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Abstract: Prediction of electricity consumption is a key research area for efficient power grid operation.
Accurate electricity consumption predictions of buildings can prevent power shortages in modern
cities, reduce social costs caused by unnecessary energy supply, and support stable and efficient
power grid operation. In this study, an electricity consumption prediction model is proposed using
open-access data for the monthly and daily electricity consumption of 28 commercial buildings in
Seo-gu, Gwangju, South Korea. In the case of the electricity consumption prediction of a building,
information about specific parameters that affect energy consumption in target buildings is required.
However, inappropriate parameter selection of the prediction model can lead to decreased prediction
accuracy. Therefore, we propose a two-step approach to develop a highly accurate electricity
consumption prediction model by overcoming the limitations of insufficient information. In the first
step, the electricity consumption model of the building is derived by reflecting the characteristics of
an individual building that constitutes a building community. In the second step, we use additional
information, including the specific building’s features, as well as the energy facility types of the
building. Using dynamic-time-warping-based clustering classification, we could infer the energy
equipment information of the buildings. We apply the two-step method to develop a prediction
model using machine learning methods. In addition, we propose an optimal prediction model by
comparing the performance of a traditional time-series analysis technique and machine learning
techniques. In this study, the proposed model performs >27.5% better than the existing model. Using
the proposed model, it will be possible to accurately predict electricity consumption of commercial
buildings, and it can be used as a major guideline for the power supply and demand of buildings
and cities.

Keywords: LSTM; DNN; demand response; machine learning; commercial building

1. Introduction

Climate change and the occurrence of anomalies have been a global and consistent problem.
Indiscriminate development is the major cause of climate change and various anomalies.
As such, carbon-emission regulations were negotiated internationally through the Kyoto Protocol
(Kyoto Conference on Prevention of Global Warming) and the Paris Agreement [1,2]. International
regulations have had a major impact on carbon-emission reductions by countries and companies.
Countries and companies are implementing methods, such as the use of renewable energy, carbon
recycling, construction efficient power grids, and operations to reduce carbon emissions [3]. More than
40% of the world’s energy consumption is used within buildings. In addition, carbon emissions from
buildings account for one-third of the global total [4,5], and building energy consumption continues
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to increase every year. Therefore, energy savings in buildings is a critical component for addressing
climate change. The energy demand forecasting method is an effective way to conserve energy
in buildings.

Demand response is important for the construction of an efficient power grid and operation [6].
Accurate electricity consumption prediction is important for establishing plans for electricity supply
and demand at the national or provincial level and for power system facilities. Accurate electricity
consumption predictions can prevent unnecessary power supply and power shortages. For example,
when excessive electricity demand is predicted, unnecessary spending may occur due to the
development of excess power generation facilities. On the other hand, insufficient electricity demand
prediction may cause a power shortage phenomenon due to insufficient power generation facilities
and lead to blackouts. In fact, a blackout phenomenon occurred due to a power shortage in September
2011 in Korea. Therefore, a stable plan for power supply and demand should be established with
accurate demand prediction, minimized unnecessary costs, and stable power grid operation through
securing a stable power reserve rate [7,8].

Demand response is another important research topic in the smart grid field. A smart grid is an
intelligent power grid system capable of efficient operation and reduction of energy, where energy can
be used efficiently through energy storage management, user energy demand management, and peak
load management. The smart grid environment exchanges information about power generation and
consumption through two-way communication [7,9,10]. Therefore, it is possible to appropriately adjust
the amount of energy generated according to the amount of future electricity consumption predicted
via consumer electricity consumption information. This enables rational and efficient electricity use by
reducing unnecessary power supply.

Buildings can be classified into structure types based on volume, shape, and purpose. In terms
of the purpose, buildings can also be further classified into several types, such as detached houses,
apartments, commercial buildings, and medical and public buildings [11]. In Korea, commercial
buildings account for 17.9% of all buildings and account for a large proportion of total building energy
consumption [12]. Buildings have different electricity consumption patterns depending on their usage;
thus, it is necessary to predict electricity demand for each. Specifically, commercial buildings show
similar patterns with respect to occupancy because of similar commercial economic activities on
weekdays and public holidays [7]. Therefore, in this study, we propose a daily and monthly electricity
consumption prediction model for commercial buildings located in Seo-gu, Gwangju.

This study aims to develop an electricity consumption prediction model for commercial buildings
and proposes a method to improve model performance through a two-step approach to compensate
for insufficient information. In the first step, the electricity consumption prediction model of multiple
buildings is developed by reflecting the features of individual buildings constituting the building
community. The electricity consumption prediction model for multiple buildings might fail to
highlight the degree of influence of features of individual buildings on the electricity consumption
pattern. Therefore, when the input parameters are applied in consideration of the differences in power
consumption level according to the total building area, the prediction performance of the proposed
model can be improved.
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In the second step, we infer the information of the building’s heating and cooling facilities by
classifying the electricity consumption patterns of buildings through the dynamic time warping
(DTW)-based clustering method. We utilize the inferred facility information as an input parameter to
improve the prediction accuracy of the electricity consumption prediction model.

To develop an electricity consumption prediction model with high accuracy, information on
heating and cooling facilities of individual buildings is required. However, it is impossible to gather
all of the information related to cooling and heating facility types of the target buildings due to the
Personal Information Protection Act.

As the electricity consumption patterns of buildings vary according to the features of the heating
and cooling facilities of each building, we analyze the information of representative cooling and
heating facilities constituting commercial buildings in Korea and conduct a scenario-based analysis
to derive information about building energy equipment. Therefore, the facility information inferred
from scenario-based analysis and DTW-based clustering method enable improved accuracy of the
proposed model.

In the last part, we conduct performance evaluation using machine learning models artificial
neural network (ANN), deep neural network (DNN), long short-term memory (LSTM), support
vector regression (SVR)), and the time-series-based method seasonal autoregressive integrated moving
average-X (SARIMAX) is optimize using the design of experiments. Moreover, we present accurate
daily and monthly electricity consumption of the commercial buildings.

2. Research Framework

As shown in Figure 1, the study was conducted in three steps. In Step 1, we performed data
collection and pre-processing to train the model properly. In Step 2, for the development of the
electricity consumption prediction model, input parameters were selected through correlation analysis
between factors that influence electricity consumption and potential energy consumption. The model
performance was evaluated using five different methods related to machine learning and time series to
develop the electricity consumption prediction model using the derived input parameters. In Step 3,
the accuracy of the electricity consumption prediction was improved by inferring information on
heating and cooling facilities of individual buildings. We identified the types of electricity consumption
patterns of commercial buildings through scenario-based analyses and classified the buildings based
on their main heating and cooling facilities. The accuracy of the prediction model could be improved
using the inferred facility information as an additional input parameter.
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Figure 1. Research framework.

