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Abstract: Generating electricity from enormous energy contained in oceans is an important means to
develop and utilize marine sustainable energy. An offshore marine current generator set (MCGS) is a
system that runs in seas to produce electricity from tremendous energy in tidal streams. MCGSs operate
in oceanic environments with high humidity, saline-alkali water, and impacts of marine organisms
and waves, and consequently malfunctions can happen along with the need for expensive inspection
and maintenance. In order to achieve effective fault diagnosis of MCGSs in events of failure, this paper
focuses on fault detection and diagnosis (FDD) of MCGSs based on five-phase permanent magnet
synchronous generators (FP-PMSGs) with the third harmonic windings (THWs). Firstly, mathematical
models were built for a hydraulic turbine and the FP-PMSG with THWs; then, a fault detection
method based on empirical mode decomposition (EMD) and Hilbert transform (HT) was studied to
detect different open-circuit faults (OCFs) of the generator; afterwards, a variable-parameter particle
swarm optimization (VPSO) was designed to optimize the penalty and kernel function parameters of
a support vector machine (SVM), which was named the VPSO-SVM method in this paper and used to
perform fault diagnosis of the FP-PMSG. Finally, simulation blocks were built with MATLAB/Simulink
to realize the mathematical models of the MCGS, and the proposed FDD method was coded with
MATLAB. The effectiveness of the proposed VPSO-SVM method was validated by simulation results
analysis and comparisons.

Keywords: fault detection and diagnosis; marine current generation; five-phase permanent magnet
synchronous generator; third harmonic windings; empirical modal decomposition; Hilbert transform;
particle swarm optimization; support vector machines

1. Introduction

1.1. Research Background and Motivations

With the global fossil energy shortage and ecological environment deterioration, development
and utilization of renewable energy and reduction of pollutants emissions have become important
directions of technology development world wide. Oceans cover 70% area of the Earth and hold
tremendous energy in tidal streams that can be utilized for electricity generation [1]. Accordingly,
marine current generation technology has attracted much attention in both research and industrial
communities all over the world.
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Marine current energy mainly refers to kinetic energy generated by the regular flow of seawater
in undersea waterways and straits due to tidal movement [2,3]; and a marine current generator set
(MCGS) could convert this kinetic energy into electrical energy. In this kind of generation system,
due to attractive performance and good fault-tolerant control ability, multi-phase machines (MPMs)
have been widely concerned in recent years and became a research hotspot [4–6]. Compared with
traditional three-phase machines, MPMs have the following advantages:

(1) When machine power and phase current are kept constant, increasing phase number of the
machine can reduce phase voltage, resulting in large power output with lower voltage level.
This can also avoid the current-sharing problem caused by power electronic devices in series and
parallel connections [7].

(2) An MPM can provide more control freedom than a three-phase machine; fault-tolerant operation
could be achieved in an MPM if one or more phase is in fault conditions [8].

(3) Compared to a traditional three-phase machine, the dynamic and static characteristics of an MPM
are improved [9], making it more suitable for sustainable energy generation systems.

At present, one of the research focuses of MPMs lies in five-phase machines with third harmonic
windings (THWs) in stators. Machines’ output torque could be increased with the interactions of the
third harmonic current and magnetic field [10]. Meanwhile, the injection of the third harmonic current
into a five-phase machine can reduce magnetic saturation of the stator core and improve machine
efficiency [11]. This kind of five-phase machine has important applications in marine energy generation
and ship propulsion systems and, therefore, a five-phase permanent magnet synchronous generator
(FP-PMSG) with THWs is adopted in this paper for MCGSs.

MCGSs operate under seawater with harsh marine environment, influences from ocean
circumstances, such as moisture, saline corrosion, crash of marine organism etc., may lead to
malfunctions of generators and converters of the MCGSs. Some common faults include short
circuit faults (SCFs) and/or open-circuit faults (OCFs) in generators’ winding and power conversion
devices [12]. These failures will result in downtime and subsequent expensive operations for fault
positioning and system maintenance. Accordingly, it is of great practical significance to research fault
detection and diagnosis (FDD) technology for the development of marine current generation.

1.2. State of the Art of Marine Current Generation and Its Fault Detection and Diagnosis (FDD)

Marine current generation is a comparatively new technology that has developed rapidly in
the last decade. The relevant research is mainly focused on the key technologies to enhance the
energy capture capability of MCGSs [13]. To realize this purpose, many scholars are dedicated in the
related topics, such as marine current generation system design, analysis and optimization [14–17],
control methodology improvement [18–24], state monitoring and fault diagnosis [25–33], etc., for the
development of MCGSs with high reliability and efficiency.

Among these research hotspots, state monitoring and fault diagnosis are important means to
guarantee safety operations of MCGSs. Emerging FDD technologies of marine current turbines are
mainly related to works that have been applied on wind turbines and the pulse-width modulation (PWM)
inverter driving the multi-phase motor for high-performance motion control [14,34]. For example,
in reference [25], a normalized mode-correlation principal component analysis method was proposed
to deal with the fault detection difficulties caused by turbulence and wave of a MGCT. Reference [26]
presented a new model-based online diagnostic indicator monitoring method for winding insulation
of a marine tidal generator. The effects of temperature variation on the diagnostic model parameters
were investigated. Experimental results showed that insulation capacitance increases as temperature
increases. To deal with imbalance detection problem of marine pollutants attachment to the turbine
blades, Reference [27] proposed an empirical mode decomposition and spectrum analysis-based
blades imbalance fault detection method. Simulation and experimental results in different faulty
conditions validated the effectiveness of the proposed method. Reference [28] designed a generator
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stator current-based fault detection technique, which adopted a recursive maximum likelihood
estimator to track the time-varying fault characteristic frequency, to deal with a wind turbines condition
monitoring. Simulation results demonstrated the feasibility of the proposed approach of a wind turbine
with electrical asymmetry and mechanical imbalance. In references [29,30], symmetrical components
analysis based methods were proposed to extract five-phase machine fault features and diagnose
OCFs and interturn faults respectively. Considering that many permanent magnet motors are driven
by Pulse Width Modulation (PWM) inverters, reference [31,32] adopted high-frequency PWM ripple
currents to detect interturn faults of a motor. Experiences in [31] showed that the ripple current ratios
between two adjacent phases can detect turn fault with high signal-to-noise ratio. In [33], a Direct
Current (DC) voltage injection method was proposed to monitor and detect stator interturn faults of
five-phase motors. This method was operated within control loops to realize fault-tolerant control
when faults were detected.

