]

≤ −km1e2
m1 − km3e2

m2 − |em2|[β1 − |w|]
≤ −km1e2

m1 − km3e2
m2 ≤ 0

(28)

Equation (28) shows dym1(t)/dt to be negative semi-definite (i.e., ym1(t) ≤ ym1(0)), meaning that
em1 and em2 are bounded. The following term is typified by

hm1(t) = km1e2
m1 + km3 e2

m2 = −dqm1/dt (29)

The integration of Equation (29) is typified by:∫ t

0
hm1(v)dv = qm1(em1(0), em2(0)) − qm1(em1(t), em2(t)) (30)
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Because qm1(em1(0), em2(0)) is bounded and qm2(em1(t), em2(t)) is nonincreasing and presumed
bounded, then lim

t→∞

∫ t
0 qm1(v)dτ < ∞. Moreover, dhm1(t)/dt is presumed bounded, hence hm1(t) is a

uniformly continuous function. By utilizing the Barbalat’s lemma [29,30], it can be portrayed that
lim
t→∞

hm1(t) = 0. That is, em1 and em2 will converge to zero when t→∞ . Furthermore, lim
t→∞

θr1(t) = θm1

and lim
t→∞

vs = dθm1/dt. The stability of the backstepping control with three adaptive rules and a

swapping function can be guaranteed, and consequently, the control block diagram is portrayed in
Figure 3.Energies 2020, 13, x FOR PEER REVIEW 9 of 35 
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swapping function.

3.2. Design of the Backstepping Control with Three Adaptive Rules Using RRSPPNN with RGWO and
Recouped Controller

Because the internal bunched uncertainty and external bunched force uncertainty w4 is unknown,
and its upper bound is troublesome to be decided. The appraised value ŵ4 of the internal bunched
uncertainty and external bunched force uncertainty w4 is not easy to be estimated, and consequently,
the revised recurring sieved Pollaczek polynomials neural network (RRSPPNN) is proposed to adapt
the real value of the internal bunched uncertainty and external bunched force uncertainty w4.

3.2.1. Constitution of RRSPPNN

The RRSPPNN has a three-layer constitution, with the first layer (input layer), the second layer
(hidden layer 1), and the third layer (output layer) portrayed in Figure 4. The semaphore intentions in
each node for each layer are explained in the following expression.
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At the first layer, input semaphore and output semaphore are typified by

ne1
a =

∏
c

q1
a(B)b

1
aco

3
c (B− 1), o1

a = g1
a(ne1

a) = ne1
a , a = 1, 2 (31)

where q1
1 = θm1 − θr1 = em1 and q1

2 = em1(1− z−1) = ∆em1 stand for the speed discrepancy and speed
discrepancy alteration, respectively. B is the iteration count. b1

ac stands for the recurring weight through
the third layer and the first layer. o3

c stands for the output of node at the third layer. The symbol
∏

stands for a multiply factor.
At the second layer, input semaphore and output semaphore are typified by

ne2
b(B) =

2∑
a=1

o1
a(B) + δ o2

b(B− 1), o2
b = g2

b(ne2
b) = SPλb (ne2

b ; q), b = 0, 1, · · · , m− 1 (32)

where δ stands for the recurring gain at the second layer. Sieved-Pollaczek polynomials function [21,31]
is adopted as the activation function. SPλj (q; t) stands for the sieved Pollaczek polynomials in the

interval [−1, 1]. SPλ0 (q; t) = 1, SPλ1 (q; t) = 2q and SPλ2 (q; t) = 4q2
− 1 stand for the zero-order, first order

and second order sieved Pollaczek polynomials, respectively. The sieved Pollaczek polynomials may
be generated by the recurrence relation [21,31] SPλn+1(q; t) = 2qSPλn(q; t) − SPλn−1(q; t). The symbol

∑
stands for a summation factor.

