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Abstract: Capillary condensation phenomena are important in various technological and
environmental processes. Using molecular simulations, we study the confined phase behavior
of fluids relevant to carbon sequestration and shale gas production. As a first step toward translating
information from the molecular to the pore scale, we express the thermodynamic potential and
excess adsorption of methane, nitrogen, carbon dioxide, and water in terms of the pore’s geometric
properties via Minkowski functionals. This mathematical reconstruction agrees very well with
molecular simulations data. Our results show that the fluid molecular electrostatic moments are
positively correlated with the number of adsorption layers in the pore. Moreover, stronger electrostatic
moments lead to adsorption at lower pressures. These findings can be applied to improve pore-scale
thermodynamic and transport models.
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1. Introduction

Phase behavior of fluids under confinement is a key process for many natural phenomena and
engineering applications [1–7]. In porous media, this behavior is driven by capillary processes
that control the transport and thermodynamic properties of fluids. One example is capillary
condensation, the transition of a gas under tight confinement into a condensed phase at a pressure
lower than the bulk vapor pressure [8]. This phenomenon is important for estimating hydrocarbon
reserves in unconventional reservoirs [1,9] and understanding geologic carbon storage [1,2].
However, translating the impacts of capillary condensation across length- and timescales remains an
open area of research [10]. The continuum-scale models become invalid in micropores, and molecular
simulations become too expensive to be applied to entire pore networks. In this paper, we explore
how integral geometry can effectively be applied as a scale translation approach. We show that
a mathematical framework based on Minkowski functionals, using information about the pore
morphology, can accurately describe the adsorption behavior of real fluids under tight confinement.

The mechanism behind capillary condensation has been the subject of numerous
investigations [1,11–13]. This mechanism is strongly influenced by both fluid–fluid interactions and
fluid–solid interactions. First, a layer of adsorbed gas forms on the pore walls as a second-order
phase transition. In order for this layer of adsorbed gas to transition into a pore-filling condensed
phase, the fluid needs to form a liquid bridge in the pore. This formation requires overcoming
a nucleation barrier before capillary condensation proceeds as a first-order phase transition.
Desgranges and Delhommelle [13] explored the nucleation of liquid bridges and vapor bubbles
in confined carbon dioxide (CO2) and discovered a negative relationship between the chemical
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potential of coexistence and the fluid–wall interaction. Due to the high density of the condensate,
once capillary condensation occurs, the pore can store significantly more fluid molecules. Chen et al. [9]
suggested that unconventional gas reserves could be up to six times larger than previously
believed because of capillary condensation. In an attempt to better represent phase behavior under
confinement, Yang et al. [10] proposed a modified Kelvin equation that reproduces experimental data
for the suppressed capillary condensation pressure of various fluids, including CO2 and hydrocarbon
mixtures. Their decomposition showed that the most significant contribution in the shift comes
from the fluid–wall interaction. Singh and Mehta [14] studied how two models for the shale solid
matrix—graphite and mica—influence capillary condensation in n-alkanes. They showed that mica
confinement shrinks the phase envelope of alkanes more than graphite confinement.

The shale solid matrix is heterogeneous and its composition varies widely from one formation
to another. Clay minerals, kerogen, and quartz comprise the majority of tight shale. Quartz has
been reported to constitute between 30% and 70% of the solid matter of shale [15,16]. Therefore, it is
often employed to model shale rock in both experimental and computational studies [1,11,12,17–21].
Capillary condensation—and more broadly adsorption behavior—in quartz pores has been explored for
multiple fluids, including water (H2O) [22–24], CO2 [12,13,20,21], methane (CH4) [20,21], and nitrogen
(N2) [17,18,25], as common gases found in unconventional gas formations. Burgess et al. [12] reported
on adsorption/desorption hysteresis loops for CO2 in Vycor and connected the hysteresis critical
temperature to capillary condensation theory. They also showed that confinement shrinks the
phase envelope. Morishige et al. [17,18] employed the volumetric approach to study gas adsorption,
including N2 and CO2, in silica-based materials. They showed that the hysteresis loop of capillary
condensation disappears at higher temperatures, but the point where this occurs is different from the
pore critical temperature of the fluid. Raju et al. [26] computationally studied the phase transition
of water in graphene nanocapillaries and carbon nanotubes. They related multilayer formation to
hydrogen bonding patterns and identified multiple phase transition regimes leading to different
crystal structures of confined ice. Kim et al. [27] employed atomic force microscopy to probe the
validity of Kelvin’s equation for water between a quartz microscope tip and a mica surface, finding
that this thermodynamically derived expression holds for nanopores if the curvature dependence
of the surface tension is appropriately accounted for. Water in silica nanopores was also examined
by Bonnaud et al. [24]. These researchers, via grand canonical Monte Carlo (GCMC) simulations,
observed the adsorption/desorption hysteresis loop and its collapse with smaller pore size. They
also employed molecular dynamics (MD) simulations to show that the self-diffusion coefficient of
water decreases under confinement, because water molecules adopt an H-down orientation due to the
hydrophilic tendency of silica. This layering of the adsorbate in silica pores has been reported for other
fluids too. In particular, Jin and Firoozabadi [28] investigated the composition of adsorption layers
in clay pores. Studying mixtures of CH4, CO2, and H2O, they reported water forms the layer closest
to the pore wall, CO2 can form multiple adsorption layers (of diminishing adsorption stability), and
CH4 fills in the middle of the pore. Similar behavior was observed by Sun et al. [20] in quartz pores,
where they studied the effects of pressure and surface functionaliztion on competitive adsorption of
CH4 and CO2. Aljamaan et al. [15] experimentally observered multilayer sorption of CO2 in shale,
and suggested that the number of layers depends on the quadrupole moment of the molecule.