From the above literature review, it can be seen that although many interesting research findings
had been achieved concerning MCGS FDD technologies, FDD research on FP-PMSG is still insufficient
to meet the fast development requirements of MCGSs. The main insufficiencies include: (1) there is
a lack of targeted research on fault detection, diagnosis and fault tolerance control of multi-phase
current generators, especially on FP-PMSG with THWs. Many FDD methods applied on MCGs in
the literature are from three-phase PMSG or multi-phase machine systems in different applications;
(2) in practice, because MPMs are commonly used as motors in motion control applications with
high safety requirements, their FDD methods are often connected with their feeding PWM converters.
These approaches cannot be directly adopted in scenarios where MPMs are used as generators.
Furthermore, in these applications, more research attention is paid to the study of fault tolerance
control of MPMs to guarantee system safety than that to FDD, leading to insufficient research on
FDD; and (3) concerning existing OCFs diagnosis research on five-phase machines, although different
OCFs, such as OCFs of single phase, two adjacent phases, and two non-adjacent phases, could be
differentiated, developing one FDD method to distinguish the above fault types, in order to identify
the phase happening a single-phase OCF, and to differentiate OCF from sensor faults, still needs
further research.

To deal with the above deficiencies, this paper adopts signal processing techniques instead of
model-based approaches (for the purpose of reducing dependence on system models) to develop a FDD
method for different OCFs of FP-PMSGs with THWs. To make the developed method non-intrusive to
the generator and require fewer additional sensors, a method relying only on a five-phase terminal
current of the FP-PMSG would be a good solution. But when there is a fault happening in the generator,
its phase currents are non-stationary signals and stationary signal processing techniques are not suitable
to apply [35]. For this reason, empirical mode decomposition, a non-stationary signal processing
method, is adopted in this paper to realize non-stationary current decomposition. Then, with the
obtained stationary signals, Hilbert transform (HT) is used to calculate fault indicator for fault detection
and feature parameters for diagnosis. When realizing fault classification, it is necessary to consider that
in reality MCGS fault samples are not easy to obtain and sample number could be small. The support
vector machine (SVM), which is suitable for effective classification with small sample numbers, is used
as a fault classifier. In order to improve the classification accuracy of SVM, a modified particle swarm
optimization (PSO) method is further utilized to find the optimal parameters of SVM. Thereby, a hybrid
approach, consisting of empirical mode decomposition (EMD) and HT techniques for fault detection,
and PSO and SVM methods for fault diagnosis, is proposed in this paper to realize effective fault
diagnosis of FP-PMSGs.

1.3. Organization of This Article

The rest of this paper is organized as follows: in Section 2, the basic structure and operation
principle of a MCGS based on a FP-PMSG with THWs are analyzed, and mathematical models of
its hydraulic turbine and the FP-PMSG are built. In Section 3, firstly a fault detection method based
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on EMD and HT is studied, then a variable-parameter particle swarm optimization (VPSO)-SVM is
proposed by combining the VPSO with SVM to realize fault diagnosis of the generator. In Section 4,
an MCGS simulation platform is built according to the mathematical models presented in Section 2
with MATLAB/Simulink, and the proposed VPSO-SVM method is coded to diagnose different OCFs of
the generator. Then, the results of simulation experiments carried out in normal working conditions
and different OCFs in the FP-PMSG are presented. These simulation results are compared with those
of single SVM and PSO-SVM without parameter tuning to verify the effectiveness of the proposed
method. Finally, in Section 5, the work of this paper is summarized.

2. Mathematical Models of Five-Phase Permanent Magnet Synchronous Generator
(FP-PMSG)-Based Marine Current Generator Set (MCGS)

2.1. MCGS Structure

The structure of the studied direct-drive MCGS is shown in Figure 1, which includes a hydraulic
turbine, a non-salient and surface-mounted FP-PMSG, and a power converter [36].
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Figure 1. Structure of the studied marine current generator set (MCGS). 
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In Figure 1, the hydro turbine converts kinetic energy of sea current into mechanical energy
and drives the generator to rotate; the non-salient FP-PMSG further converts the mechanical energy
into electricity. Normally an Alternating Current (AC) to AC converter, including an uncontrollable
five-phase rectifier, a Boost circuit and a three-phase power inverter, could be adopted to connect the
generator to power grid. Consider the focus of this paper is the FDD technology of the FP-PMSG,
only the diode-based uncontrollable five-phase rectifier is shown in the figure to connect the generator
to the DC bus.

2.2. Hydro Turbine Model

2.2.1. Tidal Speed Model

The mathematical model of tidal speed is built by the addition of multiple cosine functions with
an average current velocity and a white noise as follows [37]:

v(t) = v0 + 0.025 cos(0.314t) + 0.0275 cos(0.618t) + 0.089 cos(0.933t) + . . .+ b(t) (1)

where v(t) presents the tidal speed, v0 is its average value, and b(t) is a Gaussian white noise signal.

2.2.2. Hydro Turbine Model

According to Baez’s theory, the output mechanical power of the turbine is as follows [38].

Pm =
1
2
ρπR2Cp(λ, β)v3 (2)
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where Pm is the output mechanical power of the turbine, ρ represents sea water density, R is the turbine
blades’ radius, v is the velocity of the tidal current, CP is hydro current energy utilization coefficient
and is a function of pitch angle (noted as β) and tip speed ratio (noted as λ), where λ = ωmR/v, and ωm

is the angle velocity of the turbine.
Mechanical torque of the turbine, noted as Tm, then can be expressed with:

Tm = Pm/ωm (3)

2.3. Model of Non-Salient FP-PMSG with Third Harmonic Windings (THWs)

The dynamic model in rotating reference frame of the non-salient and surface-mounted FP-PMSG
with THWs shown in Figure 1 can be obtained by applying coordinate transformation to the generator’s
mathematical model in stationary reference frame. The transformation matrix T is:

T =
2
5


cos θ cos(θ− 2

5π) cos(θ− 4
5π) cos(θ− 6

5π) cos(θ− 8
5π)

−sin θ −sin(θ− 2
5π) −sin(θ− 4

5π) −sin(θ− 6
5π) −sin(θ− 8

5π)
cos 3 θ cos 3 (θ− 2

5π) cos 3 (θ− 4
5π) cos 3 (θ− 6

5π) cos 3 (θ− 8
5π)