At the third layer, semaphore and output semaphore are typified by

ne 3
o =

m−1∑
b=0

b2
cbo2

b(B), o3
c = g3

c (ne3
c ) = ne3

c , c = 1 (33)

where b2
cb stands for the connecting weight through the second layer and the third layer. g3

c stands for
the linear activation function. The output o3

c (B) at the third layer of the RRSPPNN can be typified by:

o3
c (B) = ŵ4(M) = MTT (34)

where M =
[

b2
10 · · · b2

1, m−1

]T
and T =

[
o2

0 · · · o2
m−1

] T
stands for the weight vector at the third

layer and the input vector at the third layer, respectively. The smallest fabricated error ϕw4 is typified by

ϕ w = w4 −w4(M∗) = w4 − (M∗)
TT (35)
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where M∗ stands for an ideal weight vector that reaches the smallest fabricated error. So as to make
up the smallest fabricated error ϕw, the recouped controller xc with an appraised rule is proposed.
It is presumed that the small positive number ew4 stands for greater than absolute value of ϕw,
i.e., ew4 ≥

∣∣∣ϕw
∣∣∣. The Lyapunov function is typified by

ym2 = ym1 + (̃ew4)
2/(2σ1) + (M−M∗)T(M−M∗)/(2γ1) (36)

where σ1 stands for an adaptive gain. ẽw4 = êw4 − ew4 stands for the appraised error to be presumed
bounded. By taking the derivative of ym2 utilizing Equations (14)–(20) and the integral factor
µm =

∫
em1(t)dt, then Equation (36) is typified by

dym2/dt = em1(−km1em1 − em2) + em2(esvs + fsls + w4 − dεm1/dt) + ŵ1ς
−1
1 dŵ1/dt

+w1(em2 − ς
−1
1 dŵ1/dt) + ẽw4σ−1

1 d̃ew4/dt + ŵ2ς
−1
1 dŵ2/dt + w2(em2 − ς

−1
1 dŵ2/dt)

+ŵ3ς
−1
1 dŵ3/dt + w3(em2 − ς

−1
1 dŵ3/dt) + γ−1

1 (M−M∗)Td M/dt
(37)

In accordance with Equation (37), the control propulsion ls = l̂s in the backstepping control with
three adaptive rules by using RRSPPNN with RGWO and recouped controller can be typified by

ls = l̂s = i∗qs = f−1
s [em1 − cm3em2 − esvs + dεm1/dt− (ŵ1 + ŵ2 + ŵ3) − ŵ4(M) − xc] (38)

By utilizing Equation (38), then Equation (37) can be typified by

dym2/dt = −km1e2
m1 − km3e2

m2 + em2[w4 − ŵ4(M) − xc − (ŵ1 + ŵ2 + ŵ3)]

+ŵ1ς
−1
1 dŵ1/dt + w1(em2 − ς

−1
1 dŵ1/dt) + ẽw4σ−1

1 d̃ew4/dt + ŵ2ς
−1
1 dŵ2/dt + w2(em2 − ς

−1
1 dŵ2/dt)

+ŵ3ς
−1
1 dŵ3/dt + w3(em2 − ς

−1
1 dŵ3/dt) + γ−1

1 (M−M∗)Td M/dt
(39)

By utilizing Equations (25)–(27) and ẽw4 = êw4 − ew4, then Equation (39) can be typified by

dym2/dt = −km1e2
m1 − km3e2

m2 + em2[w4 −w4(M
∗)] − em2[ŵ4(M) −w4(M

∗)] − em2xc

+ẽw4σ−1
1 d ẽw4/dt + γ−1

1 (M−M∗)Td M/dt
= −km1e2

m1 − km3e2
m2 + em2ϕw − em2[ŵ4(M) − ŵ4(M

∗)]

−em2xc + (êw4 − ew4)σ−1
1 dêw4/dt + γ−1

1 (M−M∗)Td M/dt

(40)

