Thickness Optimization and Photovoltaic Properties of Bulk Heterojunction Solar Cells Based on PFB–PCBM Layer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Device Preparation
2.2. Characterization
3. Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tahir, M.; Gul, S.; Wahab, F.; Said, S.M. Photovoltaic effect on the microelectronic properties of perylene/p-Si heterojunction devices. J. Mater. Sci. Mater. Electron. 2019, 30, 19463–19470. [Google Scholar] [CrossRef]
- Islam, Z.U.; Tahir, M.; Syed, W.A.; Aziz, F.; Wahab, F.; Said, S.M.; Sarker, M.R.; Md Ali, S.H.; Sabri, M.F.M. Fabrication and photovoltaic properties of organic solar cell based on zinc phthalocyanine. Energies 2020, 13, 962. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Gao, J.; Hummelen, J.C.; Wudl, F.; Heeger, A.J. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 1995, 270, 1789. [Google Scholar] [CrossRef] [Green Version]
- Padinger, F.; Rittberger, R.S.; Sariciftci, N.S. Effects of postproduction treatment on plastic solar cells. Adv. Funct. Mater. 2003, 13, 85–88. [Google Scholar] [CrossRef]
- Charles, U.A.; Ibrahim, M.A.; Teridi, M.A.M. Electrodeposition of organic–inorganic tri-halide perovskites solar cell. J. Power Sources 2018, 378, 717–731. [Google Scholar] [CrossRef]
- Ade, H. Characterization of organic thin films with resonant soft X-ray scattering and reflectivity near the carbon and fluorine absorption edges. Eur. Phys. J. Spec. Top. 2012, 208, 305–318. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Zhang, Z.-G.; Xue, L.; Min, J.; Zhang, J.; Wei, Z.; Li, Y. All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%. Adv. Mater. 2016, 28, 1884–1890. [Google Scholar] [CrossRef]
- Günes, S.; Neugebauer, H.; Sariciftci, N.S. Conjugated polymer-based organic solar cells. Chem. Rev. 2007, 107, 1324–1338. [Google Scholar] [CrossRef]
- Yun, T.W.; Sulaiman, K. Fabrication and morphological characterization of hybrid polymeric solar cells based on P3HT and inorganic nanocrystal blends. Sains Malaysiana 2011, 40, 43–47. [Google Scholar]
- Facchetti, A. Polymer donor-polymer acceptor (all-polymer) solar cells. Mater. Today 2013, 16, 123–132. [Google Scholar] [CrossRef]
- Kan, B.; Zhang, Q.; Li, M.; Wan, X.; Ni, W.; Long, G.; Wang, Y.; Yang, X.; Feng, H.; Chen, Y.; et al. Solution-processed organic solar cells based on dialkylthiol-substituted benzodithiophene unit with efficiency near 10%. J. Am. Chem. Soc. 2014, 136, 15529–15532. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.Y.; Chen, W.; Dou, L.; Chang, W.H.; Duan, H.S.; Bob, B.; Li, G.; Yang, Y. High-performance multiple-donor bulk heterojunction solar cells. Nat. Photonics 2015, 9, 190–198. [Google Scholar] [CrossRef]
- Scharber, M.C. On the efficiency limit of conjugated polymer:fullerene-based bulk heterojunction solar cells. Adv. Mater. 2016, 28, 1994–2001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brabec, C.J.; Zerza, G.; Cerullo, G.; De Silvestri, S.; Luzzati, S.; Hummelen, J.C.; Sariciftci, S. Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chem. Phys. Lett. 2001, 340, 232–236. [Google Scholar] [CrossRef] [Green Version]