−sin 3 θ −sin 3 (θ− 2
5π) −sin 3 (θ− 4

5π) −sin 3 (θ− 6
5π) −sin 3(θ− 8

5π)
1
2

1
2

1
2

1
2

1
2


(4)

where θ is electric angle of rotor.
The stator voltage equations of the generator in dq frame are written as [39]:

ud1 = Rid1 + Ld1
did1
dt −ωeLq1iq1

uq1 = Riq1 + Lq1
diq1
dt +ωe(Ld1id1 +ψm1)

ud3 = Rid3 + Ld3
did3
dt − 3ωeLq3iq3

uq3 = Riq3 + Lq3
diq3
dt + 3ωe(Ld3id3 +ψm3)

(5)

where ud1, uq1, ud3 and uq3 are stator voltage components in direct and quadrature axes, id1, iq1, id3 and
iq3 are stator current components in direct and quadrature axes, Ld1, Lq1, Ld3 and Lq3 are inductance in
direct and quadrature axes, R is stator resistance, ωe is electric angular speed of the rotor, ψm1 and ψm3

are fundamental and the third harmonics flux-linkage of the permanent magnet.
The electromagnet torque of the FP-PMSG with THWs is [39]:

Te =
5
2

p
[
(Ld1id1 +ψm1)iq1 − Lq1iq1id1 + 3(Ld3id3 +ψm3)iq3 − 3Lq3iq3id3

]
(6)

where Te is electromagnetic torque of the FP-PMSG, and p is the number of pole pairs.
For a non-salient and surface-mounted FP-PMSG, Ld1 = Lq1 and Ld3 = Lq3, thus Equation (6) could

be simplified as follows.

Te =
5
2

p
[
ψm1iq1 + 3ψm3iq3

]
(7)

Consider that a direct-drive MCGS without gearboxes is adopted in this paper, the motion
equation of the generator is as follows when the damping of rotation shaft is not considered:

Tm − Te = J
dωm

dt
(8)

where J is rotor rotation inertia.

3. Faults Detection and Diagnosis of FP-PMSG

As discussed in Section 1.2, phase currents of a generator are normally nonstationary signals
when there is a fault happening [35]. To realize fault detection and feature extraction of diagnosis,
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EMD, a technique that can adaptively decompose a nonstationary signal into a series of intrinsic mode
functions (IMFs) (representing characteristics of the nonstationary signal) and a residue [40], is adopted
in this paper to decompose direct-axis component of generator’s output currents; then, analytic signals
are calculated by applying Hilbert transform to the IMFs and residue; afterwards, the instantaneous
amplitude, phase and frequency of the complex analytic signals could be obtained to determine
an indicator for fault detection and feature parameters for fault diagnosis. With these features,
the VPSO-SVM is designed in this section to identify the faults.

3.1. Empirical Mode Decomposition (EMD)-Hilbert Based Fault Detection and Fault Feature
Parameters Extraction

According to the principle of EMD, a non-stationary signal, noted as x(t), including fault
characteristics can be represented by a number of IMFs with a residual as follows [40]:

x(t) =
k∑

i=1

ci(t) + r(t) (9)

where ci(t) (i = 1, . . . , n) denotes the ith IMF, and r(t) is the residual.
Apply Hilbert transform to the IMFs with the following equation [41]:

H[ci(t)] =
1
π

∫ +∞

−∞

ci(τ)

t− τ
dτ = ci(t) ∗

1
πτ

(10)

where τ is a time variable.
The instantaneous amplitude, noted as Ai(t), phase, noted as φi(t), and frequency, noted as ωi(t) of

the analytic signal could be obtained with:

Ai(t) =
√

ci2(t) + H2[ci(t)] (11)

φi(t) = tg−1 H[ci(t)]
ci(t)

(12)

ωi(t) =
dφi(t)

dt
(13)

With Equation (11), the instantaneous amplitudes of the IMFs are calculated and selected as an
OCF indicator of the FP-PMSG in this paper. In order to realize fault identification when OCFs occur,
the instantaneous amplitude, phase and frequency are grouped together as fault features for further
fault diagnosis.

3.2. Support Vector Machine (SVM)-Based Fault Classification

Fault classification is based on pattern recognition theory and can be carried out by designing a
fault classifier [42]. SVM is a pattern classification method as well as a supervisory learning algorithm,
which could be trained by historical sample data in both normal and faulty conditions and then used
for faults identification.

The idea of SVM is to map its input vector to a high-dimensional feature space through a non-linear
mapping function, and in this space, an optimal hyperplane based on a non-linear kernel function is
constructed for classification. The optimal classification hyperplane can be written as follows [43]:

f (x) = sgn[
n∑

i=0

αiyiK
(
xi, x j

)
+ b] (14)
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This hyperplane equation can be used to minimize the following target function ϕ(ω, ξ):

ϕ(ω, ξ) =
1
2
‖ω2
‖+ C

n∑
i=1

ξi (15)

where xi, xj∈Rn are two input data, yi∈{+1, −1} is the binary output, αi is the Lagrange multiplier, b is
an offset value, ω is normal direction vector of the optimal hyperplane, ξi ≥ 0 is a slack variable; C > 0,
is a penalty factor to avoid giving up important data; K(xi, xj) is a kernel function, and radial basis
function (RBF) is adopted in this paper as follows [44]:

K
(
xi, x j

)
= exp(−g

n∑
i=0

(
xi − x j

)2
) (16)

where g is width parameter of the radial basis kernel function.
The penalty factor C and the parameter g are two important parameters of the RBF-based SVM.

The parameter C affects classification accuracy of the SVM and controls penalty degree of faultily
classified samples. The kernel function parameter g reflects a mapping from input space to feature
space, its value affects the feature space complexity of sample data as well as classifier’s empirical error.

Accordingly, the values of penalty C and kernel parameter g determine data classification effect
in characteristic spaces. In order to obtain a classifier with superior performance, it is important to
optimize the values of C and g [45]. In this paper, the PSO method with a swarm average fitness-based
parameter variation mechanism is proposed to optimize these two parameters.

3.3. Variable-Parameter Particle Swarm Optimization (VPSO) for SVM Parameters Optimation

PSO is a heuristic iteration algorithm inspired by bird flocks and has been widely adopted for
optimal solution searching in different domains [46]. Suppose in an n-dimensional space, a swarm
has a total of m particles to form a population x represented by x = (x1, x2, . . . xm)

T, location and
velocity of the ith particle in the swarm are xi = (xi1, xi2, . . . xin)

T and vi = (vi1, vi2, . . . vin)
T, respectively.