Literature Review

In the field of energy demand response prediction, various studies have been conducted according
to various prediction targets, prediction periods, and model techniques. Specifically, a variety of
machine learning and statistical methods based on time series have been widely applied. In this section,
previous studies on prediction models are discussed considering the time scale given in Table 1.
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Table 1. Summary of the studies on prediction model analysis.

Time Scale Research Object of Prediction Features Model Evaluation

Hourly

Walker et al. [13] Commercial Buildings
Electricity Consumption

Meteorological Parameters, day of the
week, hour of the day, month of the year,

seasons, working day,
Autoregressive parameters

Boosted-tree/Random
forest, SVM, ANN,

MAPE, CV-RMSE, R2,
Theil U-Statistics,

Chae et al. [14] Commercial Buildings
Electricity Consumption

Meteorological Parameters, Time
indicator, Operational condition ANN CV-RMSE, MBE,

APE, MSE

Ryu et al. [15] Various Building type
Load Consumption

Weather features, day of the week,
weekday indicator, date

information of label

DNN (RBM, ReLU), SNN,
DSHW, ARIMA MAPE, RRMSE

Rahman et al. [16] Commercial Buildings
Electricity Consumption

HVAC Critical, HVAC Normal,
Convenience, Critical, Convenience

Power Normal, CRAC Critical,
CRAC Norma

DNN, LSTM, MLP,
NN, RNN

RMS, RMSE,
Pearson Coefficient

Jain et al. [17]
Electricity consumption

of multi-family
residential buildings

Meteorological Parameters,
Spatial granularity SVR CV

Daily

Song et al. [18] Oil production Pressure, Temperature, Permeability,
Porosity, Well length LSTM MAPE, MAE, RMSE

Shao et al. [19] Hotel Building
Electricity Consumption.

Meteorological Parameters,
Building measurement information,

Building information.
SVR MSE, R2

Bouktif et al. [20] Electric Load Meteorological Parameters RNN, LSTM, NN, Extra
Trees, Random Forest CV, RMSE, MAE

Ngo et al. [21] Cooling load in office buildings Building information, building envelops,
Internal loads

ANN, SVR, CART,
LR, Ensemble

R, RMSE, MAE, MAPE, SI,
Computing time

Monthly
Jeong et al. [8] Educational Building

Electricity Consumption Characteristics by educational facility SARIMA, ANN, Hybrid
(SARIMA, ANN) MAPE, RMSE, MAE

Choi et al. [22] Gas consumption in Building Building information Date, Temperature ANN R2, Pearson Coefficient
Lee et al. [23] Gas consumption Gas consumption DTW Clustering -
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First, in the case of hourly predictions, Walker et al. predicted the electricity consumption by
hour in a small area of the smart grid environment for 47 commercial buildings, and used Boosted
tree/Random forest, support vector machine (SVM), and ANN [13]. Chae et al. predicted electricity
consumption in 15 min for commercial buildings [14]. Variable importance analysis was used to
select the important variables regarding electricity consumption; building information and electricity
consumption data were obtained through a building management system, and a predictive model was
developed using an ANN. Ryu et al. predicted hourly load for various buildings [15]. As a prediction
technique, they used a rectified linear unit without pre-training and a DNN based on a pre-training
restricted Boltzmann machine. Rahman et al. used DNN, LSTM, MLP, NN, and RNN to predict
hourly electricity consumption for commercial and residential buildings [16]. Jain et al. used SVR to
predict hourly electricity consumption in multi-family residential buildings and made sensor-based
predictions by investigating the effects of time and spatial granularity on model accuracy [17].

Related to daily models, Song et al. proposed a model for predicting daily oil production [18].
LSTM was used as a prediction technique, and the PSO algorithm was used to optimize the LSTM.
Shao et al. predicted the daily electricity consumption for hotel buildings [19]. A predictive model
was developed using the SVR model technique; meteorological parameters and air conditioning
unit operation data were used as input parameters. The accuracy was improved after data quality
evaluation and pretreatment. Bouktif et al. predicted the daily electricity consumption data for
France’s metropolitan areas [20]. RNN, LSTM, NN, Extra Trees, and Random Forest were used as
model techniques, and the LSTM was optimized using genetic algorithm (GA). Ngo et al. developed a
cooling load prediction model for 243 office buildings, and used ANN, SVR, LR, CART, and ensemble
as prediction models [21].

In case of the monthly prediction, Jeong et al. developed a monthly prediction model to determine
the annual energy cost budget for educational facilities, and used SARIMA, ANN, and Hybrid
(SARIMA, ANN) [8]. The problems associated with the existing model were identified and a new
model was proposed through the predictive model. Choi et al. and Lee et al. predicted the monthly
gas consumption of buildings through DTW-based clustering classifications [22,23].

3. Method

As introduced in the research framework, steps 1, 2, and 3 were performed to develop the
electricity consumption prediction model.

3.1. STEP 1: Data Collection and Pre-Processing

To develop accurate and proper prediction models, it is very important to collect and pre-process
data in an appropriate form [24]. Improper data collection and inadequate pre-processing inhibits
model training and reduces the model’s performance. Therefore, it is necessary to perform data
pre-processing in terms of handling missing data as well as underfitting and overfitting issues [25].

3.1.1. Data Collection

All the data used in this study were collected from the Public Open Data [26]. We collected
15-min and monthly electricity consumption data (i-SMART, the Power Portal Service) of 28 commercial
buildings located in Seo-gu, Gwangju, Korea. In addition, we collected the meteorological data and
building information of the target buildings from the KMA (Korea Meteorological Administration) [27,28].
Figure 2 shows commercial buildings’ location map in Gwangju, South Korea.



Energies 2020, 13, 5885 7 of 29

Energies 2020, 13, x  7 of 28 

 

3. Method 

As introduced in the research framework, steps 1, 2, and 3 were performed to develop the electricity 

consumption prediction model. 

3.1. STEP 1: Data Collection and Pre-Processing 

To develop accurate and proper prediction models, it is very important to collect and pre-process data in 

an appropriate form [24]. Improper data collection and inadequate pre-processing inhibits model training and 

reduces the model’s performance. Therefore, it is necessary to perform data pre-processing in terms of handling 

missing data as well as underfitting and overfitting issues [25]. 

3.1.1. Data Collection 

All the data used in this study were collected from the Public Open Data [26]. We collected 15-min and 

monthly electricity consumption data (i-SMART, the Power Portal Service) of 28 commercial buildings located 

in Seo-gu, Gwangju, Korea. In addition, we collected the meteorological data and building information of the 

target buildings from the KMA (Korea Meteorological Administration) [27,28]. Figure 2 shows commercial 

buildings’ location map in Gwangju, South Korea. 

