Factors Affecting Shale Gas Chemistry and Stable Isotope and Noble Gas Isotope Composition and Distribution: A Case Study of Lower Silurian Longmaxi Shale Gas, Sichuan Basin
Abstract
:1. Introduction
2. Geological Background
3. Differences in Gas Geochemical Characteristics
3.1. Molecular Composition
3.2. Carbon Isotope Composition
3.3. Noble Gases
4. Causes of Gas Geochemical Variation
4.1. Mixing of Secondary Cracking Gas
4.2. The Loss of Shale Gas
4.3. Water–Rock Interaction
4.4. Heterogeneity of Longmaxi Shale
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Data Availability
References
- Zou, C.; Dong, D.; Wang, S.; Li, J.; Li, X.; Wang, Y.; Li, D.; Cheng, K. Geological characteristics and resource potential of shale gas in China. Pet. Explor. Dev. 2010, 37, 641–653. [Google Scholar] [CrossRef]
- Campbell, J.H.; Koskinas, G.J.; Gallegos, G.; Gregg, M. Gas evolution during oil shale pyrolysis. 1. Nonisothermal rate measurements. Fuel 1980, 59, 718–726. [Google Scholar] [CrossRef]
- Campbell, J.H.; Gallegos, G.; Gregg, M. Gas evolution during oil shale pyrolysis. 2. Kinetic and stoichiometric analysis. Fuel 1980, 59, 727–732. [Google Scholar] [CrossRef]
- Hao, F.; Zou, H. Cause of shale gas geochemical anomalies and mechanisms for gas enrichment and depletion in high-maturity shales. Mar. Pet. Geol. 2013, 44, 1–12. [Google Scholar] [CrossRef]
- Lorant, F.; Prinzhofer, A.; Behar, F.; Huc, A.-Y. Carbon isotopic and molecular constraints on the formation and the expulsion of thermogenic hydrocarbon gases. Chem. Geol. 1998, 147, 249–264. [Google Scholar] [CrossRef]
- Behar, F.; Vandenbroucke, M.; Teermann, S.; Hatcher, P.; Leblond, C.; Lerat, O. Experimental simulation of gas generation from coals and a marine kerogen. Chem. Geol. 1995, 126, 247–260. [Google Scholar] [CrossRef]
- Tilley, B.; Muehlenbachs, K. Isotope reversals and universal stages and trends of gas maturation in sealed, self-contained petroleum systems. Chem. Geol. 2013, 339, 194–204. [Google Scholar] [CrossRef]
- Xia, X.; Chen, J.; Braun, R.D.; Tang, Y. Isotopic reversals with respect to maturity trends due to mixing of primary and secondary products in source rocks. Chem. Geol. 2013, 339, 205–212. [Google Scholar] [CrossRef]
- Qu, Z.; Sun, J.; Shi, J.; Zhan, Z.; Zou, Y.; Peng, P. Characteristics of stable carbon isotopic composition of shale gas. J. Nat. Gas Geosci. 2016, 1, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.C.; Xia, X.Y. Kinetics and mechanism of shale-gas formation: A quantitative interpretation of gas isotope ‘rollover’ for shale gas formation. In Proceedings of the AAPG Hedberg Conference, Austin, TX, USA, 5–10 December 2010; pp. 5–10. [Google Scholar]
- Gao, L.; Schimmelmann, A.; Tang, Y.; Mastalerz, M. Isotope rollover in shale gas observed in laboratory pyrolysis experiments: Insight to the role of water in thermogenesis of mature gas. Org. Geochem. 2014, 68, 95–106. [Google Scholar] [CrossRef]
- Zumberge, J.; Ferworn, K.; Brown, S. Isotopic reversal (‘rollover’) in shale gases produced from the Mississippian Barnett and Fayetteville formations. Mar. Pet. Geol. 2012, 31, 43–52. [Google Scholar] [CrossRef]
- Ferworn, K.J.; Zumberge, J.; Reed, J.; Brown, S. Gas Character Anomalies Found in Highly Productive Shale Gas Wells. 2008. Available online: http://www.zenzebra.net/quebec/Ferworn_et_al_2008.pdf (accessed on 16 October 2008).