The particles evaluate their fitness according to their position, and update individual’s best value

pi = (pi1, pi2, . . . pin)
T and global best value pg =

(
pg1, pg2, . . . pgn

)T
. The velocity and location of the ith

particle then are updated with the following iterative equations [47].

vk+1
i = ωvk

i+c1r1
(
pk

i − xk
i
)
+ c2r2

(
pk

g − xk
i
)

(17)

xk+1
i = xk

i + vk+1
i (18)

where c1 and c2 are cognitive learning rate and social learning rate respectively; ω is inertia weight;
r1 and r2 are two random parameters within [0, 1]; The superscript k represents iteration steps.

The particle speed updating expression shown in Equation (17) consists of three parts: ωvk
i

indicates a particle can remember its speed of last iteration; c1r1
(
pk

i − xk
i
)

represents local search

capability of the particle and its ability to move towards the best location ever experienced; c2r2
(
pk

g − xk
i
)

represents global search ability of the particle and its ability to move towards the global best location.
Among the parameters of the above PSO algorithm, c1, c2 and ω are essential ones to determine

PSO convergence speed. Tuning these parameters during iteration process instead of setting them
constants could avoid PSO to trap into local optimization and converge prematurely. Accordingly,
a swarm average fitness-based parameter variation mechanism is designed in this paper to decrease
PSO convergent time.

According to the above analysis, the cognitive learning rate c1 and social learning rate c2 represent
the particle’s ability to search the individual and global best positions, and the inertial weight ω
represents a particle’s ability to keep its previous speed. To enhance local searching capability of the
particles and to improve algorithm’s convergency, in the VPSO method proposed in of this paper, if the
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average fitness of the swarm increases along with iterations, which means the searching trajectory in
the solution space is moving in the right direction, the values of c1 and c2 are increased to reinforce
the particles’ tracking ability of local and global best locations; at the same time, the value of ω is
decreased to weaken the memory of its last location. By contrast, if the swarm’s average fitness
decreases, which indicates the searching may be not heading in the right direction, the value of ω is
increased to strengthen its memory; meanwhile, the values of c1 and c2 are decreased. In case the
average fitness values keep constant in the last several iteration steps when the desired value has not
been reached, which probably indicates a local optimization, small random values are added to c1,
c2 and ω as perturbations to help the algorithm to jump out the local minimum. This parameter tuning
method could be expressed in Table 1.

Table 1. Parameter tuning method of variable-parameter particle swarm optimization (VPSO).

Parameter Tuning Method Conditions Comments

ck+1
1 = ck

1 × αc1

ck+1
2 = ck

2 × αc2

ωk+1 = ωk+1
× αω

f itk+1
ave > f itk

ave where
αc1, αc2 and αω are parameter adjustment
coefficients, which satisfy αc1 > 1, αc2 > 1 and
0 < αω < 1.
fitave is average fitness, its superscript k
indicates iteration steps.
αrand is a random value between 0 and 1.

ck+1
1 = ck

1 + αrand

ck+1
2 = ck

2 + αrand

ωk+1 = ωk+1 + αrand

f itk
ave keeps same

ck+1
1 = ck

1/αc1

ck+1
2 = ck

2/αc2

ωk+1 = ωk+1/αω

f itk+1
ave < f itk

ave

3.4. Working Flow of VPSO-SVM-Based Fault Diagnosis

Apply the variable-parameter PSO method described in Section 3.3 to optimize the penalty C
and kernel parameter g of the SVM explained in Section 3.2, the VPSO-SVM algorithm is obtained.
The working flow to train a VPSO-SVM fault classifier is as follows:

Step 1. Collect sample data in different fault modes and extract features
Collect output currents of the FP-PMSG of a MCGS with different OCFs, apply frame transformation

(Equation (4)) to obtain direct-axis components of the currents.
Step 2. Feature extraction
Apply EMD to the direct-axis current, then apply Hilbert transform to the IMFs and residue

obtained to get their complex analytic signals; calculate instantaneous amplitude, phase and frequency
of the analytic signals with Equations (11)–(13) as features of different OCFs. Assign a fault label to
each feature according to the OCF it presents.

Step 3. VPSO parameters initialization
Initialize particles with randomly two-dimensional values of (Ci, gi) to form a swarm (where i

stands for the ith particle) and initialize velocities randomly. Define PSO parameters such as maximum
iteration steps, population size, boundaries of velocities, etc.

Step 4. Define a fitness function and calculate initial fitness values
Define classification accuracy of SVM with cross-validation as a fitness function of the VPSO.

Calculate fitness values of initial particles with the extracted features and their corresponding labels.
Record individual and global best positions of initial swarm.

Step 5. Iterate and search particles’ best location with variable PSO parameters
PSO iterates to search best location (two-dimensional values of (Ci, gi)) with the minimum fitness

values. During the iteration process, the parameters of PSO are tuned according to the method shown
in Table 1.

Step 6. Obtain best location of PSO and pass the best values to SVM
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Best particles’ location would be obtained after PSO iterations, which represent the values of C
and g with best classification accuracy on the collected training samples. Pass the best values of C and
g to SVM for classifier training.

Step 7. Train an SVM with the best C and g
Apply the best C and g to an SVM and train it with the features of sample data and their labels to

obtain a fault classifier.
With this trained SVM, in case OCFs are detected by the fault indicator, fault diagnosis could be

realized by inputting the exacted feature of MCGS operation data and outputting its predicted fault
label, which indicates the fault type.

4. Simulations and Results Analysis

According to the mathematical models built in Section 2 and the system structure shown in Figure 1,
a simulation platform of the FP-PMSG based direct-drive MCGS was built with MATLAB/Simulink
and is shown in Figure 2. The simulation blocks of the FP-PMSG with THWs is shown in Figure 3.
The parameter configuration of the generator in the subsequent simulations is listed in Table 2.

Table 2. Parameter configuration of the generator in the simulations.

Generator Parameter Values

Number of pole pairs, p 10
Stator inductance, Ld1, Lq1, Ld3, Lq3 Ld1 = Lq1 = 45 mH, Ld3 = Lq3 = 5 mH

Stator resistance, R 4Ω
Flux of permanent magnet, ϕm1, ϕm3 ϕm1 = 1 Wb, ϕm3 = 0.19 Wb

Inertia, J 0.003 kg.m2

Mechanical damping coefficient, B 1 × 10−3
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4.1. MCGS Simulation with No Faults

To verify the correctness of the FP-PMSG model, the simulation platform shown in Figure 2 was
tested by running it for 0.2 s without faults. The average value of tidal speed v0 in Equation (1) was
set to 3.6 m/s. The terminal currents of the FP-PMSG, the zoomed part of the currents between 0.08 s
and 0.12 s, and the fast Fourier transformation (FFT) of the terminal current of phase a are shown in
Figure 4. The DC bus voltage is shown in Figure 5.