 

Figure 2. Commercial buildings’ location map in Gwangju, South Korea. 

First, the electricity consumption data of the target buildings were collected from January to December 

2016. Collected electricity consumption data was with 15-min resolution; therefore, we converted data into daily 

and monthly time scales. In addition, we collected data for three years from January 2014 to December 2016 to 

develop a monthly power consumption prediction model. Second, meteorological and building information 

were gathered as explanatory variables for input parameters. Meteorological data consisted of temperature, 

precipitation, wind speed, atmospheric pressure, relative humidity, and solar irradiance, and building 

information comprised the total area, number of floors, and underground floor. In addition, data including 

energy equipment of the buildings related to heating and cooling systems were also necessary accurately to 

predict the amount of energy consumption; however, it is impossible to collect the majority of the information 

of the building energy facilities. Therefore, this study tries to compensate for insufficient facility information 

through the inference method of the scenario-based analysis, which is the analysis of the electricity consumption 

pattern of the building and clustering classification. Furthermore, we also conducted data analysis in 

consideration of holidays and weekends, which greatly affect the power consumption. The collected input and 

target values are described in Table 2. 

Figure 2. Commercial buildings’ location map in Gwangju, South Korea.

First, the electricity consumption data of the target buildings were collected from January
to December 2016. Collected electricity consumption data was with 15-min resolution; therefore,
we converted data into daily and monthly time scales. In addition, we collected data for three years
from January 2014 to December 2016 to develop a monthly power consumption prediction model.
Second, meteorological and building information were gathered as explanatory variables for input
parameters. Meteorological data consisted of temperature, precipitation, wind speed, atmospheric
pressure, relative humidity, and solar irradiance, and building information comprised the total area,
number of floors, and underground floor. In addition, data including energy equipment of the buildings
related to heating and cooling systems were also necessary accurately to predict the amount of energy
consumption; however, it is impossible to collect the majority of the information of the building energy
facilities. Therefore, this study tries to compensate for insufficient facility information through the
inference method of the scenario-based analysis, which is the analysis of the electricity consumption
pattern of the building and clustering classification. Furthermore, we also conducted data analysis in
consideration of holidays and weekends, which greatly affect the power consumption. The collected
input and target values are described in Table 2.

Table 2. Input parameter and target value information.

Input Parameter Target Value

Daily

Temperature (◦C), Precipitation (mm),
Wind Speed (m/s), Atmospheric Pressure (hPa),

Relative Humidity (%), Solar Irradiance (MJ/m2),
Total Area (m2), Number of Floors, Underground

Floors, Day of the Week, Q-value, Facility type

January–December 2016
Daily electricity consumption for

1 year (kW)

Monthly

Temperature (◦C), Wind Speed (m/s),
Atmospheric Pressure (hPa), Relative Humidity (%),
Solar Irradiance (MJ/m2), Total Area (m2), Number of

Floors, Underground Floors, Q-value, Facility type

January 2014–December 2016
Monthly electricity consumption for

3 years (kW)
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3.1.2. Pre-Processing

In the pre-processing process, a few pieces of information regarding daily precipitation were
missed, so the Lagrange interpolation method was applied. If the time series are presented as (x1,y1),
(x2,y2), . . . , (xn,yn), the Lagrange interpolation can be formulated as presented in Equation (1).

L(x) =
n∑

i = 0

yi

n∏
j = 0, j,i

(
x− x j

)(
xi − x j

) (1)

where L(x) is the Lagrange polynomial, y represents the interpolation value, and n is the size of the
data used for interpolation [29]. Thus, some missing values were interpolated through Lagrange
interpolation and used as input parameters.

The electricity consumption data of the buildings were also pre-processed to a suitable form toward
a proper time scale. The collected electricity consumption data with 15-min resolution was summed
and converted into daily electricity consumption. Monthly data was collected on a monthly basis.
Therefore, as shown in Table 3, the input parameters consist of buildings information, meteorological
information, and day of week information; a new Q-value can be used as a correction factor for
analyzing the correlation between the input parameters and electricity consumption. The electricity
consumption is used as a dependent variable.

To adjust the numerical differences among the datasets, min–max normalization was conducted.
The normalization technique prevents the performance deterioration of the model training process
due to the significant differences among target data; this helps to improve the speed of data learning
process [30]. The min-max normalization is formulated as presented in Equation (2)

z =
x−min(x)

max(x) −min(x)
(2)

where x is an original value and z is the normalized value. Tables 3 and 4 summarize the training
data for the development of the model by dividing it into daily and monthly data. To develop the
prediction model for commercial buildings, target data of the 28 buildings were processed as training.
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Table 3. Example dataset of multiple buildings (daily).

Building
Number Date Temperature

(◦C)
Precipitation

(mm)
Wind Speed

(m/s)
Relative

Humidity (%)
Atmospheric

Pressure (hPa)
Solar Irradiance

(MJ/m2)
Total

Area (m2)
Number
of Floors

Underground
Floors

Day of
the Week

Electricity
Consumption (kW)

BN #1

1 January
2016 7.1 0.7 1.6 71.1 1018.7 9.29 8238.56 9 2 1 875.37

2 January
2016 6.5 0 0.6 78.6 1015.2 7.59 8238.56 9 2 1 1847.25

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31

December
2016

1.9 0 0.6 77.5 1021.8 6.62 8238.56 9 2 1 2035.68

BN #2

1 January
2016 7.1 0.7 1.6 71.1 1018.7 9.29 21,935.23 8 1 1 2686.56

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31

December
2016

1.9 0 0.6 77.5 1021.8 6.62 21,935.23 8 1 1 3208.68

BN #3

1 January
2016 7.1 0.7 1.6 71.1 1018.7 9.29 6401.65 5 1 1 446.58

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31

December
2016

1.9 0 0.6 77.5 1021.8 6.62 6401.65 5 1 1 442.53

BN #4

1 January
2016 7.1 0.7 1.6 71.1 1018.7 9.29 9939.17 5 1 1 1649.63

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31

December
2016

1.9 0 0.6 77.5 1021.8 6.62 9939.17 5 1 1 2093.5

.

.
.
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Table 3. Cont.

