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Abstract: A balanced combination of heat flows creates suitable conditions for thermal
comfort—a factor contributing to the quality of the internal environment of buildings. The presented
analysis of selected thermal-technical parameters is up-to-date and suitable for verifying the
parameters of building constructions. The research also applied a methodology for examining
the acoustic parameters of structural parts of buildings in laboratory conditions. In this research,
selected variant solutions of perimeter walls based on prefab cross laminated timber were investigated
in terms of acoustic and thermal-technical properties. The variants structures were investigated in
laboratory but also in model conditions. The results of the analyses show significant differences
between the theoretical or declared parameters and the values measured in laboratory conditions.
The deviations of experimental measurements from the calculated or declared parameters were not
as significant for variant B as they were for variant A. These findings show that for these analyzed
sandwich structures based on wood, it is not always possible to reliably declare calculated values
of thermal-technical and acoustic parameters. It is necessary to thoroughly examine such design
variants, which would contribute to the knowledge in this field of research of construction systems
based on wood.

Keywords: acoustic; cross laminated timber; CLT; prefab construction; thermal; wood; wood construction

1. Introduction

The use of wood in all areas of life is almost as old as humanity itself. Wood, being one of the
oldest construction materials, is by no means obsolete for use in construction. In recent decades,
wood as a construction material has become increasingly popular among architects, designers and
potential investors [1,2]. The great potential of this construction material is the result of development
in manufacturing and of the construction of wood-based buildings [3,4]. Whether independently or in
combination with concrete, glass or steel, wood can be adapted to all types of construction projects,
such as new constructions or reconstructions, residential or non-residential, low-rise or high-rise
buildings [5–7].
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A quality spatial concept of a wooden building can be understood as an interaction between defined
requirements in the design phase [8,9], specification of materials and implementation of the building in
accordance with the design solution [10–12]. The requirements of wood-based constructions in design
and implementation are closely related to the properties of wood and wood-based materials [13].

Wooden houses and wooden constructions have accompanied us since time immemorial. Wood has
excellent physical, technological, aesthetic and utility properties. In terms of the positive properties of
wood, wooden houses are very popular and allow the building of an economically and environmentally
friendly and modern building with long life and durability [14–16]. However, when choosing materials
for wooden buildings, it is necessary to take into account their thermal insulation properties in the
context of the subsequent operation of buildings and their energy efficiency [17–20]. The choice of
materials and technologies is not easy and, in addition to the technical parameters that determine the
suitability of their use in a particular type of construction, the financial aspect and, to a large extent,
the ecological thinking of the investor play a role [21–24]. Structural systems of wooden buildings are
very diverse in today’s houses, not only in terms of construction and insulation materials used, but also
in terms of the technological equipment of the house, such as heat pumps, controlled ventilation or
photovoltaics. Wooden buildings generally have low acoustic comfort during use, so it is necessary to
focus on the acoustic spectrum when designing and implementing wooden buildings, so it is necessary
to design the composition of structures and select materials to eliminate these disadvantages. Its choice
depends on the chosen construction system [25–27]. In addition to classic materials, such as panels with
mineral insulation clad with large-format boards (OSB, DHF, plasterboard and gypsum fiber boards),
ecological materials come to the fore, such as hemp and straw insulation, sheep fleece, wood fiber
insulation or blown paper-based insulation and wood. An alternative to sandwich constructions are
massive constructions created from cross-glued cross laminated timber (CLT) formats, as they are
made of wood and are increasingly used for the construction of modern wooden buildings. In addition
to the standard requirements, wood-based houses should also meet the requirements for healthy
living—i.e., contain as few materials containing pollutants as possible. Little attention is paid to the
acoustic solution of the building, which is a mistake. The individual compositions of the structure
should insulate the noise well, and at the floor level also dampen the impact noise [28–31].

The development of architecture and increased attention focused on the issue of technical assurance
of the quality of the indoor environment required the formulation of acoustic requirements focused
on the indoor environment with the users of persons [32–34]. An important finding is the effects of
excessive noise on humans, which differ according to the activity performed by a person at a given time
and from individual characteristics, i.e. from mental and physical mood [35–37]. From the point of
view of noise protection, the insulating properties of the building structure in particular are important
for the structure [38].