- Mouĺ, A.J.; Bonekamp, J.B.; Meerholz, K. The effect of active layer thickness and composition on the performance of bulk-heterojunction solar cells. J. Appl. Phys. 2006, 100, 094503. [Google Scholar] [CrossRef]
- Slonecker, E.T.; Allen, D.W.; Resmini, R.G.; Rand, R.S.; Paine, E. Full-range, solar-reflected hyperspectral microscopy to support earth remote sensing research. J. Appl. Remote Sens. 2018, 12, 1. [Google Scholar] [CrossRef]
- Heeger, A.J. 25th anniversary article: Bulk heterojunction solar cells: Understanding the mechanism of operation. Adv. Mater. 2014, 26, 10–28. [Google Scholar] [CrossRef]
- Ćelić, N.; Pavlica, E.; Borovšak, M.; Strle, J.; Buh, J.; Zavašnik, J.; Bratina, G.; Denk, P.; Scharber, M.; Sariciftci, N.S.; et al. Factors determining large observed increases in power conversion efficiency of P3HT: PCBM solar cells embedded with Mo6S9-xIx nanowires. Synth. Met. 2016, 212, 105–112. [Google Scholar] [CrossRef]
- Lin, X.; Seok, J.; Yoon, S.; Kim, T.; Kim, B.; Kim, K. Morphological investigation of P3HT/PCBM heterojunction and its effects on the performance of bilayer organic solar cells. Synth. Met. 2014, 196, 145–150. [Google Scholar] [CrossRef]
- Lee, J.; Jung, Y.K.; Lee, D.Y.; Jang, J.W.; Cho, S.; Son, S.; Jeong, J.; Park, S.H. Enhanced efficiency of bilayer polymer solar cells by the solvent treatment method. Synth. Met. 2015, 199, 408–412. [Google Scholar] [CrossRef]
- Madsuha, A.F.; Krueger, M. Improved device performance stability of bulk-heterojunction hybrid solar cells with low molecular weight PCPDPTB. Synth. Met. 2017, 230, 73–78. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, X.; Sun, X.; Duan, C.; Wang, Z.; Liu, X.; Dong, S.; Huang, F.; Cao, Y. 4-Methylthio substitution on benzodithiophene-based conjugated polymers for high open-circuit voltage polymer solar cells. Synth. Met. 2019, 254, 122–127. [Google Scholar] [CrossRef]
- Muhammad, F.; Tahir, M.; Zeb, M.; Wahab, F.; Kalasad, M.N.; Khan, D.N.; Karimov, K.S. Cadmium selenide quantum dots: Synthesis, characterization and their humidity and temperature sensing properties with poly-(dioctylfluorene). Sens. Actuators B Chem. 2019, 285, 504–512. [Google Scholar] [CrossRef]
- Friend, R.H.; Gymer, R.W.; Holmes, A.B.; Burroughes, J.H.; Marks, R.N.; Taliani, C.; Bradley, D.D.C.; Dos Santos, D.A.; Brédas, J.L.; Lögdlund, M.; et al. Electroluminescence in conjugated polymers. Nature 1999, 397, 121–128. [Google Scholar] [CrossRef]
- Muhammad, F.; Tahir, M.; Zeb, M.; Kalasad, M.N.; Mohd Said, S.; Sarker, M.R.; Sabri, M.F.M.; Ali, S.H.M. Synergistic enhancement in the microelectronic properties of poly-(dioctylfluorene) based Schottky devices by CdSe quantum dots. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Muhammad, F.; Tahir, M.; Zeb, M.; Uddin, S.I.; Ahmed, S. Enhancement in the microelectronic properties of a PFB–CdSe quantum dots nanocomposite based schottky barrier diode. J. Electron. Mater. 2019, 48, 5169–5175. [Google Scholar] [CrossRef]
- McNeill, C.R.; Watts, B.; Swaraj, S.; Ade, H.; Thomsen, L.; Belcher, W.; Dastoor, P.C. Evolution of the nanomorphology of photovoltaic polyfluorene blends: Sub-100 nm resolution with X-ray spectromicroscopy. Nanotechnology 2008, 19, 424015. [Google Scholar] [CrossRef] [Green Version]
