1. Introduction
The increased interest in the exploitation of inedible oilseed crops as biomass to produce second-generation biofuel has been essentially motivated by diversification of the energy matrix to energy security in order to decrease greenhouse gas emissions and to promote urban and rural sustainable development [
1,
2]. The renewable energy feedstock selection for conversion to biofuels depends on key factors for achieving success and sustainability, emphasizing economic, social and environmental aspects such as land availability, ecosystem conservation, future food security, and agriculture productivity [
3,
4]. Currently, the world supply of biodiesel is based on edible crops with relatively low productivity of biofuel per unit area such as soybean (566 kg ha
−1 year) and rapeseed (862 kg ha
−1 year) [
5]. Thus, the main limitation of this industry to produce biofuel from oily crops is the upstream oil productivity (L ha
−1), because the refined oils transesterification process is a mature technology. In addition, low productivity at the agricultural stage is directly associated to the operating cost to produce biodiesel since the price of vegetable oil can represent up to 77% of its total manufacturing cost [
6].
Jatropha curcas L. (JCL) has emerged as a promising alternative feedstock for biodiesel production due to multiple attributes, notable agronomic characteristics and economic viability with environmental benefits such as its remarkable oil yield (1892 L ha
−1) higher than other energy crops like soybean and canola (446 L ha
−1 and 1190 L ha
−1, respectively) [
7]. Likewise, its oil content (40–60%) that is greater than that of soybean (12–24%), and its fatty acid profile that is suitable for obtaining biodiesel with good vehicle performance in blends with diesel fuel [
8,
9,
10,
11], In addition, it is susceptibility to only a few pests and diseases and is resilient to environmental stresses such as droughts and soil hardness [
12,
13]. However, several efforts and production projects in countries such as Mexico, India, China, Ethiopia, Mozambique, and Ghana have failed or were truncated due to factors affecting levels of productivity like soil requirements, agroclimatic conditions, agronomic practices and supply chain network challenges, among others [
14,
15]. Despite setbacks and inherent risks, there is persistent focus to take advantage of JCL multi-dimensional capacity to primarily produce biodiesel, in addition to other products [
16,
17,
18].
Nowadays, the identification and selection of suitable and available land to grow inedible oilseed crop, like JCL, demands observance of three dimensions—societal, economic and environmental—to reduce negative environmental impacts and avoid displacing other crops used for food and/or animal feed [
19,
20]. From this perspective, several research groups have focused their efforts to integrate territorial characteristics (e.g., land use), climatic information and some socioeconomic aspects to improve land allocation for biomass crop cultivation [
21,
22].
Countries like China, Uganda and India have shown awareness in agroecological zoning of JCL using an integrated Geographical Information System (GIS) and Remote Sensing (RS) approach that combined meteorological conditions, ecosystem services, roads, settlements, transmission, distribution lines, population density, transportation costs, cost of cultivation, land use policy and regulation and local economic structures. Their studies have shown that abandoned, degraded, and/or marginal lands could represent a good opportunity for biomass energy production [
23,
24,
25]. A GIS approach in land use suitability mapping and analysis has been used as a decision support tool for spatial planning and management for agriculture. The integration of GIS technology into the multicriteria decision-making approach (MCDA) has become an updated trend in agricultural land suitability classification [
26]. The Analytical Hierarchy Process (AHP), based on human judgment ability to structure a multicriteria problem can combine qualitative and quantitative aspects of opinions given by the experts and is formed by main goal, criteria, sub-criteria or variables, and alternatives [
27]. This procedure enables integration of different environmental, social and economic data, and depends on the basic units of aggregated observations (according to the selected criteria). Likewise, it allows for questions to be answered that are either related to possible sites that meet natural resource potential, or on the other hand, restricted areas; nevertheless, it can certainly help make a decision on sustainable production of biodiesel [
28,
29].