- Cao, C.; Lv, Z.; Li, L.; Du, L. Geochemical characteristics and implications of shale gas from the Longmaxi Formation, Sichuan Basin, China. J. Nat. Gas Geosci. 2016, 1, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Zhang, M.; Tang, Q.; Yang, Y.; Lv, Z.; Zhang, T.; Chen, C.; Yang, H.; Li, L. Noble gas isotopic variations and geological implication of Longmaxi shale gas in Sichuan Basin, China. Mar. Pet. Geol. 2018, 89, 38–46. [Google Scholar] [CrossRef]
- Zhang, M.; Tang, Q.; Cao, C.; Lv, Z.; Zhang, T.; Zhang, D.; Li, Z.; Du, L. Molecular and carbon isotopic variation in 3.5 years shale gas production from Longmaxi Formation in Sichuan Basin, China. Mar. Pet. Geol. 2018, 89, 27–37. [Google Scholar] [CrossRef]
- Yang, R.; He, S.; Hu, Q.H.; Hu, D.F.; Yi, J.Z. Geochemical characteristics and origin of natural gas from Wufeng-Longmaxi shales of the Fuling gas field, Sichuan Basin (China). Int. J. Coal Geol. 2017, 171, 1–11. [Google Scholar] [CrossRef]
- Jiang, K.; Lin, C.; Zhang, X.; He, W.; Xiao, F. Geochemical characteristics and possible origin of shale gas in the Toolebuc Formation in the northeastern part of the Eromanga Basin, Australia. J. Nat. Gas Sci. Eng. 2018, 57, 68–76. [Google Scholar] [CrossRef]
- Rodriguez, N.D.; Philp, R.P. Geochemical characterization of gases from the Mississippian Barnett Shale, Fort Worth Basin, Texas. AAPG Bull. 2010, 94, 1641–1656. [Google Scholar] [CrossRef]
- Tilley, B.; McLellan, S.; Hiebert, S.; Quartero, B.; Veilleux, B.; Muehlenbachs, K. Gas isotope reversals in fractured gas reservoirs of the western Canadian Foothills: Mature shale gases in disguise. AAPG Bull. 2011, 95, 1399–1422. [Google Scholar] [CrossRef]
- Feng, Z.; Liu, D.; Huang, S.; Wu, W.; Dong, D.; Peng, W.; Han, E. Carbon isotopic composition of shale gas in the Silurian Longmaxi Formation of the Changning area, Sichuan Basin. Pet. Explor. Dev. 2016, 43, 769–777. [Google Scholar] [CrossRef]
- Feng, Z.; Dong, D.; Tian, J.; Qiu, Z.; Wu, W.; Zhang, C. Geochemical characteristics of Longmaxi Formation shale gas in the Weiyuan area, Sichuan Basin, China. J. Pet. Sci. Eng. 2018, 167, 538–548. [Google Scholar] [CrossRef]
- Wei, X.; Guo, T.; Liu, R. Geochemical features and genesis of shale gas in the Jiaoshiba Block of Fuling Shale Gas Field, Chongqing, China. J. Nat. Gas Geosci. 2016, 1, 361–371. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Zou, C.; Dong, D.; Ni, Y.; Wu, W.; Gong, D.; Wang, Y.; Huang, S.; Huang, J.; Fang, C.; et al. Geochemical characteristics of marine and terrestrial shale gas in China. Mar. Pet. Geol. 2016, 76, 444–463. [Google Scholar] [CrossRef]
- Zou, C.; Dong, D.; Wang, Y.; Li, X.; Huang, J.; Wang, S.; Guan, Q.; Zhang, C.; Wang, H.; Liu, H.; et al. Shale gas in China: Characteristics, challenges and prospects (I). Pet. Explor. Dev. 2015, 42, 753–767. [Google Scholar] [CrossRef]
- Guo, T. Key geological issues and main controls on accumulation and enrichment of Chinese shale gas. Pet. Explor. Dev. 2016, 43, 349–359. [Google Scholar] [CrossRef]