The disordered porous nature of the rock substantially impacts the thermophysical
properties of confined fluids, introducing large deviation from the properties of bulk fluids.
A number of mathematical models have been developed to describe phase behavior under
confinement [25,29,30]. Gommes and Roberts [31] proposed a multiphase extension to the standard
Gaussian random field model of disordered materials and used this new model to explore capillary
condensation. Their findings show that metastable states of adsorption are only found in the most
ordered systems considered in that study. Importantly, disorder acts as an environmental noise
source. Spagnolo et al. [32] demonstrated that environmental noise affects metastable states in
condensed matter systems. These findings are significant for understanding confined fluid behavior
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in real geologic formations at larger scales; however, the adsorption physics is still unknown at the
molecular level. In our work, cylindrical pores are used as a stepping stone in understanding the
effects of fluid–solid interactions. The extensions and limitations of our model are also discussed.

Capillary condensation can also be described via Minkowski functionals [29], a mathematical
concept for characterizing the morphology and topology of spatial patterns [33], including porous
materials. Early studies on this issue have focused on two-dimensional (2D) problems. For a
2D system, there are three Minkowski functionals, representing area, circumference, and signed
curvature. Mecke and Arns [34] applied Minkowski functionals to study capillary condensation in
a system consisting of overlapping spheres and ellipsoids, successfully reproducing the shift of
the critical point under confinement. Boelens and Tchelepi [25] showed that the grand potential
(also known as the Landau free energy [35]) and the excess adsorption can be expressed via
empirically-augmented formulas based on Minkowski functionals. They adapted Hadwiger’s theorem
and classical density functional theory (DFT) calculations with a Lennard-Jones potential. Employing
the Minkowski functionals mathematical formalism, they successfully reproduced the phase behavior
of nitrogen in 2D smooth Vycor pores.

We extend the work of Boelens and Tchelepi [25] and examine the validity of their approach for
more complex interatomic potentials, rough surfaces, and four different compounds with different
molecular size and polarity. We show that the Minkowski functionals can accurately describe the
phase behavior of real fluids in SiO2 nanopores despite the competing effects of the various molecular
interactions. Our results demonstrate that Minkowski functionals can be used to translate information
from the molecular level to pore scale. In exploring the impact of molecular size and polarity on
adsorption, we find that the adsorption behavior of a fluid is strongly influenced by the dipole and
quadrupole moments of the fluid molecules. The dipole moment is a measure of the polarity of
a chemical bond. The quadrupole moment describes the effective shape of the molecular charge
distribution. A perfectly spherically symmetric charge distribution has zero quadrupole moment.
In this work, we show that stronger electrostatic moments lead to early onset of adsorption and to the
formation of multiple adsorption layers across the pore.

The remainder of this paper is organized as follows. Section 2 discusses how Minkowski
functionals can be applied to three-dimensional (3D) systems and outlines our molecular simulations.
Section 3 presents the findings of our study and discusses their scientific significance. Section 4
summarizes the main results and discussed their implications for geologic carbon storage and gas
production from unconventional formations.