Biomass energy use and its production in Mexico has been anticipated since 2007 [
30], but the bioenergy potential of the country remains largely unexploited [
31]. Unfortunately, the Mexican strategies to assess the potential land availability for energy crops production has been carried out without integrating joint ecological, ethical, political, and technical restrictions, and were mostly based on decisions starting from studies that basically evaluated land agroecological attributes to grow this energy crop [
32,
33,
34,
35,
36,
37], while disregarding many other key factors that affect its sustainable cultivation.
Mexico, one of the most important JCL centers of origin, has high diversity and genetic richness as well as the potential for the creation of various JCL varieties with favorable agronomic characteristics and high-quality oil (12 to 60%) for biodiesel. These features are worth bearing in mind, in such a way that rational planning could derive a crop with higher and long-term profitability [
38,
39,
40,
41,
42]. Furthermore, Mexico is part of the North American continent, where the main biodiesel producer—the United States—is located, [
5]. Recognizing these viewpoints, the goal of this study was to explore feasible sites of JCL cultivation for biodiesel production in Mexico. To meet this goal, we performed a GIS approach land suitability and availability analysis for growing JCL. The identification and quantification of propitious land integrated several factors, like areas with suitable growth conditions for JCL and others. For equally important sustainability and ecological considerations, we collected ecological, ethical, political, and technical restrictions with the purpose of reducing both probable competition with food crops and controversies from environmental and socioeconomic perspectives. This study is the first in Mexico to consider this kind of information to guarantee food security, ecosystem conservation and promoting the biomass supply chains compared with other studies [
33,
37]. Also, the article contributes by highlighting the productive capacity of Mexico for JCL cultivation and provides a detailed analysis on where it could be exploited it, considering other limiting factors. For this reason, a MCDA was applied, specifically AHP method, and integrated with GIS application environments to assess of suitable and available land for the growth of JCL to produce biodiesel [
43,
44,
45,
46] and supports decision-making in the development of bioenergy projects. The AHP is especially helpful when it is difficult to recognize the precise interactions between several evaluation criteria [
46]. Finally, based on Google Earth’s high-resolution data, and vegetation layers of corn, bean, sorghum and wheat crops from imagery SPOT [
47], we carried out a visual inspection to confirm or ratify estimated areas.
3. Results and Discussion
Land suitability analysis for growing JCL in Mexico was determined considering historical spatial and temporal variability of two agroclimatic parameters (rainfall and temperature) for the period spanning 1950 to 2016 and 1910 to 2009, respectively, and was accompanied by terrain attributes (elevation and soil type).
Table 7 presents the pair-wise comparison matrix of AZ, while
Table 8 shows weights of the four criteria. The results indicate that suitable areas for JCL cultivation were mainly attributed to elevation and rainfall with importance weights of 46% and 32%, respectively.
Figure 3 shows the spatial result of this analysis after applying the weight values in order to estimate categories of “high potential”, “medium potential” and “low potential” lands for the JCL cultivation. The consistency property of matrices was estimated.
Table 9 presents the CR with a value less than 0.1, indicating acceptable.
The AZ results allowed the identification of areas with similar combinations of limitations and potential for JCL crop growth, based solely on agronomic potential.
Figure 4 presents a suitability map of suitable and unsuitable lands that allows the understanding of attainable grown of JCL in certain regions.
We can see the geographical distribution of estimated areas under high potential category exhibited higher proportions of land extending towards coastal areas, mainly land adjoining the Gulf and Caribbean coasts, and to a lesser proportion, land adjoining the Pacific region. Interestingly, medium potential regions are positioned in greater proportion to the North of Mexico.
Mexico’s territorial extension estimated with “high potential”, “medium potential” and “low potential” represent 95% of the national territory (
Table 10), whereas “high potential” and “medium potential” represents 82.4%.
