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Abstract: The occurrence of fog often causes errors in the prediction of the incident solar radiation
and the power produced by photovoltaic cells. An accurate fog forecast would benefit solar energy
producers and grid operators, who could take coordinated actions to reduce the impact of discontinuity,
the main drawback of renewable energy sources. Considering that information on discontinuity is
crucial to optimize power production estimation and plant management efficiency, in this work, a fog
forecast method based on the output of the Weather Research and Forecasting (WRF) numerical model
is presented. The areal extension and temporal duration of a fog event are not easy to predict. In fact,
there are many physical processes and boundary conditions that cause fog development, such as the
synoptic situation, air stability, wind speed, season, aerosol load, orographic influence, humidity and
temperature. These make fog formation a complex and rather localized event. Thus, the results of a
fog forecast method based on the output variables of the high spatial resolution WRF model strongly
depend on the specific site under investigation. In this work, the thresholds are site-specifically
designed so that the implemented method can be generalized to other sites after a preliminary
meteorological and climatological study. The proposed method is able to predict fog in the 6–30 h
interval after the model run start time; it has been evaluated against METeorological Aerodrome
Report data relative to seven selected sites, obtaining an average accuracy of 0.96, probability of
detection of 0.83, probability of false detection equal to 0.03 and probability of false alarm of 0.18.
The output of the proposed fog forecast method can activate (or not) a specific fog postprocessing
layer designed to correct the global horizontal irradiance forecasted by the WRF model in order to
optimize the forecast of the irradiance reaching the photovoltaic panels surface.

Keywords: fog forecast; numerical weather prediction; WRF; solar energy; power production forecast

1. Introduction

Fog is defined as consisting of tiny droplets of water or ice crystals with a diameter between
~5–30 µm suspended in the immediate vicinity of the Earth’s surface, able to decrease the horizontal
visibility down to less than 1 km [1]. Fog is a microscale phenomenon as it is directly influenced by
local surface forcing and weather conditions, with a time scale of hours or less [2]. Fog has several
implications on the atmosphere and the environment, leading to numerous direct and indirect effects
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on life and human activities, particularly in meteorology, climatology, transports, energy, agriculture,
economy and ecology [3–6]. The main consequence of fog is visibility reduction that can lead to
financial damages, severe accidents and loss of lives [7–9]. Thus, fog prediction has always been
an extremely important activity for land, sea and air transport sectors [10]. Moreover, the presence
of fog tends to alter the radiative budget of the Earth–atmosphere system, hence it is important in
meteorology because it can perturb the local temperature and humidity [11]. It impacts air quality
because it develops when thermal inversions persist; in this situation, air pollutants are trapped in the
boundary layer and not scattered in the atmosphere, especially in urban and industrialized areas [12].
Fog also scatters solar radiation, decreasing the power produced by photovoltaic panels. Fog scattering,
in fact, reduces to zero the direct component of incoming solar radiation, which represents the main
contribution to the electric power produced by photovoltaic panels [13,14]. Thus, fog forecast is
useful to correct solar irradiance prediction and, accordingly, the power produced by solar systems.
This certainly represents one of the frontiers of meteorology applied to renewable energy. In this sense,
the fog forecast assumes a value that economically impacts the supply of solar energy on the market
because the evaluation of the goodness of the forecast is related to an economic index, i.e., the lowest
possible imbalance between the expected energy offered on the trading market and the measured
final balance. Early attempts in forecasting fog are found in [15], where a method for predicting fog
during night based on observations at 8:00 p.m. was presented. Cooling of moist air by radiative flux
divergence, vertical mixing of heat and moisture, vegetation, horizontal and vertical wind, heat and
moisture transport in soil, advection and topographic effect are all listed in [16] as important processes
to consider in the fog formation, whilst longwave radiative cooling at fog top, gravitational droplet
settling, fog microphysics and shortwave radiation are important processes driving fog duration.

In general, there are two broad categories of fog forecast: numerical (using computer simulations)
and observational (diagnosing the likelihood of a future event based on current observations).
An approach to implement fog forecast is to use statistics to define threshold values for key variables
involved in the fog formation and to verify its predictability using observations and NWP model
outputs. Among the statistical methods, different data mining, machine learning and multivariate
techniques have been developed [17–19]. In [20], the proposed statistical method assigns a likelihood of
fog occurrence from 0 to 1 based on comparing observations of key variables to predefined thresholds.

Another methodology is based on NWP fog simulation in terms of liquid water content or other
thermodynamic quantities and processes (horizontal pressure gradient, advection, diffusion, etc.).
These models are able to simulate radiation fog when configured with sophisticated options and
high horizontal and vertical resolutions and can be implemented for fog forecast in one dimension
(1D) similarly to other works [19,21–27]. The main limitation of these 1D methods is their poor
representation of the large-scale situation. Thus, three-dimensional (3D) mesoscale models such as the
Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) and the Weather Research and Forecasting
(WRF) model are also used [8,19,28–31]. Fog forecast with NWP models is still a challenge, with limited
success in terms of accuracy and precision. This is mainly due to the intrinsically complex nature of
the fog phenomenon and to the limited availability of observational and computational resources.

Some empirical methods, instead, are mainly based on thermal and hygrometric gradients between
soil and medium-low troposphere [32–38]. However, these indices need to be adapted on the basis of
the historical series and the local conditions, in order to include small scale factors like local advective
transport, radiation, turbulent mixing, orography and to produce a multiapproach scheme for fog
forecast [34,39].