2. Methods

2.1. Mathematical Framework

Following the approach of Boelens and Tchelepi [25], we aim to express the grand potential in
terms of Minkowski functionals. The grand potential Ω = Ω[X; µ, T] is an extensive quantity that
depends on the geometric properties of the system X, the chemical potential µ, and the temperature T.
Thermodynamically, we can completely describe a system if we know its appropriate thermodynamic
potential, that is, the grand potential in the case of the grand canonical ensemble. By separating
variables and assuming linearity, the grand potential can be written as:

Ω[X; µ, T] = ω(µ, T)V[X], (1)

where ω(µ, T) is an intensive thermodynamic quantity and V[X] is the volume of the system. For the
grand potential, ω(µ, T) is the negative of the pressure p(µ, T) of the system. Equation (1) is valid only
for bulk systems. For systems under confinement, the dependence of Ω[X; µ, T] on the shape of the
system X is an integral over the phase space of the system. For real pores, this integral can only be
approximated [36]. To overcome this limitation, König et al. [36] suggested three physical restrictions
on this dependence (shown in Figure 1):
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1. Motion invariance: The thermodynamic potential is independent of the system’s location and
orientation in space. For any translation or rotation g:

Ω[X] = Ω[gX]. (2)

2. Continuity: If a sequence of convex sets Xn converges to X for n → ∞, then Ω[Xn] → Ω[X].
This property states that an approximation of the convex domain also yields an approximation of
the grand potential.

3. Additivity: The functional union of two domains S1 and S2 is the sum of the functional of the
individual domains subtracted by their intersection:

Ω[S1 ∪ S2] = Ω[S1] + Ω[S2]−Ω[S1 ∩ S2]. (3)

Figure 1. The restrictions of motion invariance, continuity, and additivity apply to the use of Minkowski
functionals to describe spatial patterns.

Enforcing these properties, one can invoke Hadwiger’s theorem [34,36], stating that any
motion-invariant, continuous, and additive functional can be written as a linear combination of
the corresponding Minkowski functionals. Specifically, for a 3D system the Minkowski functionals are
defined as [29]:

M0[X] = V[X] (4)

M1[X] =
1
8

A[X] (5)

M2[X] =
1

2π2 H[X] (6)

M3[X] =
3

4π
χ[X], (7)
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where V is the volume of a pore space X, A is the surface area of the pore, H is the integral mean
curvature, and χ is the Euler characteristic of the pore. Using Hadwiger’s theorem, Mecke et al. [34,36]
give the grand potential as:

Ω = −p(µ, T)M0[X] + σ(µ, T)M1[X] + κ(µ, T)M2[X] + κ̄(µ, T)M3[X], (8)

where σ(µ, T) is the surface tension and κ(µ, T) and κ̄(µ, T) are bending rigidities. These coefficients
are properties of the fluid and fluid–wall interactions, but are independent of the geometry of the wall.

We note that for an infinite cylinder, the integral mean curvature H = 1/(2R), where R is the
pore radius, and the Euler characteristic is equal to zero. Therefore, we use the following expressions
for the Minkowski functionals of the cylindrical pores in our study: M0[X] = πR2L, M1[X] = πRL/4,
M2[X] = 1/(4π2R), and M3[X] = 0. Thus, the last term in Equation (8) is zero for the geometries
investigated in our work. In these expressions, L is the length of the simulation box along the pore
central axis. Based on numerical results, Boelens and Tchelepi [25] augmented this expression for
Lennard-Jones fluids by adding two additional terms. One of these terms is proportional to

√
M0[X]

and the other term is proportional to M3/4
1 [X]. Due to the non-linearity, these two terms are not

additive when studying pore networks [25,29]. In contrast to the 2D DFT simulations of Boelens and
Tchelepi [25], our GCMC approach models the pore as a cylinder in 3D. Therefore, we translate their
empirical terms to 3D and rewrite the augmented version of Equation (8) as:

Ω = −p(µ, T)M0[X] + σ(µ, T)M1[X] + κ(µ, T)M2[X] + p′(µ, T)M1/2
0 [X] + σ′(µ, T)M3/4

1 [X]. (9)

The coefficients of the last two terms are named pseudo-pressure and pseudo-surface tension [25].
All coefficients in this expression are functions of the chemical potential and temperature, but not
the geometry. Therefore, for each fluid, there is a single set of coefficients independent of pore size.
These coefficients are obtained, following the approach of Boelens and Tchelepi [25], by performing a
least-squares fit for all our numerical data to Equation (9).