These findings are not entirely consistent with the incipient bibliographic data available for Mexico, such as the case reported by [
32], in which they reported 6,089,023 hectares for two suitability classes (high, and medium). Based on the GIS approach applied, we estimated nearly 92.5 million ha. It is very reasonable to think that the divergence from that study is of methodological nature, although the process of assigning land suitability classes was not explained in the referred study. On the other hand, we detected a significantly higher value for medium suitable land in the northern region of Mexico, where arid lands, bare land and shrubland are present and they could be used to grow JCL, without a great water supply because its cultivation subjected to an irrigation system, tends to present an increase in yield [
70]. We also obtained a limited high-potential suitable land towards West, Central, Gulf, and Southern regions with the exception of the Yucatan Peninsula.
Based on the two scenarios analyzed and the assessment criteria applied on GIS-based AEZ land evaluation, the available land for JCL cultivation in Mexico is reduced. For the first scenario,
Table 11 and
Table 12 presents the results of AHP and
Table 13 show that the analysis is acceptable because CR has a value less than 0.1.
In contrast with previous estimations in our AZ, the AEZ projections clearly demonstrates that, after the consideration of restrictions, the potential areas for growing JCL are reduced by about 40% in scenario 1 (less restrictive conditions), Mexico’s territorial extension estimated with “high potential”, “medium potential” and “low potential” represent 57.32% of the national territory (
Table 14).
The highest percentage is in “medium potential” with 47%, covering mainly the northern states of Mexico.
Figure 5 illustrates the spatial distribution of the land areas available for JCL cultivation under the perspective of this same scenario.
Additionally, the map of
Figure 5 shows a comparison between the land areas available pattern obtained for the scenario 1 and preexisting JCL plantations reported in different Mexican studies and located according to authors criteria in high suitable potential lands. We overlaid geographical points where it has been described that JCL grows; 406 points correspond to living fences, common gardens, plant nurseries and wild populations; 68 points correspond to experimental and commercial plantations; 306 points were none of the previous, and were located mainly in Baja California, Durango, Chiapas, Colima, Guerrero, Hidalgo, Jalisco, Michoacan, Morelos, Nuevo Leon, Oaxaca, Puebla, Quintana Roo, Sinaloa, Sonora, Tabasco, Tamaulipas, Veracruz and Yucatan [
63,
71,
72,
73,
74,
75,
76,
77,
78]. Based on our data and method applied it is detected that the JCL plantations could be relocated to medium available land areas.
On the other hand, in scenario 2 (with more restrictive conditions), Mexico’s territorial extension estimated with “high potential” and “medium potential” represent only 15.3% of the national territory (
Table 15).
Figure 6 illustrates the spatial distribution of land areas available for JCL cultivation under more restrictive conditions. Interestingly, lands with “low potential” do not appear, because they overlapped with other committed land cover/land use areas like forest, jungle, mangrove, agriculture, cultivated grassland and those restricted in accordance with national government regulation, environmental policy that limits land use, and energy policies such as the Law on the Promotion of Bioenergy Production and Sustainable Development. On the other hand, a notable percentage of land with “high potential” and “medium potential” areas for JCL cultivation were vulnerable to both flooding and drought risk, in addition to freeze hazards and vulnerability to climate change. Also, the length of frost duration is greater for medium potential lands. Finally, the total estimated area in AZ analysis decreased sharply after adjustments based on the AEZ analysis to around of 84%.
Turning to the analysis of extreme weather events that may damage or have a negative effect on seed yield of JCL, and linked to the effect of a more restrictive scenario, we explored the spatial distribution of land availability for JCL in the scenario 2. Notwithstanding the restrictions, we observed that all the federal states of Mexico present sites with “high potential” and “medium potential” (
Table 16), with a total estimated area nearly 92.5 million ha and a significantly higher value for medium suitable land (81.99%) in the northern region of Mexico and a limited “high potential” and “low potential” suitable land (18.01%) towards West, Central, Gulf, Southern and Yucatan Peninsula regions. A data comparation with study reported by [
32], allowed to examine in more detail the methodological differences and identify areas with greater portion of available sites.
Lastly, it is convenient to analyze the accessibility of roads and energy infrastructure, because this factor can help reduce JCL feedstock transportation costs in these regions. The consideration of socioeconomic dimensions in the selection of candidate sites for the cultivation and exploitation of this inedible oilseed crop became even more relevant. This more detailed analysis of the local potentials enables better planning of agroenergy chain sustainability.