In addition to fire resistance, one of the sensitive places of wood-based buildings is
sound insulation. It is well known that conventional wooden structures without appropriate
modifications have worse sound-insulating properties than solid silicate-based structures [39].
Wood and wood-based materials are in some respects considered to have excellent acoustic
properties (absorption, density, speed of sound propagation, etc.) [40]. From the point of view of
the use of wood in building constructions, not all acoustic properties of wood are positive and desirable.
Therefore, a deeper examination of the use of wood in building structures is needed. With the correct
use of these properties in the overall composition of the structure, with the knowledge of the principle
of sound propagation and construction principles, their acoustic properties, comparable to some silicate
structures, can be significantly improved by effective measures [41]. Multi-layer walls of wooden
buildings can, under certain circumstances, achieve the required acoustic parameters better than
traditional masonry structures. In addition, unlike masonry structures, it is possible to influence these
properties much more. While in masonry it depends practically only on the thickness and weight of
the structure, in wooden construction it is the type of individual layers, their mutual arrangement and
attachment, their distance, the distance of load-bearing parts of the structure and the size and filling of
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cavities between them [42]. This task is currently being pursued by several research and development
institutions or manufacturers of building materials and structures in the European Union and around
the world.

This research was a response to the need to verify the actual values of selected thermal-technical
and acoustic parameters of construction solutions based on wood by confronting them with the
calculated or declared values stated by manufacturers and providers of construction systems based on
prefab cross laminated timber panels. In this research, various variant solutions of perimeter walls
based on prefab cross laminated timber were investigated in terms of selected properties.

2. Materials and Methods

2.1. Description of Investigated Structures

Both of the examined design variants had the same supporting external wall system from prefab
cross laminated timber panels.

CLT (cross laminated timber) is a construction product made of solid wood, made by transverse
gluing at least three layers of single-layer laminated boards [43,44]. CLT panels are standardly
produced in dimensions up to a width of approximately 3 m and a length of 16 m, and in
thicknesses from 60 to 400 mm. Environmentally friendly, formaldehyde-free adhesives are used in
the production (for example, various types of natural or synthetic resins, etc.). The panels are suitable
for the construction of both interior and exterior walls, as well as for the construction of ceilings and
roofs. The wide range of dimensions is compact and according to the requirements of the statics, it is
possible to choose the appropriate size and thickness of the panels without the use of other supporting
structures. The surface layer is produced in the appropriate quality by sorting the material directly
during production [45,46]. In the case of requirements of the visible surface, it is not necessary to
additionally install a visible plywood, joint or bioplate. When finished, according to the project,
processed panels are transported to the construction site, where a professional company will build a
rough construction of the house in a few days.

The essence of the compared constructions was the same load-bearing element made of
prefabricated CLT panels. The first variant of the perimeter wall was insulated with EPS-based
insulation (Table 1). The second variant used thermal insulation based on wood fiber as a more
environmentally friendly alternative compared to the EPS thermal insulation (Table 2). The size of
the investigated structures (2.5 × 2 m) was adapted to the climate chamber where the simulations
were performed. Basic descriptive statistical methods and the non-parametric statistical Student t-test
were used to analyze data [47]. The Student t-test was used to compare the examined data from the
measurements of the variants in laboratory conditions. Statistical analyses were performed using
STATISTICA 12 software.

Table 1. Material composition–variant A.

Layer Name
Volumetric

Weight
ρ (kg.m3)

Layer Thickness
d (mm)

Thermal
Resistance

Rd (m2.K/W)

Thermal
Conductivity

Coefficient
λd (W/(.m.K))

Diffusion
Resistance

Factor
µ (-)

CLT 470 100 0.909 0.11 40–70

Material for gluing
insulation panels 15–25 - - 0.035 28

Thermal
insulation—EPS 13.5–18 200 5.25 0.038 20–40

Construction glue 1400 2.5 - 0.45 25

Plastering 1200 2.5 - 0.5 25

Additional anchoring material

Notes: CLT—Cross laminated timber.
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Table 2. Material composition–variant B.

Layer Name
Volumetric

Weight
ρ (kg.m3)

Layer Thickness
d (mm)

Thermal
Resistance

Rd (m2.K/W)

Thermal
Conductivity

Coefficient
λd (W/(.m.K))

Diffusion
Resistance

Factor
µ (-)

CLT 470 100 0.909 0.11 40–70

Material for gluing
insulation panels 15–25 - - 0.035 28

Thermal
insulation—wood

fiber
230 200 4.34 0.046 5

Construction
adhesive 1400 2.5 - 0.45 25

Plastering 1200 2.5 - 0.5 25

Additional anchoring material

Notes: CLT—Cross laminated timber.