All relevant thermodynamic properties in the grand canonical ensemble can be computed from
the grand potential [37]. In laboratory experiments, for example, a more commonly measured quantity
is the excess adsorption Γex. To calculate this quantity, we first use the grand potential to find the
interfacial tension:

γ =
Ω + pBV

A
, (10)

as a measure of the change in the grand potential introduced by the wall per unit area. Here, pB is the
pressure in the bulk phase. In terms of Minkowski functionals, we can express γ as [25]:

γ = (pB(µ, T)− p(µ, T))
M0[X]

M1[X]
+ σ(µ, T) + κ(µ, T)

M2[X]

M1[X]
+ p′(µ, T)

M1/2
0 [X]

M1[X]
+ σ′(µ, T)M−1/4

1 [X] .

(11)
Finally, using Gibbs theorem, we obtain the excess adsorption [25]:

Γex = −
(

∂γ

∂µ

)
T,V

=
∂

∂µ
(p− pB)

M0[X]

M1[X]
− ∂σ

∂µ
− ∂κ

∂µ

M2[X]

M1[X]
− ∂p′

∂µ

M1/2
0 [X]

M1[X]
− ∂σ′

∂µ
M−1/4

1 [X] , (12)

where the coefficients in front of the Minkowski functionals are the derivatives with respect to chemical
potential of the coefficients in Equation (9). In this paper, we explore how effectively this analytical
model captures observations from molecular simulation.

2.2. Numerical Simulations

The numerical results presented in this work are obtained with the Large-Scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS) software package [38,39]. All simulations are performed in the
grand-canonical (µVT) ensemble and are based on Monte Carlo exchanges with an ideal gas reservoir
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of the fluid at the specified temperature and chemical potential. The temperature is controlled using
a Nosé-Hoover thermostat with a damping constant of 50 fs. The temperature of the simulations is
T/Tc = 0.61, where Tc is the bulk critical temperature of the fluid. This value was chosen based on the
convention of studying adsorption with nitrogen at 77 K [40]. In Kelvin, the simulations’ temperature
is 116.8, 77, 185.3, and 389.5 K, for simulations involving methane, nitrogen, carbon dioxide, and water,
respectively. For each of the four fluids, we vary the chemical potential between µ/kBT = −200 and
−1. A non-dimensional interval of ∆µ/kBT = 1, dimensionally is 0.23, 0.15, 0.37, 0.77 kcal/mol for
methane, nitrogen, carbon dioxide, and water, respectively.

The bulk simulations are done in a simulation box of 20× 20× 20 Å3. The confined simulations
are done in pores with diameters d = {5, 10, 15, 20, 40} Å. Each pore is 31.8 Å long. In both bulk
and confined simulations, periodic boundary conditions are used. The number of particles in the
pores varies between 0 and 1800 molecules. All simulations are equilibrated for at least 400,000 steps,
and statistics are collected over 200,000 steps.

The interactions between particles are represented using the TraPPE-UA force field for
methane [41], TraPPE for carbon dioxide and nitrogen [42], SPC/E for water [43], and ClayFF for the
SiO2 pores [44]. TraPPE treats CO2 and N2 as rigid bodies, while the bond distances and bond angles
of SPC/E H2O are constrained via the SHAKE algorithm. TraPPE-UA CH4 is represented via the
unified-atom approach. The force field parameters used are summarized in Table 1. The non-bonded
interactions are given by the Lennard-Jones potential and Coulombic electrostatic interactions. A 12
Å cut-off radius is used for both potentials. The long-range electrostatic interactions are calculated
with the Ewald summation method with relative tolerance of 10−4 for forces. To validate that these
potentials are appropriate for studying adsorption, in Figure 2, we compare the adsorption isotherm of
N2 at 77 K in a 20-Å-diameter silica pore obtained with our GCMC simulations to an experimental
measurement by Morishige et al. [17]. There is a good agreement between the two adsorption isotherms.
Moreover, similar combinations of force fields have been used previously for studying the transport
and thermodynamics of confined fluids [45–48], further validating the choice of potentials.

Table 1. Summary of the force field parameters used in this work. References to the force fields are
given in the text.

Molecule Particle Type ε/kB (K) σ (Å) q (e) kbond (kcal/mol) kθ (kcal/mol)

CH4 CH4 148 3.730 - - -

CO2
C 27 2.800 0.7000 5000.0 500.0O 79 3.050 −0.3500

H2O H 0.0 0.000 0.4236 1000.0 100.0O 78.2 3.166 −0.8472

N2
N 36 3.310 −0.4820 5000.0 500.0Ghost 0.0 0.000 0.9640

SiO2
Si 9.26× 10−4 3.302 2.1000 - -
O 78.2 3.166 −1.0500 - -
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Figure 2. Comparison of our grand canonical Monte Carlo (GCMC) simulation results (symbols) for
the adsorption isotherm of N2 at 77 K in a 20-Å-diameter silica pore against the experimental data
from Morishige et al. [17] (solid line).