From Figure 4a,b, it could be seen that the output currents of the five-phase generator are not
sinusoidal waves because of the third harmonic currents. After FFT to phase current ia, as can be seen
in Figure 4c, the main components of ia are 49.995 Hz current and its threefold-frequency harmonic
current of 149.985 Hz. From Figure 5, it could be seen that when there is no faults happened in the
generator, the DC bus voltage is stable around 440 V with 10 kΩ resistive load connected.
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Figure 4. Terminal currents of the FP-PMSG with THWs without faults and Fast Fourier transformation
of phase a current. (a) Terminal currents of the FP-PMSG with THWs in normal condition with
v0 = 3.6 m/s. (b) Zoomed terminal currents of FP-PMSG between 0.07 s and 0.12 s. (c) Fast Fourier
transformation of the terminal current of phase a.
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4.2. FP-PMSG Open-Circuit Faults (OCFs) Detection Simulations

Open circuits and short circuits are common faults happening in FP-PMSGs. If a short circuit
failure happens, by isolating the fault, the failure can be converted to an OCF. Accordingly, the detection
and diagnosis of OCFs became the main concerns of this paper.

The OCFs of the FP-PMSG considered in the paper include the following three types:

(1) single-phase OCFs, for example OCFs in phase a.
(2) OCFs in two adjacent phases, for example OCFs concurrently in phase a and b.
(3) OCFs in two non-adjacent phases, for example OCFs concurrently in phase a and c.

These faults were realized with the Ideal Switch blocks connected in the generator phases shown
in Figure 3.

A simulation was carried out on the platform for 0.7 s with the following faults occurrence sequence:

(1) during the first 0.1 s of the simulation, the MCGS was running normally;
(2) at 0.1 s, an OCF happened in single-phase a and was revoked at 0.2 s;
(3) the MCGS was running in normal condition from 0.2 s to 0.3 s;
(4) at 0.3 s, OCFs simultaneously happened in two adjacent phases a and b, and the faults were both

removed at 0.4 s;
(5) the MCGS was running in normal condition from 0.4 s to 0.5 s;
(6) at 0.5 s, OCFs happened again concurrently in two non-adjacent phases a and c, and the faults

were both revoked at 0.6 s;
(7) from 0.6 s to 0.7 s, the MCGS operated with no faults.

After running the simulation, the phase currents of the generator are plotted in Figure 6. Converted
the five-phase currents of the generator from abcde stationary frame to d1q1_d3q3_0 frame with the
transformation matrix shown in Equation (4) to obtain direct-axis component of the fundamental
current (noted as id1), then applied EMD to id1 to obtain its IMFs. The direct-axis current is shown in
Figure 7a and its five IMFs are shown in Figure 7b. We applied the Hilbert transform to the five IMFs
and further calculated the instantaneous amplitude, phase and frequency of the obtained complex
analytic signals with Equations (11)–(13), and the calculation results are shown in Figure 8.

From Figure 6, it can be observed that:

(1) during the four intervals when there were no faults (namely intervals of 0–0.1 s, 0.2–0.3 s, 0.4–0.5 s
and 0.5–0.6 s), the currents of five phases had same amplitudes with peak values of 22.67 A.

(2) From 0.1 s to 0.2 s, when an OCF happened in single-phase a, its current became zero, meanwhile,
the currents of its two adjacent phases, b and e, increased with peak values of 27.55 A and 27.83 A,
respectively. The currents of phases c and d had no obvious increments.

(3) From 0.3 s to 0.4 s, when OCFs happened in two adjacent phases a and b, their currents both
became zero, at the same time, the currents of its two adjacent phases, c and e, increased and
reached peak values of 27.88 A and 27.78 A, respectively. The current peak value of phase d
decreased to 19.74 A.

(4) From 0.5 s to 0.6 s, when OCFs happened in two non-adjacent phases a and c, their currents both
became zero, the current peak value of phase b decreased to 23.63 A and phases d and e increased
to 25.88 A and 26.01 A, respectively.
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From Figure 7a, it could be seen that after reference frame transformation, the direct-axis current
id1 could present distinguishing patterns during the periods with different OCFs. After EMD was
applied to id1, the first three IMFs exhibited sudden changes at those instances when OCFs arose and
were revoked, and these can be seen in Figure 7b. Although the faults also had some influences on the
IMF4 and IMF5 in Figure 7b, it was not easy to detect the faults from their occurring.
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Figure 7. Direct-axis current and its five intrinsic mode functions (IMFs). (a) Direct-axis component
of five-phase fundamental currents with three different OCFs in the generator. (b) Five IMFs of the
direct-axis current.
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Figure 8. Instantaneous amplitude, phase and frequency of the analytic signals after Hilbert transform
applied to the five IMFs. (a) Instantaneous amplitude of the five IMFs after Hilbert transform.
(b) Instantaneous phase of the five IMFs after Hilbert transform. (c) Instantaneous frequency of the five
IMFs after Hilbert transform.
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These observations could be further verified in Figure 8. In Figure 8a, obvious changes or
fluctuations during the OCF periods could be seen in the instantaneous amplitude curves of the
first three IMFs after Hilbert transform, these abnormal changes are very helpful for fault detection.
Although the OCFs also affected the remaining two signals in Figure 8a, the plots of phase shown in
Figure 8b and the plots of frequency shown in Figure 8c, it was not easy to identify the times the OCFs
occurred from them. Accordingly, the instantaneous amplitude of the first IMF after Hilbert transform
is selected in this paper as an OCF indicator.

Another simulation was carried out for OCFs detection with the above fault indicator. Supposed
the simulation lasted 0.7 s, from 0.35 to 0.45 s and from 0.55 to 0.6 s, OCFs happened in phase a two
times; from 0.2 to 0.55 s, an OCF happened in phase b; from 0.05 to 0.15 s and from 0.5 to 0.65 s,
OCFs happened in phase c also two times. The output currents of these three faulty phases and the
fault indicator are shown in Figure 9.
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Figure 9. Output currents of three faulty phases with fault indicator.

From Figure 9, it can be seen that the OCF indicator showed a spike at each instance to point out
the happening or ending time of the OCFs in the generator. For a real MCGS, an OCF in the generator
will not be removed automatically, so the OCF indicator only indicates the time of fault occurrence.