Building
Number Date Temperature

(◦C)
Precipitation

(mm)
Wind Speed

(m/s)
Relative

Humidity (%)
Atmospheric

Pressure (hPa)
Solar Irradiance

(MJ/m2)
Total

Area (m2)
Number
of Floors

Underground
Floors

Day of
the Week

Electricity
Consumption (kW)

BN #26

1 January
2016 7.1 0.7 1.6 71.1 1018.7 9.29 54,304.04 17 3 1 12,819.84

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31

December
2016

1.9 0 0.6 77.5 1021.8 6.62 54,304.04 17 3 1 13,757.76

BN #27

1 January
2016 7.1 0.7 1.6 71.1 1018.7 9.29 7279.9 9 2 1 1201.32

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31

December
2016

1.9 0 0.6 77.5 1021.8 6.62 7279.9 9 2 1 1768.92

BN #28

1 January
2016 7.1 0.7 1.6 71.1 1018.7 9.29 2191.04 10 1 1 577.6

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31

December
2016

1.9 0 0.6 77.5 1021.8 6.62 2191.04 10 1 1 574.39
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Table 4. Example dataset of multiple buildings (monthly).

Building
Number Date Temperature

(◦C)
Wind Speed

(m/s)
Relative

Humidity (%)
Atmospheric

Pressure (hPa)
Solar Irradiance

(MJ/m2)
Total Area

(m2)
Number
of Floors

Underground
Floors

Electricity
Consumption (kW)

BN #1

January 2014 2.1 1.8 58 1016.5 285.64 8238.56 9 2 96,194
February

2014 4.2 2.2 57 1015.4 295.26 8238.56 9 2 94,178

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
December

2016 4.7 1.5 69 1016.1 241.72 8238.56 9 2 69,539

BN #2

January 2014 2.1 1.8 58 1016.5 285.64 21,935.23 8 1 156,744
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

December
2016 4.7 1.5 69 1016.1 241.72 21,935.23 8 1 133,456

BN #3

January 2014 2.1 1.8 58 1016.5 285.64 6401.65 5 1 31,872
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

December
2016 4.7 1.5 69 1016.1 241.72 6401.65 5 1 29,750

BN #4

January 2014 2.1 1.8 58 1016.5 285.64 9939.17 5 1 81,523
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

December
2016 4.7 1.5 69 1016.1 241.72 9939.17 5 1 61,373

.

.
.

BN #26

January 2014 2.1 1.8 58 1016.5 285.64 54,304.04 17 3 546,912
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

December
2016 4.7 1.5 69 1016.1 241.72 54,304.04 17 3 461,424

BN #27

January 2014 2.1 1.8 58 1016.5 285.64 7279.9 9 2 66,898
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

December
2016 4.7 1.5 69 1016.1 241.72 7279.9 9 2 50,179

BN #28

January 2014 2.1 1.8 58 1016.5 285.64 2191.04 10 1 27,079
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

December
2016 4.7 1.5 69 1016.1 241.72 2191.04 10 1 23,605
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3.2. STEP 2: Development of DR Prediction Model (First Step)

Correlation analysis and parameter derivation to improve model accuracy.

3.2.1. Sensitivity Analysis

Sensitivity analysis (SA) is the study of how a mathematical model or parameter variation of a
system affects the output or performance of a system [31–34]. In this section, we analyzed the effect of
each meteorological parameter on energy demand through SA. Table 5 shows the SA of the electricity
consumption and meteorological information. δ(delta) is SA indices for individual inputs, and S1 is
first-order global SA indices or main effect indices. Among the meteorological variables, the both
delta and S1 indices of the temperature parameter shows the highest value. We recognized that the
temperature factor has the highest influence on the energy consumption.

Table 5. Sensitivity analysis of the electricity consumption and meteorological information in a
single building.

Season Winter Summer

Parameter δ (Delta) S1 δ (Delta) S1

Temperature 0.181880 0.246228 0.212678 0.243081
Precipitation 0.103899 0.041697 0.179938 0.085850
Wind Speed 0.085606 0.063668 0.048359 0.013573

Relative Humidity 0.056584 0.015088 0.012891 0.028091
Atmospheric Pressure 0.063352 0.031969 0.070607 0.024481

Solar Irradiance 0.030567 0.025631 0.048970 0.081328

3.2.2. Correlation Analysis

Correlation analysis is a method of confirming the degree of correlation between variables.
The Pearson correlation method, widely applied in data analysis, was employed in this model.
The closer the correlation value is to 0, the weaker the linear correlation, where +1 and −1 indicate
strong positive and negative linear correlations, respectively [35]. We investigated the correlation
analysis with respect to the meteorological information and features of the building regarding the
amount of electricity consumption of the building to derive the relationship between the consumption
of electricity and various features of the building.

Table 6 represents the results of the correlation analysis for both summer and winter season
in consideration of seasonal features for a building in terms of energy consumption. Among them,
the correlation between electricity consumption and temperature variation is relatively high, with a
negative high value of −0.38969 in winter, and a positive high value of 0.502439 in summer.

Table 6. Correlation of the electricity consumption and meteorological information from a single building.

Season Temperature Precipitation Wind Speed Relative
Humidity

Atmospheric
Pressure

Solar
Irradiance

Winter −0.38969 0.022229 0.227532 −0.04063 0.166891 −0.03883
Summer 0.502439 −0.12635 0.012127 −0.08027 0.030038 0.252418

On the contrary, Figure 3 shows the results of the correlation analysis for a single building as well
as for 28 buildings. In case of a single building, the correlation between temperature and electricity
consumption is high, but it is low in the case of multiple buildings; −0.101294 in winter and 0.137393
in summer.
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Figure 3. Correlation between electricity consumption and meteorological information.

In case of the correlation between temperature and electricity consumption, the single building
case has a high correlation whereas the multiple building case shows a low correlation.

According to Tables 6 and 7, the volume of the building, including the total area, has a high
correlation value between energy consumption; therefore, we considered the compensation values for
data analysis because the different sizes of the buildings have significant influence on the electricity
consumption variation.

Table 7. Correlation of the electricity consumption and meteorological and building information from
multiple buildings.

Meteorological Information

Season Temperature Precipitation Wind Speed Relative
Humidity

Atmospheric
Pressure

Solar
Irradiance

Winter −0.101294 0.002157 0.034499 0.000760 0.078926 −0.073448
Summer 0.137393 −0.067337 −0.026587 −0.059833 0.049873 0.095713

Building Information
Season Total Area Number of Floor Underground Floor

Winter 0.610065 0.404868 0.254268
Summer 0.638708 0.527150 0.445445

3.2.3. Compensation Value

In this study, we derived a new parameter to explain the degree of electricity consumption
according to the building size and variation in temperature. Therefore, a new variable was derived by
combining the total area and temperature variables regarding building energy consumption.

The correction factor was derived by referring to the thermal conductivity formula to compensate
for the correlation according to different total areas and temperature changes of the 28 buildings.