The implementation of a new fog forecast method represents the main objective of this work.
Fog forecast is a rather complex task because of the extreme variability of the conditions that lead to
its development, the relatively low knowledge about atmospheric phenomena and the coexistence
and interaction of processes characterized by different time and spatial scales. Furthermore, fog is
a local forced event that can rapidly grow or dissipate in conditions not uniquely defined. This is
the main aspect we focus on in this research: the characterization of site-specific meteorological
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conditions that promote fog formation. The method to predict fog has been implemented using
the output of a numerical weather prediction model. The selected domain is the Italian peninsula.
In this territory, the Po Valley, the Apennines and Alpine valleys are often affected by fog during
autumn and winter, especially in the morning hours, when a high-pressure stable condition and
thermal inversion near the ground are present [2,40]. This kind of fog event has the highest impact
on photovoltaic power production [13]. Solar energy is produced by converting the incoming solar
radiation reaching the photovoltaic panel surfaces. Solar radiation enters the atmosphere and undergoes
physical and photochemical interactions which determine a partial or total extinction. In particular,
the atmospheric attenuation is due to the combined effects of backscattering and absorption by clouds
and aerosol, the backscattering due to the air molecules and the absorption by the gases according to
the Bouguer–Lambert–Beer law [14]. In absorption, a fraction of the energy that propagates through a
layer of air is absorbed by the atmospheric constituents and can be re-emitted at a different wavelength.
In addition to absorption, a fraction of the radiant energy that passes through the atmosphere is
scattered. The scattering is mainly due to the impact with air molecules, dust and liquid water droplets
which causes a portion of radiation to be reflected back in all directions (back scattering) or sent to
the Earth in a diffuse form (forward scattering) [9]. Among the different types of clouds, we are
interested in the specific effects of fog on the solar irradiance and, consequently, on photovoltaic power
production. Fog affects solar radiation through Mie scattering and redistributing incident radiation
in different directions according to the particle size. This means that in the fog condition, the diffuse
component can account almost for all the incoming solar radiation. Hence, fog dramatically impacts
the solar power production forecast when clear sky conditions are expected but a fog event occurs [13].
This happens especially in the first hours of daylight until solar heating triggers the fog dissolution
process. The WRF model running at IMAA-CNR forecasts the global horizontal irradiance (GHI)
and its direct and diffuse components. In particular, given the wide availability of measurements,
we decided to focus on the GHI. Our idea is to adjust the WRF GHI output in those cases where the
WRF model did not foresee fog while our multitest-based method for fog forecasting (MBFog) did
it by activating a fog postprocessing layer. The fog postprocessing layer is designed to apply a fog
attenuation transmittance coefficient to the GHI WRF outputs in order to optimize the forecast of the
irradiance reaching the Earth’s surface. This transmittance is obtained using a parameterization of
the fog extinction coefficient [41] and is a function of the solar elevation angle. In Section 2, the used
dataset and the implemented methodology are introduced. Section 3 reports the main results and their
discussion, while Section 4 reports the conclusions of the study.

2. Materials and Methods

First, we introduce the METeorological Aerodrome Report, the surface SYNOPtic observations and
the European Centre for Medium-Range Weather Forecasts reanalysis dataset. Successively, the specific
configuration of the WRF NWP model used for the development of the fog forecast methodology
is described.

2.1. METAR and SYNOP Dataset

METeorological Aerodrome Reports (METAR) data are collected in aeronautical weather stations.
Data collection can be regular or special. Regular measurements are done at fixed temporal rate
(10, 20, 30 or 60 min) while special measurements are taken when a significant variation of the weather
between two regular reports occurs. For the fog presence verification purpose, we focus on the visibility
METAR data. The Italian METAR network features both fully and partially automated stations [42].
This means that some METAR stations are supervised by an observer who manually reports the
relevant information when necessary. Although the METAR can contain the specification about the
direction in which the visibility measurements have been acquired, in our study, we considered only
360◦ visibility data, with no indication on direction. Since vertical visibility is not always available,
it was not considered in this study. Daylight hourly METAR reports are used as the source of
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predictand—i.e., the presence of fog. Fog is detected based on two conditions: (i) reported hourly
visibility is less than 1 km (according to WMO fog definition) and (ii) the label “FG” alone (indicating fog
condition) is reported in the METAR present weather field. In this way, the reduction of visibility has
been attributed uniquely to the presence of fog and not to other weather conditions such as intense
rain, thunderstorm, sand, or ash.

Moreover, METAR wind speeds recorded during the period 2011–2017 (in case fog condition was
reported) were used in this study to define thresholds. METAR visibility data were used twofold:
(i) for the climatological featuring of the main meteorological variables involved in the fog forecasting
algorithm, and (ii) for the evaluation of the implemented method. To evaluate the proposed method,
an independent METAR dataset was collected, covering a different time interval (January to April 2018)
and relative to seven sites in Italy selected based on fog occurrences.

SYNOP bulletins are produced based on the same METAR measurements, but at higher signal
resolution. SYNOP values of surface and dew point temperature, recorded with one tenth of degree
resolution, were collected for the period 2011–2017 (in the case fog condition was reported) and used in
this work to define thresholds. The SYNOP bulletins are issued worldwide at least on a six-hour basis;
in Italy, the release frequency is three hours. We have therefore performed a temporal interpolation of
these measurements to obtain the hourly frequency required in our study. METAR reports and SYNOP
bulletins used in this work are property of the Italian Air Force Meteorological Service. Data were
provided under the Educational/Research license.

2.2. ECMWF ERA5 HRES Reanalysis

The European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 HRES dataset [43]
provides several meteorological variables at one-hour time resolution. It is a global climate reanalysis
dataset with 0.25 by 0.25 degrees spatial resolution, covering the period 1950 to present. The reanalysis is
a numerical description of the atmospheric conditions obtained combining models with a comprehensive
set of observations.

ERA5 HRES is produced using 4D-Var data assimilation in CY41R2 Version of the ECMWF’s
Integrated Forecast System (IFS) model, with 137 hybrid sigma/pressure vertical levels, with the top
level at 0.01 hPa. Atmospheric data are available for these levels and they are also interpolated to
37 pressure, 16 potential temperature and 1 potential vorticity level(s). Among the hundreds of ERA5
HRES variables we have selected the ones closely related to fog: relative humidity, temperature and
dew point at 2 m and wind speed at 10 m.

2.3. WRF Numerical Weather Prediction Model

The Solar Version [44] of the WRF numerical weather prediction model is currently operative
at the Institute of Methodologies for Environmental Analysis of the National Research Council of
Italy (IMAA-CNR). WRF is a limited area model developed by the National Center for Atmospheric
Research (NCAR). WRF-Solar Version has been released from the Version 3.6 [45] and is designed to be
used in the field of solar energy, thanks to the addition of specific tools. The main features of the WRF
model are briefly described below.

The WRF is a nonhydrostatic NWP that solves and integrates the atmospheric dynamics equations;
these are formulated using the terrain following vertical coordinate eta [45]. The numerical scheme
used to integrate the low frequency modes (meteorological phenomena) is the third order Runge–Kutta
method, while the forward/backward one is used for the high-frequency modes (acoustic and
gravitational waves). As far as physics is concerned, WRF contains several options for each
parameterized category, allowing them to be selected and combined according to the objective
of the work. The parametrized physical categories are microphysics, convection, planetary boundary
layer (PBL), surface model and radiation. Microphysics explicitly resolves the precipitation, vapor and
cloud processes. The convective scheme reproduces vertical flows, and it is used only on low spatial
resolution domains (>3–5 km) where convective eddies cannot be explicitly resolved. The PBL schemes
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reproduce the vertical and horizontal diffusion terms and consider the fluxes of latent heat and moisture
calculating the vertical gradients. Finally, the radiative scheme provides atmospheric warming by
considering the contributions of both shortwave and longwave radiation. In this study, we used WRF
v3.8.1, which was released by the NCAR in August 2016, specifically configured for the purposes of
this work. The parent domain covers part of the Mediterranean basin with a spatial resolution of
9 km, while the inner nested domain covers the whole Italian peninsula with a 3 km spatial resolution
(Figure 1).
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Figure 1. Spatial domains of the Weather Research and Forecasting (WRF) model running at the Institute
of Methodologies for Environmental Analysis of the National Research Council of Italy (IMAA-CNR).