An interesting issue that deserves further discussion is that this fault indicator not only can
indicate the occurrence of faults, but also can help to distinguish whether the reason leading to zero
output current of a phase is because of faults in generator or in current sensors. Image that when the
generator is running normally without faults, an OCF happens in a current sensor installed on the
terminal of the machine. The measured phase current by this sensor becomes zero, which is the same
phenomenon as an OCF occurring in the generator winding. This is why it is not so reliable to identify
OCFs directly using terminal currents.

The proposed indicator of this paper can avoid the above misdiagnosis. No matter it is because
the OCFs in generator phases or in current sensors, the indicator will both generate a spike to indicate
the faults, and the spike amplitude can distinguish the two different reasons.

To verify this important feature of the proposed indicator, simulations were carried out for
comparisons. The simulations all lasted 0.2 s, and the three different OCFs happened at 0.1 s on the
generator windings or terminal sensors. The plots of the indicator are shown in Figure 10.
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Figure 10. Indicate spike amplitudes distinguishing two different reasons leading to zero terminal
phase current. (a) An OCF occurs in a generator’s single phase a, or its current sensor; (b) OCFs occur
in generator’s two adjacent phases a and b, or their current sensors; (c) OCFs occur in generator’s two
non-adjacent phases a and c, or their current sensors.

From the two subplots of Figure 10a, it can be seen that when an OCF happens in a single phase
of the FP-PMSG, the spike of the indicator has much higher amplitude than the spike value caused
by faulty sensor of a health generator. The same results could also be found in Figure 10b,c. If the
FP-PMSG with THWs really has OCFs in its windings, the proposed indicator generates a spike with
higher amplitude than that of a health machine with faulty current sensors.

4.3. Three Different FP-PMSG OCFs Diagnosis Simulations and Results Comparison

In order to distinguish the three different OCFs detected by the indicator, fault diagnosis needs to
be further carried out according to the features of the fault.

As discussed in Section 3, the instantaneous amplitude, phase and frequency of the complex
analytic signals obtained by applying Hilbert transform on id1’s five IMFs and residue are adopted in
this paper as fault features. Accordingly, for each sampled id1, a 1-by-18 vector is calculated as the
fault feature.

Follow up the first simulation carried out in Section 4.2 for fault diagnosis, the proposed VPSO-SVM
is applied in this section to identify the three different OCFs. The phase currents, their direct-axis
component id1, the EMD results of id1, and their Hilbert transform results were already shown in the
last section from Figure 6 to Figure 8.

Totally 600 samples were extracted from the three OCFs during the simulation: 200 from 0.1 to
0.2 s when there was an OCF in phase a, 200 from 0.3 to 0.4 s when two OCFs simultaneously happened
in two adjacent phases a and b, and 200 from 0.5 to 0.6 s when two OCFs concurrently happened in two
non-adjacent phases a and c. All samples were evenly distributed over time. Here, a 600-by-18 feature
matrix was obtained. Classification labels were assigned for the three different OCFs as follows:

- Label “1” is for OCF in the single-phase a,
- Label “2” is for OCFs in both phase a and b,
- Label “3” is for OCFs in phase a and c.

The collected samples and their labels are shown in Figure 11.
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Figure 11. The 600 samples with their corresponding labels.

Among the 200 samples of each faults, 100 were taken to train an SVM and the remainder were
used to test the trained SVM. Thus, the training and testing sets both had 300 samples for the three
different faults. These samples were loaded to the proposed VPSO-SVM method coded in MATLAB.
To compare the effectiveness of the proposed method, the fault features matrix was also applied to an
SVM with constant C and g, and a PSO-SVM method with Constant parameters in PSO (hereby named
CPSO-SVM). These three contrastive methods had same settings in common parameters, which are
summarized in Table 3.

Table 3. Parameter configuration for the three contrastive methods.

Parameters Values

PSO

Size of swarm 20
Maximum number of iterations 200

Initial value of c1 (Fixed in CPSO-SVM) 1.5
Initial value of c2 (Fixed in CPSO-SVM) 1.5
Initial value of ω (Fixed in CPSO-SVM) 1

Range of penalty factor C [0.01 10]
Range of kernel function parameter g [0.01 10]
Adjustment coefficients [αc1 αc2 αω] [1.15 1.15 0.98]

SVM

penalty factor C (for SVM with fixed parameters) 2
kernel parameter g (for SVM with fixed parameters) 1

Cross validation set number 5
Number of training samples 100
Number of testing samples 100

To remove the disturbances from randomly generated values in PSO on the classification results,
the initial values of particles were fixed with a same set of random values created by the rand function
of MATLAB.

The fault classification results on the testing set by SVM with fixed parameters C and g is shown
in Figure 12. The PSO iteration process and fault classification results on the testing set by CPSO-SVM
are shown in Figure 13. The PSO parameter variation plots along with iterations, PSO iteration process,
and fault classification results on the testing set by the proposed VPSO-SVM are shown in Figure 14.
The simulation results’ statistical data of the three comparative methods are summarized in Table 4.
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Figure 13. Fault classification results on testing set by CPSO-SVM with SVM parameters C = 6.8856
and g = 0.65746 optimized by CPSO. (a) Swarm average fitness evolving process along with iterations
(73 iteration steps to converge with constant c1 = c2 = 1.5 and ω = 1 in PSO). (b) Fault classification
results of CPSO-SVM (classification accuracy = 100%).



Energies 2020, 13, 6004 19 of 28
Energies 2020, 13, x FOR PEER REVIEW 20 of 29 

 

 
(a) 

 
(b) 

 
(c)  

Figure 14. Fault classification results on testing set by VPSO-SVM with SVM parameters C = 6.8856 
and g = 0.65746 optimized by CPSO. (a) Variation curves of c1, c2 and ω in PSO along with iterations. 
(b) Swarm average fitness evolving process along iterations (29 iteration steps to converge with 
variable c1, c2 and ω in PSO). (c) Fault classification results of VPSO-SVM with classification accuracy 
= 100%. 

Table 4. Simulation results statistical data of the three comparative methods. 