- Dai, J.; Zou, C.; Liao, S.; Dong, D.; Ni, Y.; Huang, J.; Wu, W.; Gong, D.; Huang, S.; Hu, G. Geochemistry of the extremely high thermal maturity Longmaxi shale gas, southern Sichuan Basin. Org. Geochem. 2014, 74, 3–12. [Google Scholar] [CrossRef]
- Zhu, C.; Xu, M.; Yuan, Y.; Zhao, Y.; Shan, J.; He, Z.; Tian, Y.; Hu, S. Palaeogeothermal response and record of the effusing of Emeishan basalts in the Sichuan basin. Chin. Sci. Bull. 2009, 55, 949–956. [Google Scholar] [CrossRef]
- Xu, Y.G.; Chung, S.-L.; Jahn, B.-M.; Wu, G.Y. Petrologic and geochemical constraints on the petrogenesis of Permian–Triassic Emeishan flood basalts in southwestern China. Lithos 2001, 58, 145–168. [Google Scholar] [CrossRef]
- Liu, S.G.; Deng, B.; Zhong, Y.S.; Ran, B.; Yong, Z.; Sun, W.; Yang, D.Z.; Jiang, L.; Ye, Y. Unique geological features of burial and superimposition of the Lower Paleozoic shale gas across the Sichuan Basin and its periphery. Earth Sci. Front. 2016, 23, 11–28. [Google Scholar] [CrossRef]
- Ma, L.; Chen, H.J.; Gan, K.W. Tectonics and Marine Petroleum Geology in South China; Geology Press: Beijing, China, 2004; pp. 37–41. [Google Scholar]
- Hao, F.; Zou, H.; Lu, Y. Mechanisms of shale gas storage: Implications for shale gas exploration in China. AAPG Bull. 2013, 97, 1325–1346. [Google Scholar] [CrossRef]
- Xu, H.; Zhou, W.; Cao, Q.; Xiao, C.; Zhou, Q.; Zhang, H.; Zhang, Y. Differential fluid migration behaviour and tectonic movement in Lower Silurian and Lower Cambrian shale gas systems in China using isotope geochemistry. Mar. Pet. Geol. 2018, 89, 47–57. [Google Scholar] [CrossRef]
- Liu, S.G.; Qin, C.; Sun, W.; Wang, G.Z.; Xu, G.S.; Zhang, Z.J.; Zhang, Z.J. The coupling formation process of four centers of hydrocarbon in Sinian Dengying Formation of Sichuan Basin. Acta Petrol. Sin. 2012, 28, 879–888. [Google Scholar]
- Xu, H.; Wei, G.; Jia, C.; Yang, W.; Zhou, T.; Xie, W.; Li, C.; Luo, B. Tectonic evolution of the Leshan-Longnüsi paleo-uplift and its control on gas accumulation in the Sinian strata. Pet. Explor. Dev. 2012, 39, 436–446. [Google Scholar] [CrossRef]
- Feng, W.P.; Wang, F.Y.; Guan, J.; Zhou, J.X.; Wei, F.B.; Dong, W.J.; Xu, Y.F. Geologic structure controls on initial productions of lower Silurian Longmaxi shale in south China. Mar. Pet. Geol. 2018, 91, 163–178. [Google Scholar] [CrossRef]
- Zhai, G.M.; Gao, W.L.; Song, J.G.; An, Z.X.; Cheng, K.M.; Dai, J.X.; Guan, D.S.; Liu, F.H.; Li, J.C.; Qiu, Y.N.; et al. Petroleum Geology of China—Volume 10, Oil and Gas Zone in Sichuan Basin; Petroleum Industry Press: Beijing, China, 1989; pp. 389–424. [Google Scholar]
- Wang, S.Q.; Chen, G.S.; Dong, D.Z.; Yang, G.; Lv, Z.G.; Xu, H.Y.; Huang, Y.B. Accumulation conditions and exploitation prospect of shale gas in the Lower Paleozoic Sichaun Basin. Nat. Gas Ind. 2009, 29, 51–58. [Google Scholar] [CrossRef]
- Huang, J.L.; Zou, C.N.; Li, J.Z.; Dong, D.Z.; Wang, S.J.; Wang, S.Q.; Wang, Y.M.; Li, D.H. Shale gas accumulation conditions and favorable zones of Silurian Longmaxi Formation in south Sichuan Basin. China J. China Coal Soc. 2012, 37, 782–787. [Google Scholar]