2.2. Methods of Assessment of Selected Thermal-Technical Parameters

The investigated constructions were compared by means of the U value where this value was
determined on the basis of data obtained from laboratory measurements and Formula (1) according to
the standard STN 73 0540 [48].

U =
q

θai − θae

[
W/m2K

]
(1)

Notes: q-heat flow density (W/m2); θai − θae—temperature difference between inner and outer
surface (◦C).

The ALMEMO5690-2 recording set (Ahlborn) was used to obtain data from laboratory
measurements, with appropriate sensors for temperature, temperature flow, humidity and air flow.
Laboratory measurements were simulated in a climate chamber (Figures 1–5). The climate chamber
shown in Figure 1 is visualized using SketchUp 2019 software. The boundary conditions of the
simulations were chosen according to EN ISO 10456 [49].
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To compare the data obtained by measurements in laboratory conditions, the structures were
also subjected to a computational model based on STN 73 0540 [48]. The computational boundary
conditions were chosen to be comparable with laboratory simulations to maintain the validity of the
comparison. Formula (2) was used in the computational models.

U =
1

Ri + R + Re

[
W/m2K

]
(2)

Notes: Ri—thermal resistance of the inside (m2K/W); Re—thermal resistance of the outside (m2K/W);
R—thermal resistance of construction (m2K/W).

2.3. Methods of Measuring and Evaluating Acoustic Parameters

Measurement of sound reduction index (examined variants) was realized according international
standard ISO 16283-1 [50]. For measurement, a low frequency method that is suitable for rooms with
volume less than 25 m3 was used.

A dodecahedron loudspeaker Norsonic Nor276 with power amplifier Norsonic Nor280 that
generates white noise (Figure 6) was used as a noise source. Sound analyzer class 1 Norsonic Nor140
was used for measurement. NorBuild software was used for calculation.
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Measurement consists of measurement of sound pressure level in source room and receiving
room during the active loudspeaker. Measurements were realized with two positions of loudspeaker.
Sound pressure level was measured in room corners in source and receiving rooms in four positions
0.3–0.4 m from the corners. Background noise level was also measured in the receiving room.
Reverberation time in the receiving room was also measured and calculated according to ISO
3382-2 [51].

For the comparison of measurements that were performed in laboratory conditions, the so-called
declared or calculated values were also determined. The calculated values were determined on the
basis of [52,53]. Such a comparison was desirable in order to verify and compare the measured values
with the so-called declared ones. For these purposes, in accordance with the used standards and
procedures, the boundary conditions of laboratory measurements and computational models were
unified to ensure validity.

3. Results and Discussion

3.1. Analysis of Selected Thermal-Technical Parameters of the Examined Design Variants

Boundary laboratory conditions were simulated for 12 h and the individual values are shown in
Figures 7 and 8.Energies 2019, 12, x FOR PEER REVIEW 8 of 15 
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The following U values were found in the laboratory environment: variant A 0.064 ± 0.009 W/m2K,
variant B 0.114 ± 0.009 W/m2K (Table 3). The difference between the constructions was 43.86% and
was statistically significant (p < 0.0001).

Table 3. Steady state data U values.

U Value
(W/m2K)

U Value
(W/m2K)

Variant A Variant B

Average 0.064 0.114
± std 0.009 0.009
Min 0.046 0.098
Max 0.081 0.137

Median 0.062 0.114
25th perc 0.056 0.108
75th perc 0.068 0.117

t-test * p < 0.0001 ***

Note: ***—p value summary, *—steady state temperature of samples.

Laboratory measurements were also compared by means of computational models where the
following U values were found: variant A 0.16 W/(m2.K), variant B U 0.18 W/(m2.K). The boundary
conditions of the calculation were as follows: variant A θ si = 19.33 ◦C, diffusion resistance
21.25 × 109 m/s, R = 6.043 m2.K/W; variant B θ si = 19.23 ◦C, diffusion resistance 21.25 × 109 m/s,
R 5.263 m2.K/W. The theoretical thermal transmittance through the structure for both variants is shown
in Figure 9.
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The differences between the computational simulations and the simulations in the laboratory
in terms of the investigated thermal-technical parameters were as follows: variant A 60%, variant
B 36.67%. The difference between the calculated variants of structures was 11.11% in terms of
evaluated parameters.

3.2. Analysis of Acoustic Parameters of the Examined Design Variants

Measured data was processed with the software NorBuild. Measured and calculated results are
shown in Figure 10. Evaluation is based on field measurement results obtained in one-third-octave
bands by an engineering method.