Q−value = A× t (3)

where A is the total area and t is the temperature. A new parameter, Q-value was derived through the
multiplication of the total area and the temperature parameter. Figure 4 shows the correlation of the
electricity consumption and the results of the both temperature and Q-value. The correlation of the
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temperature with the electricity consumption is as low as 0.00444 and 0.02867, whereas the correlation
of Q-value with electricity consumption is as high as 0.43839 per day and 0.42713 per month.
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3.2.4. Development of the Prediction Model (First Step)

For the first step, we developed the prediction model, such as a traditional time-series-based model
(SARIMAX) and a machine learning model (ANN, DNN, LSTM, SVR) through the correlation analysis
between electricity consumption and the input parameter to the independent variable. Test Case 1
adopts monthly and daily electricity consumption data as a target value with input parameters such as
meteorological data, building information, and day of the week information. In Test Case 2, Q-value is
additionally considered an input parameter. Therefore, we evaluated five different model techniques
with two test cases (Test Cases 1 and 2).

• ANN

Artificial neural networks (ANNs) are most often implemented in predictive models in
machine learning. The ANN is a network model resembling functions similar to the human brain.
There are numerous neurons in the human brain to process and collect information through neurons.
The mathematical model was introduced in 1943 by McCulloch and Pitts [36]. The ANN′s nonlinear
approach is suitable for solving complicated relationships between input and output data. The ANN
consists of an input layer, hidden layer, and an output layer and receives data through the input layer,
processes it in the hidden layer, and obtains the result in the output layer. The operation in the hidden
layer is as follows:

f (x) =
∑

i

WiXi + βi (4)

g( f (x)) =
sin h( f (x))
cos h( f (x))

=
e f (x)

− e = f (x)

e f (x) + e− f (x)
(5)

where f (x) represents a combination function. W represents the weight between layers. X represents
the ith neuron in the input layer. β represents the bias of the ith neuron. The g function is a transfer
function, and Equation (5) represents the hyperbolic tangent function [37].
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• SVR

SVM is one of the most popular artificial intelligence methods as a machine learning model. SVM
is widely used for a classification and regression methods, and the SVM-based regression method is
called the SVR. SVM was first introduced by Vapnik (1995) as a robust learning algorithm for solving
nonlinear problems [38]. SVM is used to determine the optimal decision hyperplane classifying the
classes by maximum margin. SVR is a learning method that includes as much data as possible in
a certain margin on the same principle as SVM. The sensitivity of the model can be controlled by
adjusting the margin [19,39].

• SARIMAX

Autoregressive integrated moving average (ARIMA) is widely utilized in traditional statistical
time-series analysis, and is a model obtained by mixing the autoregressive (AR) model and moving
average (MA) model. Seasonal autoregressive integrated moving average (SARIMA) is the model used
when the data contains seasonal characteristics. In addition, seasonal autoregressive integrated moving
average-X (SARIMAX) is the model that considers both seasonal characteristics and external variables.
In this study, SARIMAX is used to apply the electricity consumption data type and external variables
with seasonal characteristics. In this study, SARIMAX is used to apply the electricity consumption
data type and external variables with seasonal characteristics [40,41].

• DNN

Deep neural network (DNN) is an ANN with multiple hidden layers. DNN solves the overfitting
problem, which is a disadvantage of the ANN, and reduces the learning time. In addition, DNN
can handle complicated models with fewer nodes than ANN [42]. DNN is widely used in demand
forecasting and big data fields because it can model complicated nonlinear relationships. Equation (6)
represents the ability for DNN to determine the weighted value.

∆wi j(t + 1) = ∆wi j(t) + η
ϑC
ϑwi j

. (6)

where w is weight, η is learning rate, C is cost function. The choice of cost function is determined by
factors such as the type of learning (supervised learning, self-learning (machine learning), reinforcement
learning) and the activation function [43].

• LSTM

Long short-term memory (LSTM) is suitable for a prediction model based on time-series analysis.
LSTM was first proposed by Sepp Hochreiter and Jürgen Schmidhuber and was developed to solve the
vanishing gradient problem of RNN [44].

The basic structure of LSTM contains of cells, which consist of an input gate, an output gate, and a
forget gate, which stores and transmits data from the cell as shown in Figure 5. The role at the gate is as
follows. The forget gate is the process of deciding whether to discard past data, the input gate determines
whether to store the current information, and the output gate is the process of deciding which output
value to output. The LSTM structure solves the problem of long-term prediction of RNN [18].
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In this study, to predict the electricity consumption at time t + 1, the model was developed by
adding the electricity consumption, the target value at time t, to the input parameter at time t + 1.

3.2.5. Results and assessment (First Step)

• Error calculation

To evaluate the electricity consumption prediction performance for each model, we use
mean absolute percentage error (MAPE), root mean square error (RMSE), mean bias error (MBE),
and coefficient of variation (CV) evaluation. Equations (7)–(10) describe the equations of the
performance evaluation.

MAPE =
100
n

n∑
t = 1

∣∣∣∣∣At−Pt

At

∣∣∣∣∣ (7)

RMSE =

√√
1
n

n∑
t = 1

(At−Pt)
2 (8)

MBE =

∑n
t = 1(At−Pt)∑n

t = 1 At
(9)

CV =
RMSE

1
n
∑n

t = 1 At
=

√
1
n
∑n

t = 1(At−Pt)
2

1
n
∑n

t = 1 At
(10)

where At is actual data, Pt is target data, and n is number of samples. MAPE is a value expressed as a
percentage of the error between the measured value and the predicted value and is generally used to
predict the error [45]. RMSE is a value representing the error between the measured value and the
predicted value as standard deviation [46]. The RMSE is a relative value and is affected by the size of
the sample. Therefore, the RMSE can be evaluated by relative comparison on the same data set. MBE
is a value representing the average of the deviation between the measured value and the predicted
value. The closer to 0, the better regardless of the sign [47]. CV is expressed as the square root of the
mean squared error, and the model with the minimum value or 0 is the optimal model [14].
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• Assessment of trained models

Figure 6 and Table 8 show the results of the performance evaluation with the Q-value for commercial
multiple buildings. Test Case 2 shows the performance results of applying the Q-value as one of the input
parameters, whereas Test Case 1 considers meteorological data, building information, and day of weekend
or not as input values. Besides, the performance results of the SARIMAX ANN, DNN, and LSTM show
that the overall result of Test Case 2 has good performance compared to that of Test Case 1.
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Figure 6. Individual assessment graph for trained models (MAPE).

Table 8. Individual evaluation summary for trained models in multiple buildings (First Step).