3.2.2. Recouped Controller with an Adaptive Rule

To reach dym2/dt ≤ 0, the adaptive rule d M/dt, the recouped controller xc, and the appraised rule
dêw4/dt to reduce uncertainties influences can be typified by:

dM/dt = γ1 em2 T (41)

xc = êw4sgn(em2) (42)

d êw4/dt = σ1|em2| (43)

By substituting Equations (41)–(43) into Equation (40) and by utilizing ew4 ≥
∣∣∣ϕw

∣∣∣, then Equation (40)
can be typified by:

dym2/dt = −km1e2
m1 − km3e2

m2 + em2ϕw − em2(M−M∗)TT− em2êw4sgn(em2)

+(êw4 − ew4)σ−1
1 σ1|em2|+ γ−1

1 (M−M∗)Tγ1em2Γ

= −km1e2
m1 − km3e2

m2 + em2ϕw − ew4|em2|

≤ −km1e2
m1 − km3e2

m2 − |em2|(ew4 −
∣∣∣ϕw

∣∣∣)
≤ −km1e2

m1 − km3e2
m2

≤ 0

(44)
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Equation (44) portrays dym2(t)/dt to be negative semi-definite, i.e., ym2(t) ≤ ym2(0), meaning that em1

and em2 are bounded. By utilizing the Barbalat’s lemma [29,30], it can be represented that ym2(t)→ 0 at
t→∞ by way of Equations (29), (30) and (44), i.e., em1 and em2 will converge to zero at t→∞ . The stability
of the backstepping control with three adaptive rules by using RRSPPNN with RGWO and recouped
controller can be ensured and consequently the control block diagram is portrayed in Figure 5.Energies 2020, 13, x FOR PEER REVIEW 13 of 35 
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with RGWO and recouped controller.

3.2.3. Training of the RRSPPNN

By utilizing the Lyapunov stability and the gradient descent skill with the chain rule, a training
skillfulness of parameters in the RRSPPNN can be derived. The RGWO with two adjusted factors
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is applied to look for two better learning rates in the RRSPPNN to acquire faster convergence.
The connecting weight parametric presented in Equation (41) can be typified by:

db2
cb/dt = γ1 em2 o2

b (45)

A goal function that explains the online training procedure of the RRSPPNN is typified by

L2 = e2
m2/2 (46)

The adaptive learning rule of the connecting weight is typified by:

db2
cb

dt
= −γ1

∂L2

∂b2
cb

= −γ1
∂L2

∂o3
c

∂o3
c

∂ne3
c

∂ne3
c

∂b2
cb

= −γ1
∂L2

∂o3
c

o2
b (47)

It is well-known that ∂L2/∂o3
c = −em2 by way of Equations (45) and (47). Hence, the adaptive

learning rule of recurring weight b1
ac is typified by

db1
ac

dt
= −γ2

∂ L2

∂o3
c

∂ o3
c

∂ o2
b

∂ o2
b

∂ ne2
b

∂ ne2
b

∂ o1
a

∂ o1
a

∂ ne1
a

∂ ne1
a

∂ b1
ac
= γ2 em2 b2

cbSPλb (·)q
1
a(B)o

3
c (B− 1) (48)

where γ2 stands for the learning rate. To acquire better convergence, the RGWO is applied to look for
two changeable learning rates in the RRSPPNN. Additionally, for improving convergence and looking
for two perfect learning rates, the RGWO with two adjusted factors is proposed in this study.

3.2.4. Algorithm of Reformed Grey Wolf Optimization (RGWO)

In the RGWO, the optimization is conducted by α, β, and ρ. The RGWO algorithm can be typified by:

H(a1 + 1) = [H1(a1) + H2(a1) + H3(a1)]/3 (49)

where H(a1 + 1) = [γ1 γ2] is a vector two learning rates, H1(a1), H2(a1), H3(a1) are typified by:

H1(a1) =
∣∣∣α(a1) −R1(a1) · [M1(a1) · α(a1) −H(a1)]

∣∣∣ (50)

H2(a1) =
∣∣∣β(a1) −R2(a1) · [M2(a1) · β(a1) −H(a1)]