3. Results and Discussion

We study the phase behavior under tight confinement of four fluids (CH4, N2, CO2, and H2O)
with different electrostatic moments, which are summarized in Table 2. These fluids commonly occur
in shale formations. For our study, the fluids are confined in cylindrical SiO2 pores with diameters
ranging between 5 and 40 Å, representative of tight shale rocks. Analyzing the molecular trajectories
of GCMC simulations, we show that the onset of capillary condensation is uniquely defined by pore
morphology. As shown in Figure 3, fluid molecules form one or multiple adsorption layers on the pore
surface before filling up the entire pore. The number of layers formed depends on the electrostatic
moments of the molecule. Finally, we connect the thermodynamics and pore morphology by extending
the Minkowski functionals expression proposed by Boelens and Tchelepi [25] to a wider range of fluids
and to 3D systems.

Table 2. Summary of the molecular electrostatic moments for investigated fluids. The dipole is given
in Debye (D) and the quadrupole moment is in Debye-Ångstrom (DÅ).

Molecule Force Field Electrostatic Dipole (D) Electrostatic Quadrupole (DÅ) Reference

CH4 TraPPE-UA 0.0 0.0 -
N2 TraPPE 0.0 −1.47 [49]

CO2 TraPPE 0.0 −4.1 [50]
H2O SPC/E 1.86 0.11 [51]

3.1. Influence of Molecular Polarity on Adsorption

Figures 3–5 show that molecules with large electrostatic moments form more adsorption layers
near the pore surface. For each fluid, Figure 4 shows a map of the observed phase behavior in
GCMC simulations. In particular, the region where multi-layer adsorption occurs broadens going
from methane (no molecular electrostatic moments) to water (polar molecule). Larger molecular
electrostatic moments lead to stronger interaction between the silica pore and the fluid, which in turn
leads to a more stable physisorption of fluid molecules on the pore walls. Generally, in each map we
observe four regions: an empty pore, adsorption in a single layer near the pore wall, forming multiple
adsorption layers near the pore wall, and an entirely filled pore. On one hand, the region of entirely
filled pore does not evolve significantly with the polarity of different species. On the other hand,
the regions of single-layer adsorption and multi-layer adsorption grow considerably for increasing
molecular electrostatic moments. These two regions are very limited for methane, where we typically
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see immediate filling of the entire pore (second row of Figure 3); yet, they span a broad range of
chemical potential values for water, where we see gradual formation of adsorption layers before the
pore is entirely filled.

Moreover, as shown in Figure 5, the density in the interlayer regions increases for fluids with larger
molecular electrostatic moments. This increase implies that there is close packing of the molecules
even between the defined adsorption layers. The first row of snapshots in Figure 3 shows that CO2

fills the pore with closely packed layers. This is in contrast to CH4, whose adsorption layers can be
easily delineated in the second row of Figure 3.

Figure 3. Adsorption process for CO2 (top row) and CH4 (bottom row) in silica pore with d = 20 Å.
The snapshots are at µ/kBT = −100,−75,−50,−25 and −12 (L-R). The color scheme is as follows:
red—oxygen, yellow—silicon, cyan—carbon, and blue—methane.

Figure 4. Maps with adsorption behavior of (A). methane, (B). nitrogen, (C). carbon
dioxide, and (D). water as a function of pore size and reduced chemical potential. Different shades,
bright to dark, indicate empty pore, single adsorption layer, multiple adsorption layers, and entirely
filled pore.
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Figure 5. Transverse density profiles of (A). methane, (B). nitrogen, (C). carbon dioxide,
and (D). water confined in cylindrical SiO2 nanopores. The x-axis shows the inward radial
coordinate, r, originating from the pore wall. Only half of the pore is shown and the profile
is axisymmetric.

The effect of the electrostatic moments on the close packing of the adsorption layer is countered
by the size of the pore and the molecule. This is illustrated in Figure 5, showing wider valleys in
the transverse density profiles for fluids with larger molecular diameters. The transverse density
profiles of CO2 and N2, whose molecular diameters differ by about 10%, show similar structure
with wider valleys for CO2. Smaller pore sizes also impose a limitation on the adsorption behavior.
The stronger, overlapping fluid–wall interactions lead to lower average fluid density in small pores.
This dependence of the fluid density on pore size beyond the onset of capillary condensation suggests
decreased accessible free volume because of repulsive wall effects and geometric constraints.