Test Case Performance
Evaluation SARIMAX SVR ANN DNN LSTM

Daily

Test Case 1

MAPE (%) 27.15991 24.74141 24.32531 14.54982 11.23937
RMSE (kW) 557.6002 711.1884 571.3286 406.2006 579.5171

MBE (%) −1.18098 −1.22898 2.777059 −0.76317 −0.31540
CV (%) 18.21689 23.17986 18.66540 13.27064 18.13398

Test Case 2

MAPE (%) 25.22460 24.83279 20.45893 10.83902 10.78970
RMSE (kW) 669.5132 701.3550 452.3658 382.9493 389.8103

MBE (%) −1.07525 −1.21958 2.63918 1.12560 0.258391
CV (%) 21.42904 22.85935 14.77887 12.51102 12.73517

Monthly

Test Case 1

MAPE (%) 39.30651 28.67256 40.92174 27.59819 25.68580
RMSE (kW) 29795.64 41911.26 28848.64 15503.43 32260.52

MBE (%) 2.531365 −8.84265 −1.27958 −4.62698 −4.156262
CV (%) 34.81914 44.91909 33.71248 18.11729 37.547024

Test Case 2

MAPE (%) 19.96770 28.96614 29.30571 14.24719 18.61913
RMSE (kW) 27423.98 41840.32 17719.81 13946.75 26755.26

MBE (%) −1.94524 −9.77504 −1.43820 −0.47899 2.69541
CV (%) 29.00761 44.84306 20.70734 14.94766 31.13961

Most of the performance results considering Q-values show that the accuracy has improved except
for the SVR case. The performance result of the SVR shows a similar outcome whether considering
Q-value or not. In addition, the DNN and LSTM have the highest accuracy compared to the performance
results of the SARIMAX, SVR, ANN, DNN, and LSTM.
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However, to improve the accuracy of the demand prediction model for multiple buildings,
which has been improved with the addition of Q-value, it is necessary to analyze more various
influencing factors affecting electricity consumption.

Therefore, in this study, to improve the performance of the predictive model, we try to use the
information related to heating and cooling facilities that affect the electricity consumption of the
building for analysis. Also, we intend to infer facility information through a clustering technique for
using equipment information that is difficult to collect.

3.3. STEP 3: Development of DR Prediction Model (Second Step)

Improving model accuracy through facility information deduction.

3.3.1. Analysis of Facility Information Based on the Pattern of Electricity Consumption

Energy consumption in commercial building consists of heating and cooling, lighting, and office
equipment, and heating and cooling accounts for 48.9% of the total [48]. Energy consumption of
lighting and office equipment account for a certain level of energy regardless of seasonal changes;
however, energy demand for heating and cooling facilities tends to vary according to the season.
Therefore, it is crucial to utilize information on heating and cooling facilities of the buildings in terms
of the development of electricity demand response prediction models for multiple buildings.

As shown in Figure 7, as South Korea has four distinct seasons in spring, summer, autumn,
and winter according to temperature changes, electricity consumption varies by season. The amount
of energy consumption for heating and cooling occupies a large portion of total energy, especially
summer and winter season. We found that it is possible to derive facility information of the buildings
by analyzing power consumption pattern with regard to seasonal features.
Energies 2020, 13, x  18 of 28 

 

 

Figure 7. Daily and monthly temperature for January–December 2016 in Gwangju, South Korea. 

Generally, building energy consumption for heating and cooling includes gas, district heating, 

and solar energy as well as electricity in Korea. Therefore, the energy used for heating and cooling 

facilities is inferred based on the pattern of electric energy consumption. In this step, we performed 

a classification process based on the fact that the heating and cooling system of the commercial 

building can be categorized in accordance with the literature survey in Korea [49–52]. 

On the basis of summer and winter, information on heating and cooling facilities for the three 

scenarios are inferred. The information on heating and cooling facilities is inferred by classifying 

them into three cases based on summer and winter. The following seasonal features can be derived 

from the electricity usage pattern for cooling of buildings. The average temperature is 25 °C during 

July and August in Korea, and due to the hot weather, most buildings need to use air conditioning to 

maintain building temperature. Accordingly, most of the buildings consume a lot of electricity. 

Meanwhile, in the case of public buildings, the energy saving policy requires restricted use of air 

conditioners to maintain the indoor temperature between 26 °C and 28 °C. Due to the temperature 

restrictions imposed for public buildings, the electricity consumption is lower than that of other 

buildings, and consumption patterns are consistent. Thus, two features of buildings can be 

considered: unlimited electricity consumption and limited and consistent electricity consumption in 

the summer.  

In Seo-gu, Gwangju, Korea, the average annual temperature in winter is 5 °C. When the ambient 

temperature is lower than a certain temperature, the building uses more energy for heating. Heating 

systems used in Korean commercial buildings is classified into heating types using electricity and gas 

(city gas and a system using district heating). 

Most of the commercial buildings use electric heat pump (EHP) systems, whereas some 

commercial buildings use mixed type the heating system adopting electricity and gas together. 

Therefore, for commercial buildings, heating systems can be divided into two types; EHP system and 

mixed heating. 

Therefore, buildings can be divided into three cases according to the type of heating and cooling 

energy source used in summer and winter. Table 9 shows three clusters classified by facility types. 

Table 9. The number of three clusters classified by facility types. 

Case Summer Winter 

Case 1 Electricity as a cooling facility Electricity as a heating facility 

Case 2 Electricity as a cooling facility Mixed energy as a heating facility 

Case 3 
Electricity as a cooling facility 

(Electricity usage restrictions) 
Electricity as a heating facility 

Case 1 involves a building that uses electric heating and cooling facilities in both summer and 

winter. Case 2 involves a building that uses electric cooling in summer and mixed energy heating in 

winter. Case 3 involves a building that adopts temperature restriction in summer and electric heating 

in winter. These three cases are used as criteria for clustering classification; 28 buildings were 

classified into these clusters through clustering analysis (Section 3.3.2). 

 

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12

T
em

p
er

at
u

re

Month

-10
-5
0
5

10
15
20
25
30

1 2 3 4 5 6 7 8 9 10 11 12

T
em

p
er

at
u

re

Day

Figure 7. Daily and monthly temperature for January–December 2016 in Gwangju, South Korea.

Generally, building energy consumption for heating and cooling includes gas, district heating,
and solar energy as well as electricity in Korea. Therefore, the energy used for heating and cooling
facilities is inferred based on the pattern of electric energy consumption. In this step, we performed a
classification process based on the fact that the heating and cooling system of the commercial building
can be categorized in accordance with the literature survey in Korea [49–52].

On the basis of summer and winter, information on heating and cooling facilities for the three
scenarios are inferred. The information on heating and cooling facilities is inferred by classifying
them into three cases based on summer and winter. The following seasonal features can be derived
from the electricity usage pattern for cooling of buildings. The average temperature is 25 ◦C during
July and August in Korea, and due to the hot weather, most buildings need to use air conditioning
to maintain building temperature. Accordingly, most of the buildings consume a lot of electricity.
Meanwhile, in the case of public buildings, the energy saving policy requires restricted use of air
conditioners to maintain the indoor temperature between 26 ◦C and 28 ◦C. Due to the temperature
restrictions imposed for public buildings, the electricity consumption is lower than that of other
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buildings, and consumption patterns are consistent. Thus, two features of buildings can be considered:
unlimited electricity consumption and limited and consistent electricity consumption in the summer.