The large domain allows us to capture the synoptic structures entering the Mediterranean from
the west side that often drive the meteorological situation on the Italian peninsula. The domains are
represented with a Lambertian projection and employ land use and the DEM (digital elevation model)
from the 2008 updated MODIS database with spatial resolution of 30 s of arc (about 900 m).

The output of the Global Forecast System (GFS) model with 0.25◦ horizontal resolution were first
used to create the initial and border conditions for the WRF-Solar IMAA-CNR numerical model.

• Its configuration features the following parameterizations:
• the Thompson aerosol-aware microphysics [46];
• RRTMG (Rapid Radiative Transfer Model for GCMs) radiation scheme that explicitly calculates

solar radiative components [44];
• the nonlocal Yonsei scheme for the planetary boundary layer [45];
• the convective scheme Kain–Fritsch [45], only for the low spatial resolution domain;
• the shallow cumulus convection active scheme [45].

The WRF in the described configuration performs a daily processing and, starting from midnight,
provides the weather forecast for the next 120 h with 1 h output writing frequency (tunable to
higher frequency at the expense of increased computational time and storage capacity). For example,
Figure 2 shows forecasts of the shortwave surface downward global horizontal irradiance (W/m2),
the 3 h cumulated total precipitation (mm/3 h) and the wind speed (knots) and direction, the 2 m
temperature (◦C) and the cloud cover.
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Figure 2. Example of IMAA-CNR WRF products. Run of 04/09/18 at 00:00 UTC, forecast valid at 14:00
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total precipitation (mm/3 h) plus wind speed (knots) and direction, (c) surface temperature (◦C),
(d) cloud cover.

2.4. The MBFog Multitest Approach

In this study, a multitest-based method for fog forecasting (MBFog) is proposed. It was preferred
to the single diagnostic approach because of limits that the latter shows in fog prediction [9,33].
Multitest-based approaches use two or more variables depending on the desired fog characterization.
In particular, in [33], three tests were used to deal with different fog types: liquid water content (LWC),
cloud base/top and surface relative humidity (RH)—wind rules. Since LWC is related to the horizontal
visibility according to Kunkel equation [41], the LWC rule assumes fog condition, i.e., visibility of 1 km
or less, when LWC is larger than 0.015 g/kg. Cloud base/top rule uses the nominal vertical features of
fog (base of 50 m or less, top of 400 m or less) to identify a fog event. Finally, RH-wind rule identifies
fog when two meteorological situations occur: a 2 m relative humidity of 90% or more and a 10 m
wind speed of 2 m/s or less. In [39], the authors demonstrated that cloud base/top rule is good for a
large-scale fog event like marine fog or coastal fog; for this reason, the RH-wind rule and a two-level
approach using the temperature gradient rule were considered, in order to forecast shallow ground
fog. The proposed method is a diagnostic forecast methodology based on the combination of different
threshold tests applied to WRF model variables outputs, as shown in Figure 3. The main variables
involved in the fog process, such as temperature, humidity, wind and dew point, are considered for
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threshold tests. The MBFog method is a combination of the tests implemented in [34,39] with the fog
stability index [38,47] test. The fog stability index (FSI) is obtained according to the following formula:

FSI = 2(Ts − Td) + 2(Ts − T850) + WS850 (1)

where:

• Ts is the surface temperature [K],
• Td is the surface dew point temperature [K],
• T850 is the temperature at 850 hPa [K],
• WS850 is the wind at 850 hPa [m/s].
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Figure 3. Block diagram of the multitest-based method for forecasting fog (MBFog) using WRF output.
Thresholds are fixed after site-specific climatological study (test #2, #3, #4), statistical study (test #1) or
literature review (test #5).

The first term, Ts − Td, is the dew point depression and provides information regarding the
availability of moisture content in the surface proximity. The second term, Ts − T850, is the stability
term and gives an estimation of the atmosphere steadiness. The FSI index can assume continue values
between 0 and 100, an appropriate threshold identifies FSI values related to fog condition.

To summarize, the MBFog approach presented here considers the following criteria to derive the
fog forecast:

• test #1—FSI_test: fog stability index under a threshold (FSI_thresh);
• test #2—RH_test: surface relative humidity over a threshold (RH_thresh);
• test #3—Tdepr_test: difference between surface temperature and surface dew point under a

threshold (Tdepr_thresh);
• test #4—WS_test: wind speed at 10 m between two thresholds (WS_min_thresh and

WS_max_thresh);
• test #5—RHDiff_test: relative humidity difference between the first two vertical levels under a

threshold (RHDiff_thresh).
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The last rule tends to identify the cases featuring negative relative humidity gradient between
two layers next to the surface as “no fog”. The main meteorological variables involved in fog
onset are temperature, relative humidity, dew point and wind speed. These quantities are derived
from the output of a WRF operational chain implemented at IMAA-CNR to provide forecasts of all
solar irradiance variables at high temporal and horizontal resolution for the benefit of solar energy
industry [48]. The evaluation has been carried out against measurements from seven METAR sites in
the Italian peninsula. The decision to focus on specific points of the area of interest followed by the
localized nature of fog and its low probability of occurrence. This does not suggest general conditions
to be valid into the whole domain. However, the method can be exported to other locations for which
meteorological historical data are available. The METAR sites are listed in Table 1 and their location is
shown in Figure 4.

Table 1. List of sites used for WRF outputs performance evaluation and relative number of samples
used for validation.

Longitude (◦) Latitude (◦) IATA Code City Samples

8.72396 E 45.63 N LIMC Milano Malpensa 321
9.2626 E 45.46143 N LIML Milano Linate 318

11.29694 E 44.53083 N LIPE Bologna 321
11.6125 E 44.81556 N LIPF Ferrara 220

10.87228 E 45.38749 N LIPX Verona Villafranca 310
12.35194 E 45.50528 N LIPZ Venezia 313
12.72778 E 43.51694 N LIVF Frontone 86
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The sites have been chosen for their relative high frequency of fog occurrence during the selected
period. In particular, data collected between January and April 2018 relative to the first 30 h of the daily
WRF run have been used for the evaluation: since the initial 6 h spin up time is discarded [49] and the
WRF run starts at midnight each day, the first 30 h correspond to the forecast until the following day
at noon. The number of samples for each METAR site are reported in Table 1 and refers to 35 WRF
model runs for a total of 325 hourly data for the whole Italian peninsula. We evaluate the WRF outputs
when clear sky conditions are identified, so to eliminate perturbations that could degrade the forecast.
Considering this, a total of 73 samples are used for WRF output evaluation. Forecasts refer to different
times during daylight.
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2.4.1. Evaluation of the IMAA-CNR WRF Variables Outputs

The statistical analysis to evaluate WRF outputs of meteorological variables is based on the
calculation of bias (BIAS), mean absolute error (MAE), normalized root-mean-square error (nRMSE),
correlation coefficient (R), fractional bias (FB) and fraction of predictions within a factor of two of
observations (FAC2). The statistics description and related formulas can be found in [50] and is
reported in Appendix A. WRF outputs have been evaluated against METAR, SYNOP and ECMWF
ERA5 datasets.