Energies 2020, 13, 5974 9 of 14
Energies 2019, 12, x FOR PEER REVIEW 10 of 15 

 

 

Figure 10. Measured and calculated results of acoustic analysis of both variants. 

4. Discussion 

The constant advancement and development of new types of structural systems for 

wood-based constructions raises new research questions. New composite materials and various 

hybrid constructions are increasingly coming to the fore. One of the alternatives is constructions 

realized through cross laminated timber (CLT). These buildings ultimately compete with common 

building materials and technical solutions. Wooden buildings undoubtedly have many benefits but 

also barriers that can be innovated and improved by systematic research and verification. In the field 

of research on CLT structures, there are several works [54–58] focused mainly on technical 

properties. Fire safety of wooden buildings is also a very important part of the research of several 

scientific works [59–61]. The mentioned works mainly verify the influence of fires on the static 

stability of buildings and safety as such. A more detailed analysis of the structural details of CLT 

buildings was the subject of research by Chang et al. [62] where they investigated the differences of 

thermal bridges in comparison with classical construction solutions. CLT constructions are in some 

ways specific because they combine traditional material with a modern approach to composite 

solutions. In this mentioned area, the uniqueness of this solution is also in the fact that it shows very 

positive properties in terms of moisture migration, which is confirmed by the scientific work of 

Dong et al. [63]. Our findings obtained during our analyses and simulations also agree with the 

statements and conclusions of the mentioned research. Last but not least, it is now important to 

monitor the financial and energy balance of buildings during use. This work has addressed this area 

[64–66]. Based on the analyses performed in the mentioned scientific works, it is possible to conclude 

that wood-based buildings have a favorable energy balance in comparison to traditional buildings 

based on traditional materials. These studies are also confirmed by our research. 

In addition to the fire resistance and energy efficiency of wood-based construction systems, one 

of the sensitive points of wood-based constructions is noise insulation. Therefore, the area is also 

given considerable attention acoustically in the context of wood-based constructions. The research 

work of Schoenwald et al. [67] within a multidisciplinary research project dealt with the 

investigation of acoustic properties of construction systems based on CLT prefabricated panels. The 

mentioned authors analyzed various variant solutions of floor and wall constructions of buildings. 

However, this work, unlike our scientific work, analyzed constructions by a different methodology. 

In this work, they investigated the effect of various methods as well as the possibilities of sound 

propagation through the structural details of the floor-wall contact. The conclusions show that the 

sound in these constructions spreads mainly directly through the structure on which it acts and only 

Figure 10. Measured and calculated results of acoustic analysis of both variants.

The sound reduction index of the red sample is 29 dB (R’w(C;Ctr) = 29(−2;−5)) and blue sample is
31 dB (R’w(C;Ctr) = 31(−1;−3)). We have to take into account that the partition element is not whole
with sample material. Due to this reason, we expect better sound reduction indexes. These values
we used are just for comparison of sound insultation. The blue sample reached better values for low
frequencies in one-third-octave bands from 100–250 Hz. A significant difference between the compared
samples can be observed up to approximately 500 Hz. These findings can be attributed to the fact
that these were sandwich inhomogeneous samples of structures and thus the propagation of acoustic
pressure at these frequencies is different in different materials.

According to [52,53], the so-called declared acoustic values of structures were determined for
comparison of measurements in laboratory conditions as follows: variant A (Rw = 36), variant B
(Rw = 38). By comparing laboratory measurements and calculated values, significant deviations were
found in both variants.

4. Discussion

The constant advancement and development of new types of structural systems for wood-based
constructions raises new research questions. New composite materials and various hybrid constructions
are increasingly coming to the fore. One of the alternatives is constructions realized through cross
laminated timber (CLT). These buildings ultimately compete with common building materials and
technical solutions. Wooden buildings undoubtedly have many benefits but also barriers that can
be innovated and improved by systematic research and verification. In the field of research on CLT
structures, there are several works [54–58] focused mainly on technical properties. Fire safety of
wooden buildings is also a very important part of the research of several scientific works [59–61].
The mentioned works mainly verify the influence of fires on the static stability of buildings and safety as
such. A more detailed analysis of the structural details of CLT buildings was the subject of research by
Chang et al. [62] where they investigated the differences of thermal bridges in comparison with classical
construction solutions. CLT constructions are in some ways specific because they combine traditional
material with a modern approach to composite solutions. In this mentioned area, the uniqueness of
this solution is also in the fact that it shows very positive properties in terms of moisture migration,
which is confirmed by the scientific work of Dong et al. [63]. Our findings obtained during our
analyses and simulations also agree with the statements and conclusions of the mentioned research.
Last but not least, it is now important to monitor the financial and energy balance of buildings during
use. This work has addressed this area [64–66]. Based on the analyses performed in the mentioned
scientific works, it is possible to conclude that wood-based buildings have a favorable energy balance
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in comparison to traditional buildings based on traditional materials. These studies are also confirmed
by our research.