When reviewing the results of AHP to determinate the influences of distance to road networks, gas stations, power generation plants and transportation infrastructure from the socioeconomic parameter on JCL cultivation for scenario 2, we can observe that judgments selected in
Table 17 and
Table 18 are consistent and acceptable because CR has a value less than 0.1 (
Table 19).
Figure 7 also shows the spatial distribution of the suitable and available lands that have greater closeness to communication and energy infrastructure. It was recognized that high potential lands have greater proximity than medium potential lands to roads, gas stations, power generation plants and transportation infrastructure with radius of 30 km. So, we calculated Euclidean distance using vector layers [
79]. The proximity of a road network is a very important criterion in site suitability analysis, so the need for transportation access should be considered. The incorporation of these socioeconomic criteria enabled us to keep the proposed areas, which were associated with the best regions discussed by [
22].
Additionally, the results of several reports about JCL studies in Mexico showed that technical and socioeconomic factors have limited the success of biodiesel projects and profits for farmers. This is due to inadequacies for the following: the establishment of a production chain; the structured production of raw material, recollection of fruit, commercialization and distribution of the final product, in this case, biodiesel, along with byproducts [
80,
81,
82,
83,
84,
85]. For this reason, the introduction of these parameters can help promote a social value or value chain for distribution of the raw material and distribution of biodiesel produced from oil obtained from the JCL seed. Ultimately, the analysis of economic and social information can impact the supply chain (e.g., proximity to transportation or fuel and energy supply) for creating and sustaining competitive advantages that contribute to biodiesel project profitability.
Conforming to several studies, the incorporation of environmental and socioeconomic factors and criteria, as well as detailed data of those factors for choosing land allocation for biomass energy crop cultivation, contribute to the sustainability of biofuel production [
21,
22]. Our findings from the AZ and AEZ mapping for JCL offer the opportunity to understand both risks and opportunities in sustainable cultivation and exploitation of this energy crop in Mexico, and to promote a successful biodiesel market and local development of communities where it is cultivated through the creation of jobs and well-being. The findings in this study concerning estimates of available areas for JCL cultivation also help avoid those susceptible to risk of extreme weather events.
The integration of GIS-MCDA on the analysis of suitability and availability land for the growth of JCL allows us to get closer to projections related with technical potential of JCL as source for biodiesel production in Mexico. For instance, if we decide selecting candidate locations for JCL inedible oilseed crop cultivation in Mexico under the perspective of scenario 2, we could get a more realistic situation for sustainable production of biodiesel because:
- (1)
Some 5,331,477 hectares from available land with “high potential” was projected
- (2)
Valuable information that integrates aspects related with value chain of raw materials, such as proximity of the road and transportation infrastructure was considered.
- (3)
It is known that 70.48% of total available estimated area is affected by erosion (around of 3.57 million hectares)
- (4)
Principally, there is no competition with food or animal feed production, while considering biodiversity conservation.
- (5)
Finally, we consider an oil yield of 1892 L ha
−1 [
86]; a density of 901–922 kg/m
3 [
87]; a calorific value of the oil 39.5 MJ/kg [
88] and a biodiesel production yield of 96% [
89]. With this data, the biodiesel production potential could be estimated in 9.683 Mm
3 biodiesel/year, which is equivalent to 344.636–352.669 Giga J/year. With this biodiesel production potential, Mexico would become one of the top five producers in the world of this biofuel and the most positive aspect is that it would be through the use of areas that meet sustainability criteria [
5].