The surface temperature was investigated and the correlation between observed and predicted
temperature ranges from 0.89 to 0.99, the nRMSE from 0.08 to 0.29 and the bias from −1.05 to 1.17 ◦C
was analyzed (see Table 2 for the complete set of scores).

Table 2. Statistical scores of WRF surface temperature outputs related to the seven selected sites
measurements. (A negative BIAS means a WRF underestimation and vice versa).

Surface Temperature
N BIAS (◦C) MAE (◦C) nRMSE R FB FAC2

Milano
Linate 12 0.21 0.88 0.08 0.99 −0.004 1

Milano
Malpensa 15 0.29 0.74 0.08 0.99 −0.01 0.87

Verona 17 −0.15 1.39 0.11 0.98 0.03 0.94
Venezia 17 0.58 0.81 0.12 0.98 −0.02 1
Bologna 6 −0.30 0.7 0.1 0.98 0.01 1
Ferrara 6 −1.05 1.71 0.21 0.97 0.03 1

Frontone 4 1.17 1.99 0.29 0.89 0.07 1

The forecasted surface dew point temperature is not obtained directly as a WRF output, but it is
calculated using surface mixing ratio (q2) and surface pressure (psfc) outputs according to the following
formula [51]:

Sur f aceDewPoint =
B

ln
(

A∗eps
q2∗ps f c

) (2)

where A = 2.53 × 108 kPa, B = 5.43 × 103 K, eps = 0.622, q2 is the surface mixing ratio expressed in
kg/kg and psfc is the surface pressure expressed in hPa. Correlation coefficient varies in 0.88–0.97 range,
the nRMSE between 0.17 and 1.6 and the bias from −0.07 to 1.49 ◦C (Table 3).

Table 3. Statistical scores of WRF surface dew point outputs related to the seven selected sites measurements.
(A negative BIAS means a WRF underestimation and vice versa).

Surface Dew Point
N BIAS (◦C) MAE (◦C) nRMSE R FB FAC2

Milano
Linate 15 0.98 2.03 0.63 0.91 −0.06 0.66

Milano
Malpensa 12 1.49 1.68 1.6 0.93 −0.19 0.4

Verona 13 0.07 1.43 0.54 0.97 −0.01 0.93
Venezia 17 1.12 1.46 0.92 0.88 −0.09 0.78
Bologna 6 −0.07 0.79 0.35 0.96 0.007 0.83
Ferrara 6 0.63 1.62 0.17 0.88 0.17 0.75

Frontone 4 0.80 1.06 1.4 0.91 −0.07 0.72

The surface relative humidity is obtained through a formula that requires the surface mixing ratio
and the surface pressure as input [36]:

RHsur f ace = 100
e(ps f c− es)

es(ps f c− e)
(3)
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where:

• es = e0 ∗ exp
(
e1

t−c
t−e2

)
,

• e = q2∗ps f c
eps+q2

,

• e0 = 6.112 hPa,
• e1 = 17.67,
• e2 = 29.65,
• eps = 0.622
• c = 273.15,
• q2 is the surface mixing ratio
• ps f c is the surface pressure in hPa.

Concerning the surface relative humidity, the forecasts are substantially in agreement with the
measurements: Ferrara and Frontone sites are slightly underestimated whilst the remaining sites are
overestimated (Table 4).

Table 4. Statistical scores of WRF surface relative humidity outputs of the seven selected sites (a negative
BIAS means a WRF underestimation and vice versa).

Surface Relative Humidity
N BIAS (%) MAE (%) nRMSE R FB FAC2

Milano
Linate 12 3.87 9.16 0.21 0.86 −0.01 1

Milano
Malpensa 15 3.28 4.63 0.09 0.98 −0.01 1

Verona 13 3.11 7.87 0.46 0.91 0.001 1
Venezia 17 3.22 8.03 0.16 0.79 −0.01 1
Bologna 6 0.36 1.14 0.02 0.99 −0.001 1
Ferrara 6 6.5 6.5 0.13 0.92 0.02 1

Frontone 4 3.61 8.55 0.10 0.89 0.01 1

The WRF model wind output is provided as Eastward (U) and Northward (V) components in the
Arakawa C staggered grid [44] in which the U component refers to the center of the left grid face and
the V to the lower grid faces. These components are relative to the model grid and not to the Earth
coordinates. METAR data report wind speed and direction; hence, before comparison, U and V wind
vectors have been converted in wind speed. With regards to wind speed, performances are worse than
other variables, however reasonable if accounting for a systematic estimation error for all the selected
sites (Table 5).

Table 5. Statistical scores of WRF wind speed at 10 m outputs of the seven selected sites. (a negative
BIAS means a WRF underestimation and vice versa).

Wind Speed at 10 m
N BIAS (m/s) MAE (m/s) nRMSE R FB FAC2

Milano
Linate 12 −0.13 0.93 1.15 0.26 0.17 0.67

Milano
Malpensa 15 −1.12 1.67 0.82 0.45 0.10 0.67

Verona 13 −0.42 1.14 0.62 0.63 0.05 0.69
Venezia 17 0.39 1.16 0.72 0.70 0.18 0.41
Bologna 6 −0.44 0.93 0.48 0.29 0.05 0.66
Ferrara 6 1.73 1.81 1.19 0.38 −0.16 0.67

Frontone 4 −0.19 1.25 1.04 0.64 0.04 0.72

Overall, the IMAA-CNR WRF model shows good performances for the selected sites; differences
between observed and forecast values are accounted when tuning the thresholds of the MBFog method.
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2.4.2. Definition of the Thresholds

Site-specific climatological and statistical analysis were carried out for each of the seven selected
sites in order to derive appropriate thresholds. In particular, we performed a climatological
characterization of surface temperature, surface relative humidity, 10 m wind speed and surface
dew point during reported fog events, based on the historical series of METAR and SYNOP bulletins
in the period January 2011–December 2017. Threshold values are computed via a statistical method
aimed at maximizing the accuracy on the training dataset (climatological METAR and SYNOP
dataset 2011–2017). Starting from this, we derived a corresponding analytical model given by:
Threshold = MEAN ± STD + sign (BIAS)*MAE/2. This expression is only intended to provide a
posteriori analytical reference for thresholds, explaining their order of magnitude in terms of three
contributions related to the climatological dataset (i.e., MEAN and STD) and the NWP method
(i.e., MAE) used. Thus, in this expression, RH_thresh and WS_min_thresh are set to the average
minus the standard deviation values while TDepr_thresh and WS_max_thresh to the average plus
the standard deviation values. These thresholds should be adapted considering the BIAS and the
MAE of the WRF outputs presented above (see Section 2.4.1). All of them should be increased or
reduced (depending on the BIAS sign) by a quantity equal to the half of the MAE. Regarding the
relative humidity difference between the first two vertical levels (RHDiff) and the fog stability index,
historical series are not available. Thus, in the case of RHDiff, we selected a threshold available and
validated in literature, equal to −4.5% [39], while for the FSI we selected a subset of WRF outputs to
derive an appropriate threshold. To this aim, we use the maximization criteria based on the area under
ROC (receiving operating characteristic) curve and Youden’s index [52]. Youden’s index expresses the
performances of a dichotomous diagnostic test (see Appendix B). We calculated this index using fixed
values for relative humidity, surface temperature, surface dew point and wind speed thresholds but
varying the FSI threshold value between its minimum and maximum value (0 and 100, assumed to be
the highest and lowest probability of fog occurrence, respectively). The appropriate FSI_thresh was
chosen as the FSI value corresponding to the maximum Youden’s index. This permitted us to obtain
the maximum area under ROC curve (AROC).