In addition to the fire resistance and energy efficiency of wood-based construction systems, one of
the sensitive points of wood-based constructions is noise insulation. Therefore, the area is also given
considerable attention acoustically in the context of wood-based constructions. The research work
of Schoenwald et al. [67] within a multidisciplinary research project dealt with the investigation
of acoustic properties of construction systems based on CLT prefabricated panels. The mentioned
authors analyzed various variant solutions of floor and wall constructions of buildings. However,
this work, unlike our scientific work, analyzed constructions by a different methodology. In this
work, they investigated the effect of various methods as well as the possibilities of sound propagation
through the structural details of the floor-wall contact. The conclusions show that the sound in these
constructions spreads mainly directly through the structure on which it acts and only to a lesser extent
through the details or contacts of the structures. From a certain conclusion of this work we find a
parallel with our ideas, especially in the fact that it is not always possible to judge conclusions from
one method of research or on the basis of only declared and calculated values. Because it is under
laboratory conditions, different values than those declared are often demonstrated. From this point of
view, an even more detailed analysis of this construction system based on prefabricated CLT panels
is needed.

The work of the author Pérez [68] focused on the investigation and analysis of the acoustic
properties of CLT structures used in building structures. This work also examined wall structures
similar to our acoustic properties, also through a similar methodology. The conclusions of the work
show that the sound spreads in structures where CLT prefabricated elements are used and through
details, i.e., the joints of structures quite well. This means that it is necessary to prevent these
ways of penetrating vibrations, for example by inserting different absorbent materials. This author
states that absorbent materials at the joints can minimize vibration transitions in a significant way.
In accordance with these conclusions, we state that in our analysis of the CLT prefabricated panel
within the perimeter wall structure, we found that the paths where vibrations are transmitted are
minimized in the compositions we analyzed. If we compare this with other design solutions, such as
sandwich skeletal structures where there is a transmission of vibrations through the columns that
intersect in CLT structures, such a negative phenomenon does not occur.

The analysis of acoustic properties of structures based on CLT prefabricated panels was also
dealt with in the work of Di Bella et al. [69], Asdrubali et al. [70] and Pagnoncelli and Morales [71].
These works have a certain parallel in terms of certain knowledge in the field of determining the actual
acoustic parameters of CLT prefabricated elements. In principle, they agree that it is not always possible
to rely on the declared or calculated standard values of CLT-based structures in terms of their acoustic
parameters. It follows that it is necessary to take into account and examine the behavior of structures
in the laboratory and in-situ conditions, because such an examination at certain moments shows
different values than the standard ones. Our ideas and knowledge also agree with these conclusions,
because construction can behave differently in real conditions, which are influenced by a number of
factors. Therefore, it is not desirable to just consider the calculated values, which are not always able to
clearly take into account the surrounding conditions in specific situations. In addition, it is necessary
to take into account the fact that each building is a unique work with specific properties.

5. Conclusions

Wood constructions have an increasingly strong position globally and in Europe thanks to their
short constructions periods and better thermal-technical properties with comparable wall thickness.
In view of the advent of ever new construction systems, especially wood-based systems, it is necessary
to constantly explore this cloud. Therefore, the main goal of this research was focused on the
investigation of selected structures by means of simulation models in laboratory conditions and also the
structures were tested by means of computational models. The differences between the computational
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simulations and the simulations in the laboratory in terms of the investigated thermal-technical
parameters were as follows: variant A 60%, variant B 36.67%. The difference between the calculated
variants of structures was 11.11% in terms of evaluated parameters. In terms of acoustic properties,
variant A showed better properties than variant B. The analysis of the acoustic parameters of the
investigated variants also confirmed a significant difference between the declared and measured values.
The analyses presented in this research show some differences in the comparison of the investigated
states and computational models, therefore it is important to take into account several perspectives in
the future when determining the parameters of such types of structures. It is necessary to thoroughly
examine such design variants, which would contribute to cognition in this area of research into
wood-based constructions.
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