- Dong, D.; Gao, S.; Huang, J.; Guan, Q.; Wang, S.; Wang, Y. Discussion on the exploration & development prospect of shale gas in the Sichuan Basin. Nat. Gas Ind. B 2015, 2, 9–23. [Google Scholar] [CrossRef] [Green Version]
- Gao, B. Geochemical characteristics of shale gas from lower Silurian Longmaxi formation in the Sichuan Basin and its geological significance. J. Nat. Gas Geosci. 2015, 26, 1173–1182. [Google Scholar] [CrossRef]
- Schoell, M. The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim. Cosmochim. Acta 1980, 44, 649–661. [Google Scholar] [CrossRef]
- Schoell, M. Genetic Characterization of Natural Gases. AAPG Bull. 1983, 67, 2225–2238. [Google Scholar] [CrossRef]
- Tissot, B.P.; Pelet, R.; Ungerer, P. Thermal history of sedimentary basins, maturation indices, and kinetics of oil and gas generation. AAPG Bull. 1987, 71, 1445–1466. [Google Scholar] [CrossRef]
- Wang, X.F.; Li, X.F.; Wang, X.Z.; Shi, B.G.; Luo, X.R.; Zhang, L.X.; Lei, Y.H.; Jiang, C.F.; Meng, Q. Carbon isotopic fractionation by desorption of shale gases. Mar. Pet. Geol. 2015, 60, 79–86. [Google Scholar] [CrossRef]
- Hill, R.J.; Zhang, E.; Katz, B.J.; Tang, Y. Modeling of gas generation from the Barnett Shale, Fort Worth Basin, Texas. AAPG Bull. 2007, 91, 501–521. [Google Scholar] [CrossRef]
- Prinzhofer, A.A.; Huc, A.Y. Genetic and post-genetic molecular and isotopic fractionations in natural gases. Chem. Geol. 1995, 126, 281–290. [Google Scholar] [CrossRef]
- Tang, Y.; Perry, J.; Jenden, P.; Schoell, M. Mathematical modeling of stable carbon isotope ratios in natural gases. Geochim. Cosmochim. Acta 2000, 64, 2673–2687. [Google Scholar] [CrossRef]
- Cramer, B.; Faber, E.; Gerling, P.; Krooss, B.M. Reaction Kinetics of Stable Carbon Isotopes in Natural GasInsights from Dry, Open System Pyrolysis Experiments. Energy Fuels 2001, 15, 517–532. [Google Scholar] [CrossRef]
- Zou, Y.-R.; Wang, L.; Shuai, Y.; Peng, P. EasyDelta: A spreadsheet for kinetic modeling of the stable carbon isotope composition of natural gases. Comput. Geosci. 2005, 31, 811–819. [Google Scholar] [CrossRef]
- Lewan, M. Experiments on the role of water in petroleum formation. Geochim. Cosmochim. Acta 1997, 61, 3691–3723. [Google Scholar] [CrossRef]
- Burruss, R.; Laughrey, C. Carbon and hydrogen isotopic reversals in deep basin gas: Evidence for limits to the stability of hydrocarbons. Org. Geochem. 2010, 41, 1285–1296. [Google Scholar] [CrossRef] [Green Version]
- Cheng, B.; Xu, J.B.; Qian, D.; Liao, Z.W.; Wang, Y.P.; Faboya, O.L.; Li, S.D.; Liu, J.Z.; Peng, P.A. Methane cracking within shale rocks: A new explanation for carbon isotope reversal of shale. Mar. Pet. Geol. 2020, 121, 104591. [Google Scholar] [CrossRef]
- Price, L.C. Chapter H—A Possible Deep-Basin High-Rank Gas Machine via Water Organic-Matter Redox Reactions. In U.S. Geological Survey Digital Data Series DDS-67; Version 1.00.; Dyman, T.S., Kuuskraa, V.A., Eds.; U.S. Department of the Interior: Washington, DC, USA; U.S. Geological Survey: Reston, VA, USA, 2001; pp. 1–29. Available online: http://pubs.usgs.gov/dds/dds-067/CHH.pdf (accessed on 16 January 2001).