∣∣∣ (51)

H3(a1) =
∣∣∣ρ(a1) −R3(a1) · [M3(a1) · ρ(a1) −H(a1)]

∣∣∣ (52)

where α(a1), β(a1),ρ(a1) stand for the three vectors as the three best solutions. R1(a1), R2(a1), R3(a1)

and M1(a1), M2(a1), M3(a1) can be typified by:

R1(a1) = R2(a1) = R3(a1) = 2c1(a1)ϕ1 − d1(a1) (53)

M1(a1) = M2(a1) = M3(a1) = 2ϕ2 (54)

where ϕ1 and ϕ2 stand for two random vectors. The updated numbers of two adjusted factors c1(a1)

and d1(a1) control the tradeoff between exploration and exploitation. Two exponential-functional
adjustable factors c1(a1) and d1(a1) stand for the updated values at iteration according to the following
presentation by:

c1(a1) = 2e−a1/at1 (55)

d1(a1) = 2e−a1/at2 (56)

where a1 stands for the iteration number; at1 and at2 stand for the total numbers of iteration allowed
for the optimization. At last, H(a1 + 1) = [γ1 γ2] stands for the best solution in connection with the
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learning rates γi(t), i = 1, 2 of the two weights in the RRSPPNN. Hence, the better numbers could be
optimized by utilizing RGWO with two adjusted factors that yield two changeable learning rates for
two weights to look for two perfect values and to speed-up the convergence of two weights.

4. Test Results

A block diagram of the FOC permanent-magnet SM drive system utilizing the DSP controller is
portrayed in Figure 1. A photo of the examination structure is portrayed in Figure 6. The sampling
time of the control program in the examination is set as 2 ms.
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Figure 6. A photo picture of the examination structure.

A DSP controller involves 18 channels of input/output (I/O) ports with 6 channels of
pulse-width-modulation (PWM) ports, 6 channels of analog-digital (A/D) converters, and 2 channel
encoder connective ports. The coordinate transformation in the field-oriented control (FOC) is realized
by DSP controller. The used control technologies in the real-time realization by utilizing the DSP
controller are composed of the core program and the sub-core interrupt service routine (SCISR) in
the DSP controller as portrayed in Figure 7. In the core program, parameters and I/O initialization
are processed. The interrupt time for the SCISR is set. After permitting the interruption, the core
program is used to monitor control data. The SCISR with 2 msec sampling time is used for reading the
rotor position of the permanent-magnet SM drive system from encoder and three-phase currents by
way of A/D converter circuit, calculating reference model and position error, executing lookup table
and coordinate transformation, executing the backstepping control with three adaptive rules using
RRSPPNN with RGWO and recouped controller, and outputting three-phase current mandates to swap
sinusoidal pulse-width-modulation (SPWM) voltage source inverter with three-sets of insulated-gate
bipolar transistor (IGBT) power modules by way of the lockout-time and isolated circuits. The SPWM
voltage source inverter with three-sets of IGBT power modules is carried out by SPWM control with a
switching frequency of 15 kHz. Additionally, the tested bandwidth of the position control loop and the
tested bandwidth of the current control loop are about 90 and 900 Hz for the permanent-magnet SM
drive system under the nominal event. The proposed controllers are realized by the DSP controller.
The coordinate transformation in the FOC is realized by the DSP controller. The control goal is to
control the rotor to rotate 6.28 rad cyclically. Then, when the mandate is a sinusoidal reference locus,
the reference is set one.
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Figure 7. Flow chart of the realized program by utilizing DSP controller.