3. Results and Discussion

In this section, we report results of the site by site analysis. This is conducted to customize the fog
forecasting method to the specific environment, in terms of values assumed by the variables of interest
in the presence of fog and the relative derived thresholds.

3.1. Milano Linate (45.46143 N, 9.2626 E, 103 m a.s.l.)

Milano Linate is situated in the Po Valley and is characterized by a relative high probability of fog
formation. This is confirmed by METAR and SYNOP 2011–2017 observations: during the whole period,
fog has been reported in 5311 of 122075 measurements (4.33% of total observations number) distributed
unequally in all seasons: 51.16% in autumn, 46.96% in winter, 1.73% in spring and 0.15% in summer.
Values and selected thresholds are reported in Table 6, while Figure 5 shows the related histograms of
measurements. It should be noted that METAR ambient and dew point temperatures are rounded
towards the nearest integer, causing unrealistic gaps when T is close to Td and consequently in fog
cases. This limitation has an impact also in relative humidity values that are obtained from the ambient
and dew point temperatures [36]. Therefore, we used SYNOP data for the ambient temperature,
dew point temperature and relative humidity climatological analysis in all the evaluated sites.

According to Youden’s index, FSI_thresh equals 28, obtaining the ROC curve in Figure 5d,
with AROC = 0.72. By applying these thresholds to the IMAA-CNR WRF variables outputs, the MBFog
method has been evaluated against METAR, achieving the following performances: POD = 0.70,
FAR = 0.12 and Accuracy = 0.94.
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Table 6. Mean, standard deviation and thresholds selected for relative humidity, surface temperature/dew
point depression and wind speed measured in fog condition and FSI threshold calculated using
Youden’s index for Milano Linate.

Mean Standard Deviation Threshold

RH 99.30% 3.40% Min: 98%
Diff_T_TDEW 0.10 ◦C 0.21 ◦C Max: 1.2 ◦C

WS10 1.43 m/s 0.75 m/s Min: 0 m/s
Max: 1.3 m/s

FSI - - 28
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Figure 5. Histograms of the measurements of (a) relative humidity, (b) surface temperature/dew point
difference, (c) wind speed in fog condition at Milano Linate in the period January 2011–December 2017
and (d) receiving operating characteristic (ROC) curve with FSI_thresh = 28.

3.2. Milano Malpensa (45.62 N, 8.7231 E, 211 m a.s.l.)

The METAR 2011–2017 observations at Milano Malpensa reported fog in 2797 out of 121987
cases (2.29% of total observations) occurring in autumn (42.97%), winter (56.67%), spring (0.25%) and
summer (0.15%), respectively. The mean and the standard deviation of the surface relative humidity
(RH), the difference between surface temperature and surface dew point (Diff_T_TDEW) and the wind
speed at 10 m (WS10) have also been calculated. Values and adapted thresholds are reported in Table 7
while Figure 6 shows the related histogram of measurements.
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Table 7. Mean, standard deviation and thresholds selected for relative humidity, surface temperature/dew
point depression and wind speed measured in fog condition and fog stability index (FSI) threshold
calculated using Youden’s index for Milano Malpensa.

Mean Standard Deviation Threshold

RH 98.6% 4.5% Min: 99%
Diff_T_TDEW 0.22 ◦C 0.37 ◦C Max: 1.6 ◦C

WS10 1.07 m/s 0.68 m/s Min: 0 m/s
Max: 1.3 m/s

FSI - - 26
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Figure 6. Histograms of the measurements of (a) relative humidity, (b) surface temperature/dew point
difference, (c) wind speed in fog condition at Milano Malpensa in the period January 2011–December 2017
and (d) ROC curve with FSI_thresh = 26.

According to Youden’s index, FSI_thresh equals 26, obtaining the ROC curve in Figure 6d,
with AROC = 0.71. By applying these thresholds to the IMAA-CNR WRF variables outputs, the MBFog
methodology has been evaluated against METAR, achieving the following performances: POD = 0.88,
FAR = 0.30 and Accuracy = 0.97.

3.3. Verona (45.3875 N, 10.8723 E, 68 m a.s.l.)

Verona is situated in the Po Valley next to Lake Garda. Its location is favorable for fog, and the
near water basin represents a further source. Indeed, METAR during years 2011–2017 reports fog in
5.25% of measurements (6447 out of 118790). Among these, 50.58% are in winter, 46.01% in autumn,
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3.12% in spring and 0.29% in summer. Histograms and values for this site are reported in Figure 7 and
Table 4.
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In Figure 7, it is shown that the ROC curve obtained with an FSI threshold of 26 underlies an
AROC of 0.72. With the thresholds reported in Table 8, MBFog forecast method achieves the following
performances: POD = 0.80, FAR = 0.14 and Accuracy = 0.96.

Table 8. Mean, standard deviation and thresholds selected for relative humidity, surface temperature/dew
point depression and wind speed measured in fog condition and FSI threshold calculated using Youden’s
index for Verona.

Mean Standard Deviation Threshold

RH 95.54% 3.58% Min: 96%
Diff_T_TDEW 0.66 ◦C 0.57 ◦C Max: 1.9 ◦C

WS10 1.01 m/s 0.84 m/s Min: 0 m/s
Max: 1.3 m/s

FSI - - 26

3.4. Venezia (45.5053 N, 12.3519 E, 68 m a.s.l.)

The METAR 2011–2017 reports indicate the presence of fog in 4477 out of 120,877 cases (3.65% of
the total observations). Of these, the 50.70% are in winter, 43.36% in autumn, 4.89% in spring and
2.14% in summer. Table 9 and Figure 8 report values and histograms for Venezia. The ROC curve
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is obtained using the FSI threshold equal to 27 and underlies an area of 0.71 as shown in Figure 8d.
With the selected thresholds, the evaluation of the MBFog method in Venezia obtains the following
performances: POD = 1, FAR = 0.14 and Accuracy = 0.99.