3.2. Grand Potential

Following Peterson and Gubbins [52], we determine the grant potential from the GCMC
simulations by integrating the Gibbs adsorption isotherm:(

∂Ω
∂µ

)
T,V

= −N , (13)

where N is the average number of molecules in the pore. The initial condition used in solving this
ordinary differential equation (ODE) is the grand potential of an ideal gas [37]. We solve the ODE using
an explicit Runge-Kutta integrator in MATLAB [53]. The results are shown as solid lines in Figure 6.
We start studying the adsorption at very low chemical potentials when all pores are empty. As we
increase the chemical potential, the slope of the grand potential becomes steeper, because molecules
start adsorbing in the pore. In the range between µ/kBT = −25 to −15, depending on the fluid,
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the slope changes sharply, indicating a jump in the density inside the pore and onset of the capillary
condensation as a first-order phase transition.

Figure 6. Grand potential profiles of (A). methane, (B). nitrogen, (C). carbon dioxide, and (D).
water. The lines represent simulation results, while the symbols are reconstructions using Minkowski
functionals. All simulations are at T/Tc = 0.61 for the corresponding fluid species. The ordinates have
different scales for each subfigure.

Using Equation (9), we determine the grand potential in terms of Minkowski functionals.
In Figure 6, we compare the numerical results from GCMC simulations (solid lines) with this
geometric reconstruction (symbols). We see excellent agreement for the four fluids in all pore sizes.
The geometry-based reconstruction is able to capture phase behavior of both polar and non-polar
fluids in very tight confinement. As the electrostatic moments of the fluid molecules change (Table 2),
their phase behavior in the pore becomes more complex (Figure 4). Methane exhibits a single
discontinuous phase transition, accompanied by a sharp change in the slope of the grand potential.
Nitrogen shows three distinct regimes in its behavior: an empty pore (zero slope for µ/kBT < −90),
a layer of adsorbed gas on the pore surface (slowly varying slope for −90 < µ/kBT < −18),
and condensed fluid filling the pore (constant steeper slope for −18 < µ/kBT). These three regimes
appear as three different slopes in the grand potential. Carbon dioxide exhibits multiple phase regimes
as layers of gas form near the pore surface until the pore is filled (see Figure 3). At that point, the grand
potential obtains a constant slope. Finally, water shows continuously varying slope with a small
discontinuous jump in fluid density (change in slope of the grand potential) at high pressures (i.e.,
high chemical potential). This jump is the onset of capillary condensation. The Coulombic interactions
between the fluids and the pore walls define the molecular orientation within the layers and allow for
closer packing of the fluid. Water as a polar molecule with a dipole moment forms more layers than
methane, nitrogen, and carbon dioxide (see Figure 5).

This close packing in the adsorption layers is counteracted by the small pore sizes. In the range of
length scales explored in this work, the pore diameter, which is on the order of few molecular diameters,
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physically constrains the number of layers that can be formed. Therefore, in smaller pores, we see
capillary condensation occurring at lower pressure (i.e., lower chemical potential), accompanied by an
earlier discontinuous change in the slope of the grand potential.

3.3. Excess Adsorption

The excess adsorption is a physical quantity that defines the additional amount of fluid adsorbed
in a pore of given volume as compared to a bulk fluid at the same thermodynamic condition [54].
We normalize this quantity with the surface area of the pore, such that the impact of tight confinement
can be discussed. To calculate the excess adsorption from GCMC simulations, we run both simulations
of confined fluid and of bulk fluid and use those density values in the following equation:

Γex =
1

A(X)
(ρ(µ, T)− ρB(µ, T))V(X). (14)

Figure 7 compares the excess adsorption obtained from numerical simulations (solid lines) with
its geometric reconstruction using Minkowski functionals (symbols). The two compare very well for all
four fluids. The results show that the pore size directly affects the extent to which fluid can be adsorbed,
mostly by preventing fluid molecules from entering the smallest pores because of their physical size.
However, in pores of 10-Å diameter, the strong fluid–wall interactions push most molecules to the pore
center and limit the formation of well-defined adsorption layers (Figure 5). These interactions result
in less excess adsorption in pores whose geometrical size does not mechanically act as a molecular
sieve. Thus, in the range of conditions where only adsorption layers exist in the pore, the storage
capacity does not substantially change with pore size. But, we emphasize that because of the larger
volume-to-area ratio, larger pores can store more fluid after the onset of capillary condensation
(Figure 7), supporting the enhanced hydrocarbon estimates by Chen et al. [9].