For a comparison of control performance with the four controllers, five events are provided in the
experiment. The four controllers are the popular PI controller as the controller FC1, the backstepping
control with three adaptive rules and a swapping function as the controller FC2, the modified recurrent
Rogers–Szego polynomials neural network with DGWO [10] as the controller FC3, and the backstepping
control with three adaptive rules using RRSPPNN with RGWO and recouped controller as the controller
FC4. Five tested events are as follows. Event CQ1 is the nominal event at periodic step command from
0 rad to 6.28 rad. Event CQ2 is the cogging torque, the column friction torque, and the Stribeck effect
torque, and the parameters variations event with 4 times the nominal value at periodic step command
from 0 rad to 6.28 rad. Event CQ3 is the nominal event due to periodic sinusoidal command from
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−6.28 rad to 6.28 rad. Event CQ4 is the cogging torque, the column friction torque and the Stribeck
effect torque and the parameters variations event with 4 times the nominal value due to periodic
sinusoidal command from −6.28 rad to 6.28 rad. Event CQ5 is the adding load torque disturbance
τlr = 2.5 Nm.

Two control gains of the popular PI controller as the controller FC1 are kpp = 4.5, and kip =

kpp/Tip = 1.8 by using the Kronecker method to construct a stability boundary in the kpp and kip
plane [32–34] on the tuning of the PI controller at Event CQ1 in the position trace so as to reach fine
steady-state and transient-state control responses.

Some control gains of the backstepping control with three adaptive rules and a swapping function
as the controller FC2 are km1 = 2.2, km2 = 2.6, km3 = 2.1, ς1 = 0.1, ς2 = 0.1, ς3 = 0.1, β1 = 9.1 according
to heuristic knowledge [4] at Event CQ1 in the position trace so as to reach fine steady-state and
transient-state control representation.

Some control gains of the modified recurrent Rogers–Szego polynomials neural network with
DGWO [10] as the controller FC3 are given as cx1 = 2.2, cx2 = 2.6, cx3 = 2.1, η1 = 0.1, η2 = 0.1,
η3 = 0.1, γ = 0.2, τ = 0.1 according to heuristic knowledge [4] at Event CQ1 in the position trace so
as to reach fine steady-state and transient-state control responses. Moreover, numbers of neurons
in the input layer, the hidden layer, and the output layer of the modified recurrent Rogers-Szego
polynomials neural network are 2 neurons, 4 neurons and 1 neuron, respectively, so as to demonstrate
the effectiveness of the controller adopting small neuron numbers. The method proposed by Lewis
et al. [35] is used to initialize some parameters of the modified recurrent Rogers–Szego polynomials
neural network. The adjustment process of these parameters involve a continuous reaction for the
duration of the examination.

Some control gains of the backstepping control with three adaptive rules using RRSPPNN with
RGWO and recouped controller as the controller FC4 are km1 = 2.2, km2 = 2.6, km3 = 2.1, ς1 = 0.1,
ς2 = 0.1, ς3 = 0.1, σ1 = 0.2, δ = 0.1 according to heuristic knowledge [4] at Event CQ1 in the position
trace so as to reach fine steady-state and transient-state control responses. Moreover, the number of
neurons in the first layer, the second layer, and the third layer of the RRSPPNN are 2 neurons, 4 neurons,
and 1 neuron, respectively, so as to demonstrate the effectiveness of the controller by adopting small
neuron numbers. The method proposed by Lewis et al. [35] is used to initialize some parameters of the
RRSPPNN. The adjustment process of these parameters is keeping continusly reaction in the duration
of the experiments.