In Seo-gu, Gwangju, Korea, the average annual temperature in winter is 5 ◦C. When the ambient
temperature is lower than a certain temperature, the building uses more energy for heating. Heating
systems used in Korean commercial buildings is classified into heating types using electricity and gas
(city gas and a system using district heating).

Most of the commercial buildings use electric heat pump (EHP) systems, whereas some
commercial buildings use mixed type the heating system adopting electricity and gas together.
Therefore, for commercial buildings, heating systems can be divided into two types; EHP system and
mixed heating.

Therefore, buildings can be divided into three cases according to the type of heating and cooling
energy source used in summer and winter. Table 9 shows three clusters classified by facility types.

Table 9. The number of three clusters classified by facility types.

Case Summer Winter

Case 1 Electricity as a cooling facility Electricity as a heating facility

Case 2 Electricity as a cooling facility Mixed energy as a heating facility

Case 3 Electricity as a cooling facility
(Electricity usage restrictions) Electricity as a heating facility

Case 1 involves a building that uses electric heating and cooling facilities in both summer and
winter. Case 2 involves a building that uses electric cooling in summer and mixed energy heating in
winter. Case 3 involves a building that adopts temperature restriction in summer and electric heating
in winter. These three cases are used as criteria for clustering classification; 28 buildings were classified
into these clusters through clustering analysis (Section 3.3.2).

3.3.2. DTW-Based Clustering

Each building exhibits different electricity consumption patterns depending on the heating and
cooling facility types or purpose of use. In particular, the pattern of electricity consumption differs
according to the type of heating and cooling facility, and the pattern of electricity consumption can be
identified through the inference of the facility types. Therefore, as in Section 3.3.1, the facility type of
the buildings is estimated, and then we can classify the building clusters according to the electricity
consumption patterns of various buildings.

The hierarchical clustering of 28 buildings is required based on the results of facility information
analysis. The clustering technique is a method of dividing data having similar patterns into the
similar group. By calculating the distance between the data, the data of adjacent distances belong
to a group. Representatively, clustering based on the Euclidean distance algorithm can be used,
and similarity between entities can be found by calculating the shortest distance between entities.
However, the Euclidean distance algorithm has a limitation in reflecting time series. The electricity
consumption has time-series information, and continuous change over time is a key feature. Thus,
DTW algorithm is able to measure similarity of time series and suitable for data changing non-linearly
in the time dimension [53]. Therefore, a hierarchical clustering analysis was performed using the
DTW algorithm.
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Prior to clustering classification, electricity consumption data of each building was normalized to
reduce clustering classification errors.

Figures 8 and 9 show the electricity consumption patterns of the buildings according to each
cluster. The colored lines on each graph represent each building. Clusters is classified based on three
cases, which are the results of heating and cooling facility information analyses. We can see that
buildings having similar patterns of electricity consumption in a formed cluster. Cluster 1 is composed
of buildings that consume a lot of electricity in summer and winter. Cluster 2 is composed of buildings
with high power consumption in summer and relatively low power consumption in winter. Cluster 3 is
composed of buildings that consume more electricity in winter than in summer. All of the 28 buildings,
the number of buildings in Cluster 1 is 8, the number of buildings in Cluster 2 is 12, and the number of
buildings in cluster is 7 buildings. The graph of the all the clusters present an average value of the
electricity consumption of each cluster.

Case 1, described in Table 8, is equal to the power consumption pattern of Cluster 1, Case 2 equals
Cluster 2, and Case 3 equivalents Cluster 3. Accordingly, we can see that the result of the clustering
and building′s energy consumption pattern inferred from the energy facility types of the buildings are
identical. Therefore, the features of heating and cooling systems affecting energy consumption can be
derived, and we can use this inferred value to predict future energy consumption accurately.
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Figure 8. Daily electricity consumption of each building cluster.
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Figure 9. Monthly electricity consumption of each buildings cluster.

3.3.3. Development of a Prediction Model (Second Step)

The clustering analysis through the estimation of the building’s facility was classified into three
buildings with similar patterns of electricity consumption. Twenty-eight buildings classified into three
clusters were applied to the demand prediction model.

To design an optimal prediction model and evaluate the performance, a proposed model was
evaluated using three different datasets.

Table 10 shows the description of the experimental datasets.

Table 10. Description of the experimental datasets.

Dataset Name Group Description

Test Case 1 Original dataset in building group.
Test Case 2 Dataset using Q-value (First Step in Section 3.2)

Test Case 3 Dataset using Q-value (First Step) and
facility information (Second Step in Section 3.3)

Test Case 1 was evaluated using an original dataset, Test Case 2 was evaluated using a dataset
that used Q-value (described in Section 3.2), and Test Case 3 was evaluated using a dataset that used
Q-value and facility information obtained via clustering analysis.

These three test cases were evaluated at different time scales (both daily and monthly); same input
parameters were utilized, including meteorological information, building information, and Q-value.
As shown in the previous experiment, the performance evaluation was conducted using machine
learning and time series-based statistical models: ANN, DNN, LSTM, SVR and SARIMAX.

In the case of ANN, DNN, and LSTM, hyperparameters have a significant influence on the
performance of model training; in particular, the difference between accuracy and learning speed can
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be controlled via hyperparameter tuning. The machine learning model can be evaluated according to
the number of nodes and batch size. Therefore, we conducted experiments by adjusting the number of
nodes and batch size to find the optimal parameter selection. Batch sizes of 5, 10, 20, and 50 were tested,
the number of nodes was evaluated from 10 to 400, and the selected number of hidden layers was three.
The optimal hyperparameter values were selected based on reference [54]. In all experiments, the same
number of nodes and batch sizes were applied. Finally, the hyperparameters of the test model with the
highest accuracy were selected.

From the experimental result, we found that the error rate was low when most of the values in
the daily and monthly models were ≥100 or more nodes; we can get similar accuracy rates with the
number of nodes over 100. In this study, we evaluated the models considering various batch sizes and
number of nodes to obtain high accuracy.

3.3.4. Results and Assessment (Second Step)

Figure 10 and Table 11 show the results of performance evaluation for each test case. Test Case 3
evaluated by dataset using Q-value and facility information shows better performance in the MAPE,
RMSE, MBE and CV compared to Test Case 2 and Test Case 3 in all five methods with every time scale.
In the first step, Test Case 3 shows better performance than Test Case 2, and we could confirm that the
derived value of the heating and cooling type renders improved performance.