- Tissot, P.B.P.; Welte, P.D.H. Petroleum Formation and Occurrence, 2nd ed.; Springer: Berlin, Germany, 1984. [Google Scholar]
- Rooney, M.A.; Claypool, G.E.; Chung, H.M. Modeling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons. Chem. Geol. 1995, 126, 219–232. [Google Scholar] [CrossRef]
- Zhou, Q.; Xiao, X.; Tian, H.; Pan, L. Modeling free gas content of the Lower Paleozoic shales in the Weiyuan area of the Sichuan Basin, China. Mar. Pet. Geol. 2014, 56, 87–96. [Google Scholar] [CrossRef]
- Xiao, X.M.; Tian, H.; Liu, D.H.; Liu, Z.F. Evaluation of Deep Burial Source Rocks and Their Natural Gas Potentials in Sichuan Basin. In Annual Report of State Major Research Program of China (Project No. 2011ZX05008-002-40), Internal Report; Guangzhou Institute of Geochemistry of Chinese Academy of Sciences: Guangzhou, China, 2012; pp. 1–68. [Google Scholar]
- Jiang, Q.; Qiu, N.; Zhu, C. Heat flow study of the Emeishan large igneous province region: Implications for the geodynamics of the Emeishan mantle plume. Tectonophysics 2018, 11–27. [Google Scholar] [CrossRef]
- Xu, Y.G.; He, B.; Huang, X.L.; Luo, Z.Y.; Zhu, D.; Ma, J.L.; Shao, H. Late Permian Emeishan Flood Basalts in Southwestern China. Earth Sci. Front. 2007, 14, 1–9. [Google Scholar] [CrossRef]
- Yang, C.; Ni, Z.-Y.; Li, M.; Wang, T.; Chen, Z.; Hong, H.; Tian, X. Pyrobitumen in South China: Organic petrology, chemical composition and geological significance. Int. J. Coal Geol. 2018, 188, 51–63. [Google Scholar] [CrossRef]
- Zhu, C.-Q.; Tian, Y.-T.; Xu, M.; Rao, S.; Yuan, Y.-S.; Zhao, Y.-Q.; Hu, S.-B. The Effect of Emeishan Supper Mantle Plume on the Thermal Evolution of Hydrocarbon Source Rocks in the Sichuan Basin. Chin. J. Geophys. 2010, 53, 83–91. [Google Scholar] [CrossRef]
- Wu, X.; Dai, J.; Liao, F.; Huang, S. Origin and source of CO2 in natural gas from the eastern Sichuan Basin. Sci. China Earth Sci. 2013, 56, 1308–1317. [Google Scholar] [CrossRef]
- Feng, Z.Q.; Hao, F.; Zhou, S.; Wu, W.; Tian, J.; Xie, C.; Cai, Y. Pore characteristics and methane adsorption capacity of different lithofacies of the Wufeng formation-Longmaxi formation shales, Southern Sichuan Basin. Energ. Fuel. 2020, 34, 8046–8062. [Google Scholar] [CrossRef]
- Arneth, J.-D.; Matzigkeit, U. Variations in the carbon isotope composition and production yield of various pyrolysis products under open and closed system conditions. Org. Geochem. 1986, 10, 1067–1071. [Google Scholar] [CrossRef]
- Horsfield, B.; Schenk, H.; Mills, N.; Welte, D. An investigation of the in-reservoir conversion of oil to gas: Compositional and kinetic findings from closed-system programmed-temperature pyrolysis. Org. Geochem. 1992, 19, 191–204. [Google Scholar] [CrossRef]
- Berner, U.; Faber, E.; Scheeder, G.; Panten, D. Primary cracking of algal and landplant kerogens: Kinetic models of isotope variations in methane, ethane and propane. Chem. Geol. 1995, 126, 233–245. [Google Scholar] [CrossRef]
- Chen, Y.X.; Tian, C.T.; Li, K.N.; Cui, X.Y.; Wu, Y.Q.; Xia, Y.Q. Influence of thermal maturity on carbon isotopic composition of individual aromatic hyrocarbons during anhydrous closed-system pyrolysis. Fuel 2016, 186, 466–475. [Google Scholar] [CrossRef]
- Curtis, J.B. Fractured shale-gas systems. AAPG Bull. 2002, 86, 1921–1938. [Google Scholar] [CrossRef]