Table 9. Mean, standard deviation and thresholds selected for relative humidity, surface temperature/dew
point depression and wind speed measured in fog condition and FSI threshold calculated using
Youden’s index for Venezia.

Mean Standard Deviation Threshold

RH 96.15% 9.24% Min: 91%
Diff_T_TDEW 0.65 ◦C 0.87 ◦C Max: 2.3 ◦C

WS10 1.44 m/s 0.9 m/s Min: 1.1 m/s
Max: 2.9 m/s

FSI - - 27
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3.5. Bologna (44.5308 N, 11.2969 E, 42 m a.s.l.)

Bologna is located in the Po Valley and, in the period between the 2011 and 2017, in 4366 cases
out of 120,598 METAR reported fog (3.56%). Of these cases, the 53.39% were in winter, the 43.68%
in autumn and the 2.93% in spring. Bologna’s selected thresholds are reported in Table 10 while in
Figure 9 are shown the related histograms of measurements in fog condition. Following the Youden’s
index criteria, it has been selected the FSI threshold that permits to obtain the ROC curve of Figure 9d.
This ROC subtends an AROC = 0.72. Calculated performances are: POD = 0.75, FAR = 0.40 and
Accuracy = 0.98.
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Table 10. Mean, standard deviation and thresholds selected for relative humidity, surface temperature/dew
point depression and wind speed measured in fog condition and FSI threshold calculated using Youden’s
index for Bologna.

Mean Standard Deviation Threshold

RH 96.86% 2.75% Min: 95%
Diff_T_TDEW 0.45 ◦C 0.4 ◦C Max: 0.5 ◦C

WS10 1.82 m/s 1.05 m/s Min: 0.3 m/s
Max: 2.4 m/s

FSI - - 24
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3.6. Ferrara (44.8156 N, 11.6125 E, 10 m a.s.l.)

Ferrara, situated in the middle of Po Valley, is characterized by high frequency of fog occurrence,
as reported in 2565 out of 32866 cases, i.e., 7.84% (the 41.92% during winter, the 53.7% in autumn,
the 3.64% during spring and the 0.74% during summer) in the METAR 2011–2017 observations.
Histograms and selected values for this site are reported in Figure 10 and Table 11.

In Figure 10d, the ROC curve is shown, obtained with FSI threshold equal to 25 with an AROC of
0.74. Applying the thresholds reported in Table 12, the MBFog method achieves for Ferrara POD = 0.65,
FAR = 0.08 and Accuracy = 0.90.
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(d) ROC curve obtained with FSI_thresh = 25.

Table 11. Mean, standard deviation and thresholds selected for relative humidity, surface temperature/dew
point depression and wind speed measured in fog condition and FSI threshold calculated using Youden’s
index for Ferrara.

Mean Standard Deviation Threshold

RH 92.98% 4.75% Min: 91%
Diff_T_TDEW 1.07 ◦C 0.75 ◦C Max: 1 ◦C

WS10 0.49 m/s 0.71 m/s Min: 0.7 m/s
Max: 2.1 m/s

FSI - - 25

Table 12. Mean, standard deviation and thresholds selected for relative humidity, surface temperature/dew
point depression and wind speed measured in fog condition and FSI threshold calculated using Youden’s
index for Frontone.

Mean Standard Deviation Threshold

RH 94.9% 3.71% Min: 95%
Diff_T_TDEW 0.78 ◦C 0.6 ◦C Max: 2.4 ◦C

WS10 1.78 m/s 1.39 m/s Min: 0 m/s
Max: 2.5 m/s

FSI - - 32

3.7. Frontone (43.5169 N, 12.7277 E, 574 m a.s.l.)

Frontone is located in the Apennines, in a small valley favorable to the development of radiation
fog mainly during autumn and winter seasons. METAR 2011–2017 reported it in 2906 out of 60,125 cases
(the 4.71%) distributed during the different seasons in this way: 39.82% in winter, 41.38% in autumn,
14.96% in spring and 3.84% in summer.
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Values and selected thresholds for this site are reported in Table 12, while in Figure 11 there are
shown the related histogram of measurements in fog condition. With these thresholds, we obtained
POD = 1, FAR = 0.08 and Accuracy = 0.97.
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Figure 11. Histograms of the measurements of (a) relative humidity, (b) surface temperature/dew point
difference, (c) wind speed in fog condition at Frontone in the period January 2011–December 2017 and
(d) ROC curve obtained with FSI_thresh = 32.

For the Frontone site, the ROC curve was obtained using an FSI threshold equal to 32 and underlies
an area of 0.81 (see Figure 11d).

3.8. Discussion of MBFog Evaluation Results

MBFog performances were evaluated with respect to the following methods:

(a) Fog Stability Index under a fixed threshold (31), as reported in [38] (i.e., FSI test);
(b) RH larger than a fixed threshold (90%) and Wind Speed smaller than a fixed threshold (2 ms−1),

as reported in [34] (i.e., RH/Wind test);
(c) Visibility obtained from Liquid Water Content (LWC) using Kunkel’s law [41] less than a fixed

threshold (1 km), as reported in [37,41] (i.e., Visibility test).

Note that all variables used in these comparisons (surface temperature, surface dew point
temperature, wind speed at 10 m, temperature at 850 hPa, wind speed at 850 hPa and surface mixing
ratio) are obtained from the same IMAA-CNR WRF runs used in MBFog performance evaluation,
i.e., daytime hourly outputs of 35 runs selected in the period January–April 2018. In this framework,
(see the Appendix C for all statistical scores), MBFog results in better performances with respect to the
other methods mentioned above. This is mainly attributed to the fact that the thresholds are specifically
tuned for each site. The evaluation has been carried out against METAR data on seven sites chosen for
their frequent fog occurrence in the period January–April 2018.

Table 13 contains the overall statistical scores for all the sites. Appendix B explains the definitions
of the considered statistical indexes (see [50] for more details).
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Table 13. Overall statistic performances of multitest fog forecast method for the selected sites.

Milano Linate Milano Malpensa Verona Venezia Bologna Ferrara Frontone

tp 14 7 12 11 3 22 12
tn 119 109 104 122 127 104 16
fp 2 3 2 2 2 2 1
fn 6 1 3 0 1 12 0

n_total 141 120 121 136 133 140 29
Accuracy 0.94 0.97 0.96 0.99 0.98 0.90 0.97

BIAS 0.80 1.25 0.93 1.17 1.25 0.71 1.08
POD 0.70 0.88 0.80 1 0.75 0.65 1
FAR 0.12 0.30 0.14 0.14 0.40 0.08 0.08

POFD 0.02 0.03 0.02 0.02 0.02 0.02 0.06
SR 0.88 0.70 0.86 0.86 0.60 0.92 0.92
TS 0.64 0.64 0.71 0.86 0.50 0.61 0.92

ETS 0.59 0.61 0.67 0.84 0.49 0.54 0.87
HKD 0.68 0.85 0.78 0.98 0.73 0.63 0.94
HSS 0.75 0.76 0.80 0.91 0.66 0.70 0.93

ORSS 0.99 0.99 0.99 1 0.99 0.98 1

In the evaluated sites, MBFog forecast method is able to predict fog in the 6–30 h after the WRF
start time with an average accuracy of 0.96, an average probability of detection of 0.83 and an average
false alarm ratio of 0.18. The average success ratio is 0.82; this means that the 82% of the fog forecasted
have been actually observed. The goodness of the MBFog method has been evaluated with respect to
the random chance by means of the odds ratio skill score obtaining average value of 0.994 (1 being the
perfect score). MBFog suffers from a relatively high false alarm ratio (average value of 0.18); this means
that the algorithm can produce a false underestimation of the irradiance reaching the photovoltaic
panels when fog is expected while it does not occur.