Figure 7. The excess adsorption of fluid in three of the investigated pore sizes. Results are shown for
(A). methane, (B). nitrogen, (C). carbon dioxide, and (D). water. The lines represent simulation results,
while the symbols are reconstructions using Minkowski functionals. All simulations are at T/Tc = 0.61
for the corresponding fluid species.
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Fluids with large electrostatic moments, such as water, start to adsorb at significantly lower
pressure (i.e., lower chemical potential) and form more adsorption layers before the onset of
capillary condensation than fluids with no or very low electrostatic moments, such as methane.
To further demonstrate that the electrostatic interactions lead to this difference in adsorption behavior,
we compare the adsorption behavior of two nitrogen models. These additional GCMC simulations
model nitrogen without atomic charges. This model was used in the DFT simulations of Boelens
and Tchelepi [25] and follows the unified-atom (UA) approach. The particles interact solely via
the Lennard-Jones potential with ε/kB = 94.45 K and σ = 3.575 Å. Figure 8A compares the bulk
fluid density of TraPPE N2 (used in our study) and the UA N2 model. Both models accurately
capture the phase transition of bulk nitrogen at 77 K. Next, Figure 8B shows the fluid density inside
a 10-Å-diameter SiO2 pore for both models. The significant difference between the density curves
in the pore suggests that electrostatic forces have a strong influence on adsorption for non-polar
fluids. On one hand, TraPPE nitrogen, where individual atoms have charge and the molecule has a
quadrupole moment, starts adsorbing at low pressures and forms adsorption layers as the pressure
increases. On the other hand, the UA nitrogen model sees minimal adsorbed fluid amount before a
sharp phase transition at approximately µ/kBT = −22, when the pore fills up. Therefore, we conclude
that any proposed framework for describing phase behavior in nanoporous materials must accurately
capture the impact of the molecular electrostatic interactions. Similar observations were reported
by Hackett and Hammond [55], who examined the adsorption of different nitrogen models in zeolites.

Figure 8. Comparing two nitrogen models based on the fluid density of (A). bulk nitrogen and (B).
nitrogen in a 10-Å-diameter SiO2 pore.

3.4. Toward Real Systems

This work has focused on cylindrical SiO2 pores as a model for quartz grains in the shale solid
matrix. Similar models have been informative for reproducing observations from real shale rocks
with similar pore size and geochemical composition [56]. Yet, the nature of the shale pore network
is complex and disordered [11]. The variation of pore morphology and topology in the shale rock
influences the conditions under which capillary condensation would occur in the system as a whole.
A number of models have been developed to explore this relationship in a statistical manner for
heterogeneous, disordered systems at the meso- and larger length scales [30,31,57]. Despite the
significance of these theoretical findings, Gommes and Roberts [31] call for further validation of their
model against experimental small-angle scattering data. The disorder of the porous material acts
as an environmental noise source, which has been reported to have a positive role in condensed
matter systems. Spagnolo et al. [32] found that noise can extend the lifetime of metastable states in
fluctuating systems. Future studies are needed to explore how environmental noise sources affect
metastable states of sorption phenomena under tight confinement. Coasne et al. [11] discussed the
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phase behavior of fluids confined in porous silica and considered how morphological and topological
disorder affects phase phenomena. These effects include delayed phase transitions and asymmetric
sorption hysteresis loops. However, the authors acknowledge the significance of characterizing
confined fluid behavior in regular and ordered systems as a crucial step in developing more complex,
realistic models. Therefore, describing capillary condensation in cylindrical pores and other simplified
geometries is an important building block for understanding confined-fluid phenomena in shale and
other geologic formations [56,58,59]. The Minkowski functionals framework presented in this work
can be used in the future to calculate excess adsorption and the grand potential in disordered pore
networks. The Minkowski functionals are well defined (Equations (4)–(7)) for all 3D geometric shapes.
Thus, the only challenge with applying this framework to a disordered pore network is theoretically
resolving the additivity of the non-linear terms in Equations (9) and (12).