All of the experiments obtained by utilizing the four controllers for controlling the
permanent-magnet SM drive system at five events are as follows. Figure 8a–d are rotor position
responses via experiments obtained by utilizing the controllers FC1, FC2, FC3, and FC4 at Event CQ1.
Figure 9a–d are rotor speed responses by utilizing the controllers FC1, FC2, FC3 and FC4 at Event
CQ1. Figure 10a–d are mandate control propulsion responses by utilizing the controllers FC1, FC2,
FC3, and FC4 at Event CQ1. Figure 11a–d are rotor position responses by utilizing the controllers FC1,
FC2, FC3, and FC4 at Event CQ2. Figure 12a–d are rotor speed responses by utilizing the controllers
FC1, FC2, FC3, and FC4 at Event CQ2. Figure 13a–d are mandate control propulsion responses
by utilizing the controllers FC1, FC2, FC3, and FC4 at Event CQ2. Figure 14a–d are rotor position
responses by utilizing the controllers FC1, FC2, FC3, and FC4 at Event CQ3. Figure 15a–d are rotor
speed responses by utilizing the controllers FC1, FC2, FC3, and FC4 at Event CQ3. Figure 16a–d are
mandate control propulsion responses by utilizing the controllers FC1, FC2, FC3, and FC4 at Event
CQ3. Figure 17a–d are rotor position responses by utilizing the controllers FC1, FC2, FC3, and FC4 at
Event CQ4. Figure 18a–d are rotor speed responses by utilizing the controllers FC1, FC2, FC3, and FC4
at Event CQ4. Figure 19a–d are mandate control propulsion responses by utilizing the controllers FC1,
FC2, FC3, and FC4 at Event CQ4. Figure 20a–d are measured rotor position responses by utilizing the
controller FC1, FC2, FC3, and FC4 at Event CQ5.
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Figures 8a and 14a obtained by utilizing the controller FC1 for controlling the permanent-magnet
SM drive system at Event CQ1 and Event CQ3 are displayed as fine trace responses of the rotor positions.
Figures 11a and 17a obtained by utilizing the controller FC1 for controlling the permanent-magnet SM
drive system at Event CQ2 and Event CQ4 are displayed in sluggish trace responses of the rotor position
owing to bigger nonlinear disturbance. Because of inappropriate tuning gains or the degenerate
nonlinear effect, the linear controller has weak robustness under bigger nonlinear disturbance.

Figures 8b, 11b, 14b and 17b obtained by utilizing the controller FC2 for controlling the
permanent-magnet SM drive system at Events CQ1, CQ2, CQ3, and CQ4 are displayed as good
trace responses of the rotor positions. However, Figures 10b, 13b, 16b and 19b are displayed as serious
vibration in the control propulsions by utilizing the swapping function with large upper bound at
Events CQ1, CQ2, CQ3, and CQ4. It is a well-known fact that the control propulsions with serious
vibration will wear the bearing mechanism and might excite unstable system dynamics.

Figures 8c, 11c, 14c and 17c obtained by utilizing the controller FC3 for controlling the
permanent-magnet SM drive system at Events CQ1, CQ2, CQ3, and CQ4 are displayed as better trace
responses of the rotor positions due to adaptive mechanism action. Figures 10c, 13c, 16c and 19c
displayed a small vibration in the control propulsions at Events CQ1, CQ2, CQ3, and CQ4. Due to the
on-line adaptive adjustment of the modified recurrent Rogers–Szego polynomials neural network [10],
the magnitudes of vibration in the control propulsions at Events CQ1, CQ2, CQ3, and CQ4 displayed
in Figures 10c, 13c, 16c and 19c have been slightly improved.

Figures 8d, 11d, 14d and 17d obtained by utilizing the controller FC4 for controlling the
permanent-magnet SM drive system at Events CQ1, CQ2, CQ3, and CQ4 are displayed as best
trace responses of the rotor positions due to on-line adaptive mechanism action. Figures 10d, 13d, 16d
and 19d are displayed as smaller vibrations in the control propulsions at Events CQ1, CQ2, CQ3 and
CQ4 due to on-line adaptive mechanism action of the RRSPPNN. Due to on-line adaptive adjustment
of the RRSPPNN under bigger nonlinear disturbance the magnitudes of vibration in the control
propulsions at Events CQ1, CQ2, CQ3, and CQ4 displayed in Figures 10d, 13d, 16d and 19d have been
obviously improved.

Figure 20d obtained by utilizing the controller FC4 for controlling the permanent-magnet SM
drive system at Event CQ5 under load regulation is better than the controller FC1, FC2, and FC3
displayed in Figure 20a–c.