Considering similar fog forecasting methods, in [40], an accuracy of 0.95 has been reported. In [34],
the implemented multivariable-based diagnostic method scored an ETS = 0.334, while the single-rule
methodology (LWC rule) scored an ETS = 0.063. Comparison against these methods [34,39] reveals
that MBFog is aligned in terms of performances (average accuracy 0.96, average ETS = 0.409); however,
it also reveals that this class of fog forecast methods experiences similar limitations, e.g., they predict
fog formation fairly well, but they do not predict its duration as well.

3.9. First Results of the Application of the Fog Postprocessing Layer to the IMAA-CNR WRF Irradiance Forecast

In this subsection, we present a first evaluation of the application of the fog postprocessing layer
to the WRF global horizontal irradiance forecast.

First of all, we selected those case in which IMAA-CNR WRF did not predicted fog while it occurs,
after that we calculated statistical scores for 4 METAR site we have available the measured GHI values
in the period between January and April 2018: Milano Linate, Milano Malpensa, Bologna e Ferrara.
WRF GHI scores have been calculated in both the cases in which fog postprocessing layer is applied
or not. In all the considered cases, we had an improvement of the statistical scores when using fog
postprocessing layer, as reported in Table 14 below.

Table 14. Comparison of GHI WRF output performances with or without the application of fog
postprocessing layer (ppl).

Milano Linate Milano Malpensa Bologna Ferrara
No fog ppl With fog ppl No fog ppl With fog ppl No fog ppl With fog ppl No fog ppl With fog ppl

n_total 23 23 15 15 14 14 41 41
BIAS (W·m−2) 89.44 23.49 80.98 49.42 88.62 26.02 82.73 17.60
MAE (W·m−2) 89.96 31.11 80.98 49.42 88.62 27.12 102.12 44.03

RMSE (W·m−2) 122.68 39.97 118.58 76.4 125.47 36.36 139.28 59.89
R 0.83 0.96 0.80 0.86 0.79 0.98 0.63 0.80

FB −0.15 −0.05 −0.25 −0.20 −0.14 −0.05 −0.14 −0.04
nMSE 0.45 0.06 1.22 0.63 0.46 0.05 0.70 0.19
FAC2 0.52 0.78 0.13 0.27 0.36 0.93 0.56 0.73



Energies 2020, 13, 6140 20 of 28

4. Conclusions

This work presents a multitest method to forecast the presence of fog using the output data of
a numerical weather prediction model, namely WRF. The fog forecast method is based on several
threshold tests applied to the main meteorological variables involved in fog processes obtained from
the WRF NWP model at spatial resolution of 3 km and temporal resolution of 1 h over the Italian
peninsula. The implemented method combines several deterministic tests in which meteorological
variables involved in the fog process and the fog stability index (FSI) are evaluated with respect to
empirical site-specific thresholds. The evaluation has been carried out against METAR data on seven
sites chosen for their frequent fog occurrence in the period January–April 2018.

The MBFog method tends to maximize the accuracy and the probability of detection and at
the same time to minimize the probability of false detection and the probability of false alarm with
respect to single-test methods for the evaluated dataset. The strength of this method is its capability
to adapt the thresholds to the specific site under investigation. This means that, if meteorological
time series are available, the method can be adapted for other sites after a preliminary meteorological
and climatological analysis. The output of the proposed fog forecast method can activate or not a
specific fog postprocessing layer designed to correct the global horizontal irradiance forecasted by the
WRF model in order to optimize the forecast of the irradiance reaching the PV panels surface. We can
conclude that the proposed MBFog method is useful to forecast fog occurrence, and thus it can be used
to improve the forecast of PV power production.
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psfc Surface pressure (hPa)
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WRF Weather Research and Forecast
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Appendix A. Standard Verification Methods for Continuous Variables Forecasts

In this appendix we describe the statistical indexes used for the validation of the WRF outputs forecasts: bias,
mean absolute error (MAE), normalized root-mean-square error (nRMSE), correlation coefficient (R), fractional bias
(FB), normalized mean square error (nMSE), fraction of predictions within a factor of two of observations (FAC2).

• Bias

Bias is defined as the sum of the difference between forecasted (F) and observed (O) values divided by the
total number of samples.

BIAS =
1
N

N∑
i=1

Fi −Oi (A1)

Bias gives an indication of the forecast average error but does not measure the correspondence between
forecasts and observations. Bias can assume values between −∞ and +∞, perfect score means a bias equal to zero.

• Mean Absolute Error

Mean Absolute Error (MAE) is the ratio between the sum of the absolute value of the difference between
forecasts (F) and observations (O) and the total number of samples.

MAE =
1
N

N∑
i=1

|Fi −Oi| (A2)

It is used to address the average magnitude of the forecast errors but does not indicate the direction of them.
It can be a value between zero and +∞with perfect score zero.

• Normalized Root-Mean-Square Error

Normalized Root-Mean-Square Error (nRMSE) is calculated according to the following formula:

nRMSE =

√
1
N

∑N
i=1(Fi −Oi)

2

1
N

∑N
i=1 Oi

(A3)

It measures average error weighted according to the square of the error and is normalized by the mean
observation value. In particular this index is influenced mainly by large errors encouraging conservative forecasts.
It can assume values between 0 and 1 with perfect score 0.

• Correlation coefficient

Correlation coefficient is calculated using the following equation:

R =

∑N
i=1

(
F− F́

)(
O− Ó

)
√∑(

F− F́
)2

√∑(
O− Ó

)2
(A4)
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It is a measure of the phase error. A good correlation coefficient means a scatter plot with values arranged
around the diagonal but does not consider the bias and is sensitive to outliers. It can be a value ranging from
−1 to 1 with perfect score equivalent to 1. Having a good correlation coefficient is a necessary but not sufficient
condition for having a perfect forecast.

• Fractional Bias

Fractional Bias (FB) is defined as the sum of the difference between observed (O) and forecasted (F) values
divided by the sum of the sum between observed (O) and forecasted (F), all divided by 2.

FB =
1
2

∑N
i=1 Oi − Fi∑N
i=1 Oi + Fi

(A5)

It is a measure of systematic errors and gives an indication on how the forecast underestimate or overestimate
the measures. A good forecast means having a FB of 0.