- Arias, A.C.; MacKenzie, J.D.; Stevenson, R.; Halls, J.J.M.; Inbasekaran, M.; Woo, E.P.; Richards, D.; Friend, R.H. Photovoltaic performance and morphology of polyfluorene blends: A combined microscopic and photovoltaic investigation. Macromolecules 2001, 34, 6005–6013. [Google Scholar] [CrossRef]
- Snaith, H.J.; Arias, A.C.; Morteani, A.C.; Silva, C.; Friend, R.H. Charge generation kinetics and transport mechanisms in blended polyfluorene photovoltaic devices. Nano Lett. 2002, 2, 1353–1357. [Google Scholar] [CrossRef]
- Sharma, G.D.; Shanap, T.S.; Patel, K.R.; El-Mansy, M.K. Photovoltaic properties of bulk heterojunction devices based on CuI-PVA as electron donor and PCBM and modified PCBM as electron acceptor. Mater. Sci. Pol. 2012, 30, 10–16. [Google Scholar] [CrossRef]
- Zhou, X.; Belcher, W.; Dastoor, P. Solar paint: From synthesis to printing. Polymers 2014, 6, 2832–2844. [Google Scholar] [CrossRef] [Green Version]
- Shafiee, A.; Salleh, M.M.; Yahaya, M. Determination of HOMO and LUMO of [6,6]-phenyl C61-butyric acid 3-ethylthiophene ester and poly (3-octyl-thiophene-2, 5-diyl) through voltametry characterization. Sains Malaysiana 2011, 40, 173–176. [Google Scholar]
- Li, G.; Shrotriya, V.; Yao, Y.; Yang, Y. Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene). J. Appl. Phys. 2005, 98, 043704. [Google Scholar] [CrossRef] [Green Version]
- Morvillo, P.; Bobeico, E.; Esposito, S.; Diana, R. Effect of the active layer thickness on the device performance of polymer solar cells having [60] PCBM and [70] PCBM as electron acceptor. Energy Procedia 2012, 31, 69–73. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Gangishetty, M.K.; Kelly, T.L. Effect of CH3NH3PbI3 thickness on device efficiency in planar heterojunction perovskite solar cells. J. Mater. Chem. A 2014, 2, 19873–19881. [Google Scholar] [CrossRef] [Green Version]
- Kavitha, N.; Chandramohan, R.; Valanarasu, S.; Vijayan, T.A.; Rosario, S.R.; Kathalingam, A. Effect of film thickness on the solar cell performance of CBD grown CdS/PbS heterostructure. J. Mater. Sci. Mater. Electron. 2016, 27, 2574–2580. [Google Scholar] [CrossRef]
- Sievers, D.W.; Shrotriya, V.; Yang, Y. Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells. J. Appl. Phys. 2006, 100, 114509. [Google Scholar] [CrossRef] [Green Version]
- Tan, F.; Li, T.; Wang, N.; Lai, S.K.; Tsoi, C.C.; Yu, W.; Zhang, X. Rough gold films as broadband absorbers for plasmonic enhancement of TiO2 photocurrent over 400–800 nm. Sci. Rep. 2016, 6, 33049. [Google Scholar] [CrossRef]
- Peet, J.; Kim, J.Y.; Coates, N.E.; Ma, W.L.; Moses, D.; Heeger, A.J.; Bazan, G.C. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat. Mater. 2007, 6, 497–500. [Google Scholar] [CrossRef]
- Foertig, A.; Rauh, J.; Dyakonov, V.; Deibel, C. Shockley equation parameters of P3HT: PCBM solar cells determined by transient techniques. Phys. Rev. B 2012, 86, 115302. [Google Scholar] [CrossRef] [Green Version]
- Janardhanam, V.; Ashok Kumar, A.; Rajagopal Reddy, V.; Narasimha Reddy, P. Study of current–voltage–temperature (I–V–T) and capacitance–voltage–temperature (C–V–T) characteristics of molybdenum Schottky contacts on n-InP (1 0 0). J. Alloys Compd. 2009, 485, 467–472. [Google Scholar] [CrossRef]