Furthermore, the molecular approach to studying fluid phase behavior is very sensitive
to environmental fluctuations in the system. The molecular velocities in equilibrium systems
always follow a distribution at finite temperatures. Experimentally, these fluctuations are
enhanced by limitations in the control of macroscopic thermodynamic variables. In GCMC
simulations, the computational thermostat also marks fluctuations due to the random forces [60].
Moreover, the number of molecules in the simulation box fluctuates around a mean value,
introducing density fluctuations. Similar fluctuations in the number of molecules inside the pore occur
in adsorption experiments. Tanaka et al. [61] argued that fluctuations in experiments are larger than
those in GCMC simulations, thus affecting the observed phase behavior. These fluctuations, in density
or energy of the system, become large near the critical point. Furthermore, they can lead to a phase
transition by pushing the system over the energy barrier for nucleation of a condensed liquid bridge or
a vapor bubble inside the pore. To ensure that our simulations accurately represent the phase behavior
in silica pores, we varied the chemical potential in smaller increments in regions with large change in
number of molecules. Moreover, we allowed for sufficient time for the system to equilibrate inside the
pore and collected statistics over 200,000 steps, as discussed in Section 2.

When studying confined fluid behavior, another important consideration is the difference in
thermophysical properties between confined and bulk fluids. This difference is a result of the
complex fluid–solid interactions that occur inside the pores, especially under tight confinement, in
addition to the fluid–fluid interactions that are found in bulk fluids. One example of how confinement
influences fluids’ thermophysical properties is the shift in the phase envelope. This shift has been
well-documented for various fluids in the literature [12,14]. While it is out of scope for the present
study to map the shift of the phase envelope across a range of temperatures, we observe the gas-liquid
transition occurring at different chemical potentials (different pressures) along the studied isotherms
as a function of the pore diameter. Most notably, the smallest pores undergo first-order liquid-gas
transition first at a low chemical potential. As the pore size is increased, the chemical potential at
which a gas-liquid phase transition occurs is monotonously growing (Figure 7).

The density of the confined liquid phase fluid is also different from the liquid phase fluid at the
same chemical potential and temperature in the bulk. Chiang et al. [58] employed small-angle neutron
scattering measurements to show that the density of liquid deuterated methane (CD4) in mesoporous
silica is lower than that of liquid bulk CD4. A similar conclusion was reached theoretically by Tan
and Piri [62], who studied CO2 and n-pentane under confinement via the perturbed-chain statistical
associating fluid theory (PC-SAFT) coupled with the Young-Laplace equation. In our simulations
(Figure 7), we report a lower density of confined liquids compared to their bulk equivalents for CH4,
N2, and CO2. Water, however, exhibits the opposite behavior where liquid water under confinement is
denser than in the bulk at the same temperature and chemical potential. This difference is probably a
result of the surface roughness in our model combined with the molecular size. Larger molecules cannot
fit within the corrugated pore surface. Moreover, as discussed in the previous section, H2O exhibits
extremely close-packing, while CH4, CO2, and N2 have more pronounced valleys and peaks in their
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transverse density profiles (Figure 5). A further study is needed to explain why confined liquids are
less dense than their bulk equivalents.

4. Conclusions

The adsorption of fluids under tight confinement is crucial for many technological and natural
processes, including carbon sequestration and shale gas production. In this work, we examine how
four fluids fill SiO2 nanopores. These fluids—methane, nitrogen, carbon dioxide and water—were
chosen because they are commonly found in subsurface reservoirs and aquifers. Moreover, we offer
a mathematical framework to describe the phase behavior of confined fluids. Expanding on the
work of Boelens and Tchelepi [25], we show that a mathematical framework in terms of Minkowski
functionals (volume, surface area, and integral mean curvature) can reproduce capillary condensation
with good accuracy. Using geometric information for the porous rock to describe the phase behavior
of different fluids paves the way for better scale translation of these processes.

Our work shows that Minkowski functionals can leverage geometric information about the pore
to describe thermodynamic quantities such as the grand potential and the excess adsorption. We apply
this method to both polar and non-polar fluids, and show that the molecular electrostatic moments
are crucial to the adsorption layer formation. Stronger moments lead to early onset of adsorption
in the pores and formation of multiple layers before the pore is entirely filled. This observation is
significant because it reveals why fluid–solid interactions are important in adsorption phenomena
and reasserts the importance of accurately capturing the electrostatic interactions when modeling
adsorption phenomena at the molecular level. This paper presents the first application of the
Minkowski functionals framework to describe the phase behavior of real fluids in 3D.

The results and the mathematical formulation presented in this work can be extended
to more complex geometries. Further research is needed to investigate the effects of pore
network disorder [11] and environmental noise [32] on adsorption layer formation under
tight confinement. Finally, we reiterate that the non-linear terms of the Minkowski-functionals
reconstructions (e.g., last two terms of Equations (9) and (12)) are not additive when a whole pore
network is studied [29]. Further theoretical work is needed to address this issue.
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