5. Discussion and Analysis

Additionally, the control performances displayed in comparsion results by using the controllers
FC1, FC2, FC3, and FC4 are listed in Table 1 in connection with five events with some test results.
The 0.21, 0.19, 0.15, and 0.10 are the maximum errors of em1 (rad) by utilizing the controllers FC1, FC2,
FC3, and FC4 at Event CQ1, respectively. The 0.11, 0.09, 0.07, and 0.05 are the root-mean-square errors
of em1 (rad) by utilizing the controllers FC1, FC2, FC3, and FC4 at Event CQ1, respectively. The 0.56,
0.36, 0.28, and 0.19 are the maximum errors of em1 (rad) by utilizing the controllers FC1, FC2, FC3,
and FC4 at Event CQ2, respectively. The 0.27, 0.18, 0.13, and 0.09 are the root-mean-square errors of
em1 (rad) by utilizing the controllers FC1, FC2, FC3, and FC4 at Event CQ2, respectively. The 0.21, 0.18,
0.14, and 0.10 are the maximum errors of em1 (rad) by utilizing the controllers FC1, FC2, FC3, and FC4
at Event CQ3, respectively. The 0.10, 0.09, 0.07, and 0.05 are the root-mean-square errors of errors of
em1 (rad) by utilizing the controllers FC1, FC2, FC3, and FC4 at Event CQ3, respectively. The 0.52, 0.37,
0.27, and 0.18 are the maximum errors of em1 (rad) by utilizing the controllers FC1, FC2, FC3, and FC4
at Event CQ4, respectively. The 0.25, 0.18, 0.13, and 0.09 are the root-mean-square errors of em1 (rad)
by utilizing the controllers FC1, FC2, FC3, and FC4 at Event CQ4, respectively. The 3.01, 1.57, 1.13,
and 0.75 are the maximum errors of em1 (rad) by utilizing the controllers FC1, FC2, FC3, and FC4 at
Event CQ5, respectively. The 1.50, 0.78, 0.56, and 0.32 are the root-mean-square errors of em1 (rad) by
utilizing the controllers FC1, FC2, FC3, and FC4 at Event CQ5, respectively. The controller FC4 has
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smaller trace error in comparison with the controllers FC1, FC2, and FC3. The controllers FC4 indeed
yields the exellent control performance from Table 1.

Table 1. Performance comparison of four controllers.

Performance

Five Tested Events Controller FC1

Event CQ1 Event CQ2 Event CQ3 Event CQ4 Event CQ5

Maximum error of em1 (rad) 0.21 0.56 0.20 0.52 3.01

Root-mean-square error of
em1 (rad) 0.11 0.27 0.10 0.25 1.50

Performance

Five Tested Events Controller FC2

Event CQ1 Event CQ2 Event CQ3 Event CQ4 Event CQ5

Maximum error of em1 (rad) 0.19 0.36 0.18 0.37 1.57

Root-mean-square error of
em1 (rad) 0.09 0.18 0.09 0.18 0.78

Performance

Five Tested Events Controller FC3

Event CQ1 Event CQ2 Event CQ3 Event CQ4 Event CQ5

Maximum error of em1 (rad) 0.19 0.36 0.18 0.37 1.57

Maximum error of em1 (rad) 0.15 0.28 0.14 0.27 1.13

Root-mean-square error of
em1 (rad) 0.07 0.13 0.07 0.13 0.56

Performance

Five Tested Events Controller FC4

Event CQ1 Event CQ2 Event CQ3 Event CQ4 Event CQ5

Maximum error of em1 (rad) 0.19 0.36 0.18 0.37 1.57

Maximum error of em1 (rad) 0.10 0.19 0.10 0.18 0.75

Root-mean-square error of
em1 (rad) 0.05 0.09 0.05 0.09 0.32

Furthermore, control characteristic performance comparisons in the controllers FC1, FC2, FC3,
and FC4 are listed in Table 2 for test results. In Table 2, various performances with regard to the control
propulsion with vibration, the dynamic response, the ability of load regulation, the convergence speed,
the position trace error, and the rejection ability of parameter disturbance in the controllers FC4 are
superior to the controllers FC1, FC2, and FC3. Finally, the robust control performance of the controller
FC4 demonstrates outstanding performance for controlling the permanent-magnet SM drive system in
the trace of the periodic step and sinusoidal commands under the occurrence of parameter disturbance
and load regulation due in large part to the on-line adaptive adjustment of the RRSPPNN.