- Wei, S.L.; He, S.; Pan, Z.J.; Guo, X.W.; Yang, R.; Dong, T.; Yang, W.; Gao, J. Models of shale gas storage capacity during burial and uplift: Application to Wufeng-Longmaxi shales in the Fuling shale gas field. Mar. Pet. Geol. 2019, 109, 233–244. [Google Scholar] [CrossRef]
- Huang, H.Y.; He, D.F.; Li, Y.Q.; Li, J.; Zhang, L. Silurian tectonic-sedimentary setting and basin evolution in the Sichuan area, southwest China: Implications for palaeogeographic reconstructions. Mar. Pet. Geol. 2018, 92, 403–423. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, Z.C.; Du, H.Y.; Zhang, C.M.; Wang, R.J.; Zou, N.N.; Wang, T.S.; Gu, Z.D.; Li, Y.X. Tectonic evolution of the Leshan-Longnvsi paleo-uplift and reservoir formation of Neoproterozoic Sinian gas. Nat. Gas Geosci. 2014, 25, 192–200. [Google Scholar] [CrossRef]
- Zhang, B.; Xiao, D.; Wang, X.; Zhao, L.; Luo, S.; Yang, X. Sedimentary characteristics and distribution patterns of grain shoals in the Lower Cambrian Longwangmiao Formation, southern Sichuan Basin, SW China. Arab. J. Geosci. 2018, 11, 135. [Google Scholar] [CrossRef]
- Wei, L.; Haiyong, Y.; Wangshui, H.; Geng, Y.; Xuan, X.; Li, W.; Yi, H.; Hu, W.; Xiong, X. Tectonic evolution of Caledonian Palaeohigh in the Sichuan Basin and its relationship with hydrocarbon accumulation. Nat. Gas Ind. B 2014, 1, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Prinzhofer, A. Pernaton, Éric Isotopically light methane in natural gas: Bacterial imprint or diffusive fractionation? Chem. Geol. 1997, 142, 193–200. [Google Scholar] [CrossRef]
- Ballentine, C.J.; O’Nions, R.; Coleman, M. A Magnus opus: Helium, neon, and argon isotopes in a North Sea oilfield. Geochim. Cosmochim. Acta 1996, 60, 831–849. [Google Scholar] [CrossRef]
- Fuex, A. Experimental evidence against an appreciable isotopic fractionation of methane during migration. Phys. Chem. Earth 1980, 12, 725–732. [Google Scholar] [CrossRef]
- Bernard, B.B.; Brooks, J.M.; Sackett, W.M. Light hydrocarbons in recent Texas continental shelf and slope sediments. J. Geophys. Res. Space Phys. 1978, 83, 4053–4061. [Google Scholar] [CrossRef] [Green Version]
- Whiticar, M.J. A geochemial perspective of natural gas and atmospheric methane. Org. Geochem. 1990, 16, 531–547. [Google Scholar] [CrossRef]
- Zhang, X.; Guan, R.-F.; Wu, D.-Q.; Chan, K.Y. Enzyme immobilization on amino-functionalized mesostructured cellular foam surfaces, characterization and catalytic properties. J. Mol. Catal. B Enzym. 2005, 33, 43–50. [Google Scholar] [CrossRef]
- Salvi, S.; Williams-Jones, A.E. Fischer-Tropsch synthesis of hydrocarbons during sub-solidus alteration of the Strange Lake peralkaline granite, Quebec/Labrador, Canada. Geochim. Cosmochim. Acta 1997, 61, 83–99. [Google Scholar] [CrossRef]
- Potter, J.; Salvi, S.; Longstaffe, F.J. Abiogenic hydrocarbon isotopic signatures in granitic rocks: Identifying pathways of formation. Lithos 2013, 114–124. [Google Scholar] [CrossRef]
- Tang, Y.C.; Xia, X.Y. Quantitative Assessment of Shale Gas Potential Based on Its Special Generation and Accumulation Processes. In Proceedings of the AAPG Annual Convention and Exhibition, Houston, TX, USA, 10–13 April 2011; Available online: http://www.searchanddiscovery.com/pdfz/documents/2011/40819tang/ndx_tang.pdf.html (accessed on 31 October 2011).