 SVM CPSO-SVM VPSO-SVM 
Elapsed Time on Training (s) 0.001976 18.527162 8.469169 
Classification Accuracy on Testing Set Samples 
(correctly classified samples/total samples) 

99.33%  
(298/300) 

100%  
(300/300) 

100%  
(300/300) 

PSO Iteration Steps - 73 29 

1 5 10 15 20 25 29

Iteration Steps

0.7

0.9

1.1

1 5 10 15 20 25 29

Iteration Steps

0

10

20

c
1

1 5 10 15 20 25 29

Iteration Steps

0

10

20

c
2

1 5 10 15 20 25 29

Iteration Steps

98.5

99

99.5

100

Fi
tn

es
s

PSO Searching Results: Best C =6.8856, Best g =0.65746

Swarm Best Fitness

Swarm Average Fitness

0 50 100 150 200 250 300

Testing Set Samples

1

2

3

C
la

ss
ifi

ca
tio

n 
La

be
ls

Classification Results on Testing Samples by Proposed VPSO-SVM

Accuracy = 100% (300/300)

Testing Sample Labels
Classification Results by Fault Classifier

Figure 14. Fault classification results on testing set by VPSO-SVM with SVM parameters C = 6.8856
and g = 0.65746 optimized by CPSO. (a) Variation curves of c1, c2 and ω in PSO along with iterations.
(b) Swarm average fitness evolving process along iterations (29 iteration steps to converge with variable
c1, c2 and ω in PSO). (c) Fault classification results of VPSO-SVM with classification accuracy = 100%.

Table 4. Simulation results statistical data of the three comparative methods.

SVM CPSO-SVM VPSO-SVM

Elapsed Time on Training (s) 0.001976 18.527162 8.469169

Classification Accuracy on Testing Set Samples
(correctly classified samples/total samples)

99.33%
(298/300)

100%
(300/300)

100%
(300/300)

PSO Iteration Steps - 73 29
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From Figure 12 and Table 4, it could be seen that if only SVM (with manually assigned parameters
values) was adopted for fault classification, the training of SVM is very fast and only took less than
0.002 s. But the assigned SVM parameters were not optimized, this meant 2 samples among 300 testing
ones were improperly classified, and the classification accuracy was 99.33%.

When the parameters of SVM were optimized by CPSO, it can be seen from Figure 13b and
Table 4 that the SVM classification accuracy increased to 100%, 300 samples of testing set were correctly
classified. However, searching optimal SVM parameter values took time; the CPSO with constant
c1, c2 and ω values iterated 73 generations to find the optimal values of C = 6.8856 and g = 0.65746,
as shown in Figure 13a, and the total PSO iteration and SVM training time was 18.53 s.

When the proposed VPSO method was adopted for optimal SVM parameter searching, the variation
of c1, c2 and ω of PSO along with iterations (shown in Figure 14a) helped the PSO decrease its iteration
steps from 73 to 29 before it could find the same optimal values of C = 6.8856 and g = 0.65746 (shown
in Figure 14b and Table 4). The variable parameter mechanism of VPSO accelerated the convergent
speed, and the total PSO iteration and SVM training time decreased from 18.53 to 8.47 s. With the
same optimal parameter values, the SVM achieved the same classification accuracy of 100% (shown in
Figure 14c and Table 4).

With this trained VPSO-SVM, in case OCFs are detected by the OCF indicator, the diagnosis of the
three types of fault could be realized by inputting the exacted features of FP-PMGS terminal currents
and outputting its predicted fault label, which indicates the fault type.

4.4. Faulty Phase Diagnosis Simulations of Single-Phase OCFs and Results Comparison

In Section 4.3, the VPSO-SVM is applied to diagnose the three different OCFs. In this section,
the proposed method is used to identify which phase is suffering an OCF when single-phase OCF is
happening in the FP-PMSG.

Ran the simulation platform shown in Figure 2 five times, the simulation durations were all 0.3 s.
The single-phase OCF simulation procedures are as follows:

(1) in the 1st simulation, from 0 to 0.1 s and from 0.2 to 0.3 s, the MCGS was running normally,
while from 0.1 to 0.2 s, a single-phase OCF happened in phase a;

(2) in the 2nd simulation, from 0 to 0.1 s and from 0.2 to 0.3 s, the MCGS was running normally,
while from 0.1 to 0.2 s, a single-phase OCF happened in phase b;

(3) in the 3rd simulation, from 0 to 0.1 s and from 0.2 to 0.3 s, the MCGS was running normally,
while from 0.1 to 0.2 s, a single-phase OCF happened in phase c;

(4) in the 4th simulation, from 0 to 0.1 s and from 0.2 to 0.3 s, the MCGS was running normally,
while from 0.1 to 0.2 s, a single-phase OCF happened in phase d;

(5) in the 5th simulation, from 0 to 0.1 s and from 0.2 to 0.3 s, the MCGS was running normally,
while from 0.1 to 0.2 s, a single-phase OCF happened in phase e.

We collected the five-phase output currents of the FP-PMSG in each simulation and applied frame
transformation to obtain the direct-axis components of the five simulations. The direct-axis currents in
the five simulations are shown in Figure 15. We applied EMD to those id1 shown in Figure 15 to obtain
IMFs and residues, which are shown in Figure 16.

From Figure 15, it could be seen that the single-phase OCF in different FP-PMSG phases leads
to disturbances in the direct-axis current components: the OCFs in phases a, c and d cause distinct
variations to id1 with different patterns, while OCFs in phases b and e made id1 slightly change.
However, all the variation patterns on id1 are different from each other, which could contribute to the
faulty phase diagnosis.

It could be seen from Figure 16, the EMD extracted four IMFs and one residue from id1 when
the OCF happened in phase a, c, d and e, but only three IMFs when the OCF happened in phase b.
To make features of five single-phase OCF have the same dimensions, 0 s were filled in data array as
the non-existent IMF4 when the OCF happened in phase b. Accordingly, after Hilbert transform to the
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four IMFs and one residue of the five faulty signals, and after calculating the instantaneous amplitude,
phase and frequency, a 1-by-15 feature vector is obtained for each sampled current data.Energies 2020, 13, x FOR PEER REVIEW 22 of 29 
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In total 1000 samples were extracted from the five single-phase OCF simulations, 200 in each from
0.1 to 0.2 s when there was an OCF. All samples were evenly distributed over time. Here, a 1000-by-15
feature matrix was obtained. Classification labels were assigned to the five single-phase OCFs
as follows:

- Label “1” is for single-phase OCF in phase a,
- Label “2” is for single-phase OCF in phase b,
- Label “3” is for single-phase OCF in phase c,
- Label “4” is for single-phase OCF in phase d,
- Label “5” is for single-phase OCF in phase e.

The collected samples and their labels are shown in Figure 17.
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Figure 17. The 1000 samples with their corresponding labels.

Among the 200 samples of each single-phase OCF, 100 were taken to train an SVM and the
remaining 100 were used to test the trained SVM. Thus, the training and testing sets both had
500 samples for the five faults. These samples were loaded to the VPSO-SVM method. To compare the
effectiveness of the proposed VPSO-SVM, the fault features were also applied to an SVM with constant
C and g, and the CPSO-SVM with invariant parameters of PSO. These three contrastive methods had
the same parameter settings as used in the last section. To remove the disturbances from randomly
generated values in PSO on the classification results, the same initial values as used in the last section
were assigned to the swarm particles.