Table 2. Control characteristic performance comparisons of controllers.

Characteristic Performance
Four Controllers

Controller FC1 Controller FC2 Controller FC3 Controller FC4

Vibration in control propulsion Small Middle Smaller Smallest

Dynamic response Slow Fast Faster Fastest

Ability of load regulation

Poor (maximum
error as 3.01 (rad)

with adding load at
6.28 (rad))

Good (maximum
error as 1.57

(rad)with adding
load at 6.28 (rad))

Better (maximum
error as 1.13 (rad)

with adding load at
6.28 (rad))

Best (maximum error
as 0.09 (rad) with

adding load at
6.28 (rad))
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Table 2. Cont.

Characteristic Performance
Four Controllers

Controller FC1 Controller FC2 Controller FC3 Controller FC4

Convergence speed
Middle (traceerror

response at 0.1
(rad) within 0.05 s)

Fast (traceerror
respons at 0.1 (rad)

within 0.04 s)

Faster (traceerror
response at 0.1 (rad)

within 0.03 s) (varied
learning rate)

Fastest (traceerror
response at 0.1 (rad)

within 0.01 s) (varied
learning rate)

Position traceerror Middle Small Smaller Smallest

Rejection ability for parameter disturbance Poor Good Better Best

Learning rate None None Vary (optimal
learning rate)

Vary (optimal
learning rate)

6. Conclusions

The backstepping control with three adaptive rules and RRSPPNN with RGWO and recouped
controller is used to determine the best values for parameters in neural network learning rules,
and thereby robustness in learning control can be improved.

The main contribution of this study is as follows. Firstly, the field-oriented control has been
smoothly applied to control the permanent-Magnet SM drive system to speed up the control response.
Moreover, the backstepping controller with three adaptive rules and a swapping function has been
smoothly derived to overcome influences under the external lumped force uncertainty disturbances
in light of the Lyapunov function. Further, the backstepping control with three adaptive rules and
RRSPPNN with RGWO and recouped controller to estimate the external lumped force uncertainty
has been smoothly derived in the light of the Lyapunov function for diminishing the external lumped
force uncertainty effect and improving the chattering phenomenon. The error recouped controller to
recoup the smallest fabricated error of the error estimation law has been smoothly derived in light of
the Lyapunov function. Two optimal learning rates of the RRSPPNN with two exponential-functional
adjustable factors have been smoothly calculated by utilizing the RGWO algorithm to speed up the
parameter’s convergence.

Finally, some control performances regarding the chattering of control propulsion, the position
response, the ability of load force adjustment, the position tracing error, and the refusal ability of
unknown parameters disturbance by using the backstepping control with three adaptive rules and
RRSPPNN with RGWO and recouped controller are more exceptional than the popular PI controller,
the backstepping control with three adaptive rules and a swapping function, and the modified recurrent
Rogers–Szego polynomials neural network with DGWO [10] from Tables 1 and 2.
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List of Acronyms

SM synchronous motor
RRSPPNN revised recurring Sieved-Pollaczek polynomials neural network
RGWO reformed grey wolf optimization
SRMs switched reluctance motors
IMs induction motors
CNC computer numerical control
DGWO decorated gray wolf optimization
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SPPNN feedforward Sieved-Pollaczek polynomials neural network
DSP digital signal processor
FOC field-oriented control
IGBT insulated-gate bipolar transistor
PWM pulse-width-modulation
SPWM sinusoida pulse-width-modulation
SCISR sub-core interrupt service routine
A/D analog-digital
I/O input/output
GWO grey wolf optimization
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