- Sze, S.M. Physics of Semiconductor Devices, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1981. [Google Scholar]
- Kumar, S.; Katharria, Y.S.; Kumar, S.; Kanjilal, D. Temperature-dependence of barrier height of swift heavy ion irradiated Au/n-Si Schottky structure. Solid. State. Electron. 2006, 50, 1835–1837. [Google Scholar] [CrossRef]
- Zeb, M.; Tahir, M.; Muhammad, F.; Khan, D.N.; Sayyad, M.H.; Said, S.M.; Wahab, F. Perylene tetracarboxylic dimide: Characterization and its role in the electrical properties of an Ag/N-BuHHPDI/PEDOT:PSS/p-Si heterojunction device. J. Electron. Mater. 2019, 49, 395–401. [Google Scholar] [CrossRef]
- Rhoderick, E.H.; Williams, R.H. Metal-semiconductor contacts. IEEE Xplore 1982, 129, 1–14. [Google Scholar] [CrossRef]
- Ahmad, Z.; Sayyad, M.H. Extraction of electronic parameters of Schottky diode based on an organic semiconductor methyl-red. Phys. E Low Dimens. Syst. Nanostruct. 2009, 41, 631–634. [Google Scholar] [CrossRef]
- Tahir, M.; Hassan Sayyad, M.; Wahab, F.; Aziz, F.; Ullah, I.; Khan, G. Enhancement in electrical properties of ITO/PEDOT: PSS/PTCDA/Ag by using calcium buffer layer. Phys. B Condens. Matter 2015, 466–467, 38–43. [Google Scholar] [CrossRef]
- Gupta, A.; Ali, A.; Gao, M.; Singh, T.B.; Bilic, A.; Watkins, S.E.; Bach, U.; Evans, R.A. Small molecules containing rigidified thiophenes and a cyanopyridone acceptor unit for solution-processable bulk-heterojunction solar cells. Dye. Pigment. 2015, 119, 122–132. [Google Scholar] [CrossRef]
Sample# | Film Thickness (nm) | Voc (V) | Jsc (mA/cm2) | Pmax (mW/cm2) | FF (%) | PCE (%) |
---|---|---|---|---|---|---|
1 | 120 | 0.87 | 5.0 | 2.14 | 49 | 2.13 |
2 | 140 | 0.89 | 5.2 | 2.26 | 49 | 2.26 |
3 | 160 | 0.91 | 5.4 | 2.44 | 50 | 2.45 |
4 | 180 | 0.93 | 5.9 | 2.88 | 53 | 2.90 |
5 | 200 | 0.92 | 5.6 | 2.58 | 50 | 2.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uddin, S.I.; Tahir, M.; Aziz, F.; Sarker, M.R.; Muhammad, F.; Nawaz Khan, D.; Hamid Md Ali, S. Thickness Optimization and Photovoltaic Properties of Bulk Heterojunction Solar Cells Based on PFB–PCBM Layer. Energies 2020, 13, 5915. https://doi.org/10.3390/en13225915
Uddin SI, Tahir M, Aziz F, Sarker MR, Muhammad F, Nawaz Khan D, Hamid Md Ali S. Thickness Optimization and Photovoltaic Properties of Bulk Heterojunction Solar Cells Based on PFB–PCBM Layer. Energies. 2020; 13(22):5915. https://doi.org/10.3390/en13225915
Chicago/Turabian StyleUddin, Sayed Izaz, Muhammad Tahir, Fakhra Aziz, Mahidur R. Sarker, Fida Muhammad, Dil Nawaz Khan, and Sawal Hamid Md Ali. 2020. "Thickness Optimization and Photovoltaic Properties of Bulk Heterojunction Solar Cells Based on PFB–PCBM Layer" Energies 13, no. 22: 5915. https://doi.org/10.3390/en13225915
APA StyleUddin, S. I., Tahir, M., Aziz, F., Sarker, M. R., Muhammad, F., Nawaz Khan, D., & Hamid Md Ali, S. (2020). Thickness Optimization and Photovoltaic Properties of Bulk Heterojunction Solar Cells Based on PFB–PCBM Layer. Energies, 13(22), 5915. https://doi.org/10.3390/en13225915