A short-term electricity demand response prediction model was evaluated by each time period.
The LSTM exhibited an error rate of 8.97% for MAPE and 12.70% for CV in daily prediction. In case
of the monthly prediction, the DNN exhibited an error rate of 10.85% for MAPE and 13.58% for CV,
the daily prediction showed a lower error rate than the monthly prediction.

The proposed method was assessed according to five machine learning and time series estimation
techniques to determine the optimal model. In the daily case, the LSTM showed the best performance,
whereas the DNN presented the best performance in the monthly case. As there was insufficient data
in the case of the monthly evaluation compared to the daily case, the influence of the time-series effect
of the LSTM technique was less reflected.

Summarizing the abovementioned results, the LSTM showed the best performance in Test Case 3
in the daily case. In the daily case, the LSTM showed the best performance of MAPE 8.97%, RMSE
388.67 (kW), MBE 0.18%, and CV 12.7%. In the second step, wherein Q-value and facility information,
were used we are able to obtain improved performance in every evaluation technique in daily and
monthly cases.Energies 2020, 13, x  22 of 28 
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Table 11. Comparison of the predicted results from Test Cases 1, 2, and 3 (Second Step).

Test Case Performance
Evaluation SARIMAX SVR ANN DNN LSTM

Daily

Test Case 1

MAPE (%) 27.15991 24.74141 24.32531 14.54982 11.23937
RMSE (kW) 557.6002 711.1884 571.3286 406.2006 579.5171

MBE (%) −1.18098 −1.22898 2.777059 −0.76317 −0.31540
CV (%) 18.21689 23.17986 18.66540 13.27064 18.13398

Test Case 2

MAPE (%) 25.22460 24.83279 20.45893 10.83902 10.78970
RMSE (kW) 669.5132 701.3550 452.3658 382.9493 389.8103

MBE (%) −1.07525 −1.21958 2.63918 1.12560 0.258391
CV (%) 21.42904 22.85935 14.77887 12.51102 12.73517

Test Case 3

MAPE (%) 24.84949 16.95384 17.88299 9.77652 8.96914
RMSE (kW) 653.5616 414.9893 439.2258 426.7818 388.6730

MBE (%) −0.37903 0.646133 −0.17665 −0.10945 0.18410
CV (%) 20.91847 13.5258 14.3496 13.9101 12.6980

Monthly

Test Case 1

MAPE (%) 39.30651 28.67256 40.92174 27.59819 25.68580
RMSE (kW) 29795.64 41911.26 28848.64 15503.43 32260.52

MBE (%) 2.531365 −8.84265 −1.27958 −4.62698 −4.156262
CV (%) 34.81914 44.91909 33.71248 18.11729 37.547024

Test Case 2

MAPE (%) 19.96770 28.96614 29.30571 14.24719 18.61913
RMSE (kW) 27423.98 41840.32 17719.81 13946.75 26755.26

MBE (%) −1.94524 −9.77504 −1.43820 −0.47899 2.69541
CV (%) 29.00761 44.84306 20.70734 14.94766 31.13961

Test Case 3

MAPE (%) 19.50041 18.11309 28.35975 10.84625 11.79058
RMSE (kW) 26215.69 14633.71 17113.59 12667.49 12205.81

MBE (%) −1.93994 −0.75605 −1.32507 0.17049 −1.28465
CV (%) 27.72955 15.68392 19.99891 13.57659 13.08178

• Comparison of actual and predicted values

Figures 11 and 12 show the actual and predicted values for one of the target buildings (building
number 1) based on the results listed in Table 11. The figures show the monthly and daily electricity
consumption prediction results generated using five predictive model techniques. Test Case 3 using
facility information and the Q-value as an input parameter showed a high degree of agreement between
the actual and predicted values in every evaluation model. Overall, the DNN and LSTM had the
highest agreement between the predicted and actual values compared to other model techniques, and
the highest accuracy was observed in Test Case 3.
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4. Discussion and Conclusions

In this study, a daily and monthly electricity consumption prediction model for 28 commercial
buildings was proposed using open-access data in Seo-gu, Gwangju, South Korea. Performing energy
research of multiple buildings in metropolitan city is difficult as it is cumbersome to gather all of the
specific information of target buildings, such as heating and cooling system types, facility information,
and the prediction accuracy is decreased when developing a prediction algorithm using insufficient
information. Therefore, we proposed a two-step approach to overcome the limitations of data collection,
and we designed machine learning and statistics-based prediction models considering daily and
monthly cases, belonging to the range of short-term electricity demand prediction. For the development
of the prediction algorithm, five different techniques—machine learning techniques (ANN, DNN,
LSTM, and SVR) and the traditional time-series analysis technique (SARIMAX) —were evaluated with
respect to various test conditions.

In the case of the multiple buildings, in the first step, there is a problem that the features of
individual buildings are not reflected. Therefore, to apply the features of individual buildings,
a predictive model was developed by analyzing the correlation of electricity consumption with
meteorological and building information. Through correlation analysis, the new parameter was
developed by combining the total area and temperature variables that explain the effects of the features
of individual buildings. As a result of developing the daily monthly prediction model, performance
improvement was achieved in all models except for the SVR; in particular, significantly improved
results were obtained in the monthly model.

In the second step, as the electricity consumption patterns vary for buildings according to the
heating and cooling equipment, building information and building facility information are crucial
in developing a building′s electricity demand prediction model. However, collection of building
facility information is limited due to various problems. Therefore, we inferred building energy facility
types and propose a predictive model by performing electricity consumption pattern analysis and
DTW-based clustering classification. Based on the inferred information of the heating and cooling
types, buildings were divided into three categories and evaluated.

In the experiment, the Test Case 3 model, which reflected the characteristics of individual buildings
and the energy consumption pattern in the prediction model, showed the highest performance by
applying the Q-value and information on the heating and cooling facilities. It was confirmed that the
prediction model performed 27.5% better than the existing model (Table 11). The degree of agreement
between the actual and predicted values was confirmed through Figures 11 and 12.

In this study, an improved building electricity consumption prediction model was developed
based on building and facility information using a two-step approach. Building and facility information
are essential in developing a highly accurate electricity consumption prediction model. However,
inappropriate parameter selection of the prediction model can lead to decreased prediction accuracy.

With the approach proposed in this study, we prove that the problems associated with insufficient
data needed for the prediction can be resolved. In addition, we show the importance of parameter
selection for model prediction affecting energy consumption as well as verifying which model would
be a suitable machine learning and time-series algorithm for short-term energy prediction. By enabling
stable power supply through accurate electricity demand response prediction, efficient power operation
in specific regions and cities will be possible.
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