The fault classification results on the testing set by SVM with fixed parameters C and g are shown
in Figure 18. The PSO iteration process and fault classification results on the testing set by CPSO-SVM
are shown in Figure 19. The PSO parameter variation plots along with iterations, PSO iteration process,
and fault classification results on the testing set by the proposed VPSO-SVM are shown in Figure 20.
The simulation results’ statistical data of the three comparative methods are summarized in Table 5.
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Figure 19. Fault classification results on testing set by CPSO-SVM with SVM parameters C = 10
and g = 0.01 optimized by CPSO. (a) Swarm average fitness evolving process along with iterations
(88 iteration steps to converge with constant c1 = c2 = 1.5 and ω = 1 in PSO). (b) Fault classification
results of CPSO-SVM (classification accuracy = 96.4%).

Table 5. Simulation results statistical data of the three comparative methods.

SVM CPSO-SVM VPSO-SVM

Elapsed Time on Training (s) 0.004017 83.073914 33.393072

Classification Accuracy on Testing Samples
(correctly classified samples/total samples)

94.2%
(471/500)

96.4%
(482/500)

96.4%
(482/500)

PSO Iteration Steps - 88 33

From Figure 18 and Table 5, it could be seen that if only SVM (with manually assigned parameters
C = 2 and g = 1) was adopted for fault classification, the training time of SVM is only 0.004 s.
But the assigned SVM parameters were not optimized, this made the classification accuracy 94.2%,
and 29 samples among 500 were improperly classified.

When the parameters of SVM were optimized by CPSO, it can be seen from Figure 19b and Table 5
that the SVM classification accuracy increased from 94.2% to 96.4%, and wrongly classified sample
numbers decreased to from 29 to 18. However, searching optimal SVM parameters took time, the CPSO
with constant c1, c2 and ω values iterated 88 generations to find the optimal values of C = 10 and
g = 0.01, and as shown in Figure 19a, the total PSO iteration and SVM training time was 83.07 s.
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Figure 20. Fault classification results on testing set by VPSO-SVM with SVM parameters C = 10 and
g = 0.01 optimized by CPSO. (a) Variation curves of c1, c2 andω in PSO along with iterations. (b) Swarm
average fitness evolving process along iterations (33 iteration steps to converge with variable c1, c2 and
ω in PSO). (c) Fault classification results of VPSO-SVM with classification accuracy = 96.4%.

When the proposed VPSO method was applied for optimal SVM parameter searching, the variation
of c1, c2 and ω of PSO along with iterations (shown in Figure 20a) helped the PSO decrease its iteration
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steps from 88 to 33 before it could find the same optimal values of C = 10 and g = 0.01 (shown in
Figure 20b and Table 5). The variable parameter mechanism of VPSO accelerated the convergent speed,
and the total PSO iteration and SVM training time decreased from 83.07 s to 33.39 s. With the same
optimal parameter values, the SVM achieved the same classification accuracy of 96.4% (as shown in
Figure 20c and Table 5).

With the trained VPSO-SVM in this section, in case single-phase OCF is detected by the fault
indicator, faulty phase could be diagnosed by inputting the exacted features of FP-PMGS terminal
currents and outputting the predicted label, which indicates which phase is suffering a single-phase
OCF with a high prediction accuracy.

5. Conclusions and Discussion

This article focuses on fault detection and diagnosis techniques of a non-salient FP-PMSG with
THWs for marine tidal generation applications. The main FP-PMSG faults considered in this paper
include three types: (1) single-phase OCF, (2) simultaneous OCFs in two adjacent phases, and (3)
simultaneous OCFs in two non-adjacent phases. The researched FDD techniques are based on EMD,
Hilbert transform, PSO and SVM methods.

To realize fault detection of OCFs in FP-PMSG, EMD and Hilbert transform are applied on the
direct-axis components of the FP-PMSG terminal currents. The instantaneous amplitude of the complex
analytic single after Hilbert transform applied on the first IMF is selected as the OCF indicator to show
the occurrence time of the faults.

Then, a fault classifier based on VPSO-SVM is proposed to diagnose the faults. In this composite
method, SVM is the main classifier for fault type identification, and PSO is adopted to search optimal
values of penalty coefficient C and kernel parameter g, which are very important for the classification
accuracy of SVM. In order to accelerate the convergence speed of PSO with cross-validations,
a swarm average fitness-based parameter variation mechanism is designed to tune the cognitive- and
social-learning rates and the inertia weight of PSO along with the iteration process.

To validate the effectiveness of the proposed method, the models of MCGS based on a FP-PMSG
with THWs was built and realized with MATLAB/Simulink. Simulation results and comparisons
showed that the proposed VPSO-SVM could offer higher fault classification accuracy than SVM with
manually assigned parameters and faster convergence speed than CPSO-SVM. The method could
not only diagnosis the three different OCFs in FP-PMSG, but also identify the faulty phase with high
accuracy when a single-phase OCF happens.

What should be mentioned here is that the initial values of the swarm particles were very important
to decide the convergence speed of PSO. During the simulations, although it did not often happen,
some ‘lucky’ initial values of particles made the optimal values searching process very fast. In such
cases, there was no need to apply the proposed swarm average fitness-based parameter variation
mechanism to PSO. However, in most cases, this mechanism could help. So, in this paper, same initial
values generated with the MATLAB rand function were assigned to the particles in all simulations to
avoid disturbance of the convergence time by random initial values.

It should be realized that FDD of multi-phase MCGSs are complex problems, and faults are more
diverse and complex than those of traditional three-phase generation systems. Fox example, electrical
faults can arise in various phases of both generators and converters; measured signals for FDD may
contain noises caused by MCGSs’ time-varying operation conditions; turbine blades with attached
underwater organisms could introduce harmonics in generators. All these complexities make FDD
research of MCGSs very interesting and full of challenges. Accordingly, subsequent research of this
paper will deal with several important issues that have not been solved in this paper, such as FDD
of MCGSs’ five-phase converters, hybrid faults diagnosis of generators, FDD of concurrent faults in
both generators and converters, and incipient fault diagnosis and prediction of MCGSs. Furthermore,
more practical considerations, such as the impact of tidal speed and load variations, disturbance from
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ocean environments, dynamic behavior ignorance in the research processes, etc. will be gradually
taken into account to make the research results more realistic.
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