- Chen, S.; Zhu, Y.; Wang, H.; Liu, H.; Wei, W.; Fang, J. Shale gas reservoir characterisation: A typical case in the southern Sichuan Basin of China. Energy 2011, 36, 6609–6616. [Google Scholar] [CrossRef]
- Chen, L.; Lu, Y.; Jiang, S.; Li, J.; Guo, T.; Luo, C. Heterogeneity of the Lower Silurian Longmaxi marine shale in the southeast Sichuan Basin of China. Mar. Pet. Geol. 2015, 65, 232–246. [Google Scholar] [CrossRef]
- Tang, X.; Jiang, Z.; Li, Z.; Gao, Z.; Bai, Y.; Zhao, S.; Feng, J. The effect of the variation in material composition on the heterogeneous pore structure of high-maturity shale of the Silurian Longmaxi formation in the southeastern Sichuan Basin, China. J. Nat. Gas Sci. Eng. 2015, 23, 464–473. [Google Scholar] [CrossRef]
- Tuo, J.; Wu, C.; Zhang, M. Organic matter properties and shale gas potential of Paleozoic shales in Sichuan Basin, China. J. Nat. Gas Sci. Eng. 2016, 28, 434–446. [Google Scholar] [CrossRef]
- Yan, D.; Wang, H.; Fu, Q.; Chen, Z.; He, J.; Gao, Z. Geochemical characteristics in the Longmaxi Formation (Early Silurian) of South China: Implications for organic matter accumulation. Mar. Pet. Geol. 2015, 65, 290–301. [Google Scholar] [CrossRef]
- Li, Y.F.; Shao, D.Y.; Lv, H.G.; Zhang, Y.; Zhang, X.L.; Zhang, T.W. A relationship between elemental geochemical characteristics and organic matter enrichment in marine shale of Wufeng Formation-Longmaxi Formation, Sichuan Basin. Acta Pet. Sin. 2015, 36, 1470–1483. [Google Scholar] [CrossRef]
- Yang, M.-X.; Qu, X.; Liu, F.-L.; Zheng, G.-J. HCA520, a novel tumor associated antigen, involved in cell proliferation and apoptosis. Chin. J. Cancer Res. 2003, 15, 282–285. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, C.; Li, L.; Liu, Y.; Du, L.; Li, Z.; He, J. Factors Affecting Shale Gas Chemistry and Stable Isotope and Noble Gas Isotope Composition and Distribution: A Case Study of Lower Silurian Longmaxi Shale Gas, Sichuan Basin. Energies 2020, 13, 5981. https://doi.org/10.3390/en13225981
Cao C, Li L, Liu Y, Du L, Li Z, He J. Factors Affecting Shale Gas Chemistry and Stable Isotope and Noble Gas Isotope Composition and Distribution: A Case Study of Lower Silurian Longmaxi Shale Gas, Sichuan Basin. Energies. 2020; 13(22):5981. https://doi.org/10.3390/en13225981
Chicago/Turabian StyleCao, Chunhui, Liwu Li, Yuhu Liu, Li Du, Zhongping Li, and Jian He. 2020. "Factors Affecting Shale Gas Chemistry and Stable Isotope and Noble Gas Isotope Composition and Distribution: A Case Study of Lower Silurian Longmaxi Shale Gas, Sichuan Basin" Energies 13, no. 22: 5981. https://doi.org/10.3390/en13225981
APA StyleCao, C., Li, L., Liu, Y., Du, L., Li, Z., & He, J. (2020). Factors Affecting Shale Gas Chemistry and Stable Isotope and Noble Gas Isotope Composition and Distribution: A Case Study of Lower Silurian Longmaxi Shale Gas, Sichuan Basin. Energies, 13(22), 5981. https://doi.org/10.3390/en13225981