Non-edible biofuel crops are expected to use lands that are largely unproductive and those that are located in degraded forests [
90], and/or the largest amount of suitable and potentially available land with arid and semiarid conditions [
91]. In our study, we found that the northern part of Mexico exhibits arid (desert) and semiarid characteristics; it is the region with predominantly localized availability of land with a medium suitability level for JCL cultivation. In Mexico, there is currently no consensus about better land allocation for JCL cultivation, and a persistent attentiveness to benefit from its multi-dimensional potentials exists. The GIS-based approach was applied to allow project-level analyses or decision-support beyond the ‘site-searching’ process for investors, policy makers and prospective developers who wish to perform a techno-economic study using site specific inputs, and consider the methodology of this study, with the aim of promoting the bioenergy industry in any country in the world. Alternatively, several studies show that JCL has the ability to be employed for dry land reforestation because it is helpful for restoration of degraded ecosystem, to alleviate soil and degradation [
92,
93,
94]. In this sense a comprehensive promotion of JCL cultivation can be planned in regions like southeastern Mexican states challenged with a high rate of change in its ecosystems and land use in the last 10 years, with increments in the incidences of deforestation processes, forest conversions to grassland and slash-burning practices [
95,
96,
97].
Finally, to validate the consistency of the results we carried out a visual inspection of the estimated areas of the scenario 2, we compared (through overlay operations) Google Earth’s high-resolution data and food crop SPOT satellite data provided by [
50], which, pertain to vector layer/SPOT imagery from Spring-Summer 2018 and field work (1 m spatial resolution). This verification was performed using a random sample of 927 pixels, a 95% confidence level and a 3% margin of error. Additionally, Kappa Coefficient (k) was calculated in accordance with Equation (8). In
Table 20 we present the confusion matrix. The value k represents a very good concordance [
98]:
where
r is the number of rows in error matrix; N is the total number of pixels observed;
is the number of observations in row
i and column
i;
is the total number of observations in row I;
is the total number of observations in column I; k = 1 indicates perfect agreement.
After visual inspection, it was found that nearly the whole feasible space analyzed for scenario 2 showed consistency, and, the regions categorized as “medium potential” presented a better level of confirmation, followed by the regions categorized as “high potential”.
4. Conclusions
The use of AHP was integrated with GIS application environment to assess land suitability and availability for “high potential”, “medium potential” and “low potential” to cultivate JCL in Mexico, combining agroclimatic criteria, land cover/land uses, soil type, extreme weather events and socioeconomic information, allowing the identification of suitable and available lands where this inedible oilseed crops can grow in a more sustainable way while avoiding competition with food or animal feed production, and considering biodiversity conservation, promoting the biomass supply chain, and addressing climate-related extreme weather event risks to crop production. So, a GIS approach is beneficial by including other key factors that affect its sustainable plantation, which improves land allocation for biomass JCL cultivation and provides reliable data for preliminary planning of biodiesel production.
The result of the MCDA analysis for AEZ (in both scenarios) indicates that around of 82% of the area estimated in Mexico has a “medium potential”. Important extensions of land with medium potential sites for JCL cultivation were found in the northern part of Mexico corresponding to 53.88% of the area estimated, in states such as Chihuahua, Coahuila and Sonora. We consider that the scenario 2 is the most important analysis because it suggests the guarantee of the food security, ecosystem conservation and the reduction land use change. So, in this scenario 15.3% of Mexican territory is available for JCL production. Overall, our findings focused on producing a preliminary study that aggregated information supporting regional and national planning of JCL cultivation in Mexico. Future studies could integrate indicators about other social externalities like harvesting and transportation costs. Finally, the visual images of the sample areas inspected (using high resolution satellite data), allowed us to observe that within the areas estimated for JCL cultivation, there were marginal areas (i.e., abandoned lands) that were previously dedicated to the cultivation of food crops, but that currently do not produce. Related to this, it is also invaluable to acquire the most updated reference data and perform field visits to confirm the availability of land.
Although, further research is recommended, the calculated potential of biodiesel production in Mexico though the proposed methodology resulted in 9000 million liters which implies that it would become one of the leading production countries in the world of this biofuel, with the additional advantage of being located in a strategic geographical position next to the major consumer of this product, the United States of America. Future research should be oriented on data quality and model improvement, including enhancement of data sampling and enhanced selection of predictive variables.