• Normalized Mean Square Error

Normalized Mean Square Error (nMSE) is calculated according to the following formula:

nMSE =
1
N

∑N
i=1(Fi −Oi)

2

1
N

∑N
i=1 OiFi

(A6)

It quantifies random error beyond that systematic error. Perfect score is reached with value equal to zero.

• Fraction of predictions within a factor of two of observations

Fraction of predictions within a factor of two of observations (FAC2) is a robust measure because is not
influenced by outliers and is obtained following this criterion:

FAC2 = f ractiono f datasatis f y : 0.5 ≤
Fi
Oi
≤ 2 (A7)

Appendix B. Standard Verification Methods for Dichotomous Variables Forecasts

In this appendix are described the statistical indexes used for the validation of the multitest based approach
fog forecast method: accuracy, bias score, probability of detection (POD), false alarm ration (FAR), probability of
false detection (POFD), success ratio (SR), threat score (TS), equitable threat score (ETS), Hanssen and Kuipers
discriminant (HKD), Heidke skill score (HSS) and Odds ratio skill score (ORSS).

In order to calculate categorical statistics, first, a contingency table must be defined showing the joint
distribution, i.e., the frequency of positive and negative occurrences:

Table A1. Binary contingency table

n_total
Observed

Observed Yes Observed No

Forecasted
Forecast Yes tp tn
Forecast No fn fp

where:

• tp (true positive) or hits are those events that were forecasted and actually occurred;
• tn (true negative) or correct negatives are the events that were not forecasted and did not occur;
• fp (false positive) or false alarms are those events that were forecasted but not occur;
• fn (false negative) or misses are the events occurred but not forecasted; and
• n_total is the sum of true positives, true negatives, false positives and false negatives.

Keeping in mind that a perfect system would produce only true positives and true negatives and that in this
work a positive event is represented by the correct detection/forecast of fog presence, below there are reported the
description of the calculated categorical statistics and the criteria to their interpretation.
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• Accuracy

Accuracy, or fraction correct, is the ratio between the sum of hits and correct negatives and the n_total. It can
assume values ranging from 0 to 1 (best value). Accuracy gives the fraction of the overall correct forecasts.

Accuracy =
tp + tn
ntotal

(A8)

• Bias score

Bias score, also called frequency bias, measures the ratio of the frequency of forecasts to the frequency of
observations. Can assume values over zero (perfect score is 1). If BIAS < 1 the system has a tendency of under
forecast, the opposite if BIAS > 1.

BIAS =
tp + f p
tp + f n

(A9)

• Probability of detection (POD)

Probability of detection (or true positive rate or sensitivity) returns the frequency of observed event correctly
forecasted. Values ranges from 0 to 1 with 1 perfect score. POD is sensitive to hits but not consider false alarms.

POD =
tp

tp + f n
(A10)

• True negative rate (Specificity)

True negative rate (or specificity) is the ratio of the true negative by the sum of all negative observed events. It is
useful in the determination of ROC (Receiving Operating Characteristic) curve and to calculate the Youden’s index.

speci f icity =
tn

tn + f p
(A11)

• False alarm ratio (FAR)

False alarm ratio gives an indication on the fraction of positive predicted events actually not occurred. It can
assume values between 0 to 1 with 0 perfect score. It is sensitive to false alarms but not to misses.

FAR =
f p

tp + f p
(A12)

• Probability of false detection (POFD)

Probability of false detection (or false alarm rate) is the fraction correct negatives event not forecasted. Values
ranges from 0 to 1. POFD should be 0 in a perfect system.

POFD =
f p

f p + tn
(A13)

• Success ratio (SR)

Success ratio measures the fraction of hits among all the positive forecasts (sum of hits and false alarms). SR is
equal to 1 − FAR. Value range is between 0 and 1, with 1 best performance indicator.

SR =
tp

tp + f p
(A14)

• Threat score (TS)

Threat score (or critical success index-CSI-) is the measurement of the fraction of observed and forecasted
events that were correctly predicted. Thus, it differs from the accuracy because it does not consider true negatives.
It is sensitive to hits, A TS of 0 indicates that the system has no skill while 1 that system is perfect.

TS =
tp

tp + f n + f p
(A15)
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• Equitable threat score (ETS)

Equitable threat score (or Gilbert skill score-GSS-) gives information on how well the positive forecasts
correspond to the positive observations adjusted for hits associated with random chance. It is sensitive to hits and
does not distinguish the source of forecast error because it penalizes both misses and false alarms. It assumes
values ranging from −1/3 to 1 with 0 and 1 respectively the worst and the best values.

ETS =
tp− tprnd

tp + f n + f p + tprnd
(A16)

where

tprnd =
(tp + f n)(tp + f p)

ntotal
(A17)

• Hansen and Kuipers discriminant (HKD)

Hansen and Kuipers discriminant (also called true skill statistic-TSS-or Peirce’s skill score-PSS-) measures if
and how well the system is able to separate positive from negative forecasts. It can be seen also as the difference
between POD and POFD and interpreted as the sum of accuracy for events and accuracy for no events minus one.
It ranges from −1 to 1, 0 indicates no skills and 1 the perfect score.

HKD =
tp

tp + f n
−

f p
f p + tn

= POD− POFD (A18)

• Heidke skill score (HSS)

Heidke skill score (or Cohen’s k) is defined as the fraction of correct forecasts after the elimination of those
forecasts which would be correct due purely to random chance. It ranges from −1 to 1, where 0 indicates no skills
and 1 the perfect score

HSS =
(tp + tn) − expectedcorrectrandom

ntotal − expectedcorrectrandom
(A19)

with
expectedcorrectrandom =

1
N
[(tp + f n)(tp + f p) + (tn + f n)(tn + f p)] (A20)

• Odds ratio skill score (ORSS)

Odds ratio skill score, i.e., Yule’s, quantifies the improvement of the forecast over the random chance. Values
range is from −1 to 1. Zero is the worst while 1 is the best value.

ORSS =
(tp ∗ tn) − ( f n ∗ f p)
(tp ∗ tn) + ( f n ∗ f p)

(A21)

• Youden’s index (YI)

Youden’s index is defined as the difference between true positive rate and false alarm rate.

YI = sensitivity + speci f icity− 1 (A22)

This index is used to find appropriate cut-off in a categorical forecast. In particular maximum value of
Youden’s index allow to select the value that maximize the area under ROC. YI values can range from 0 to 1 with
1 perfect score.

• Receiving Operating Characteristic (ROC) curve

In the theory of decision, ROC curves are graphical schemes for a binary classifier in which are reported
the false positive rate on the x-axis and the true positive rate on the y-axis. Best ROC curve has an area under
ROC (AROC) of 1, in particular, AROC values around 0.5 means probability of low accurate forecasts and value
towards 1 probability of high accurate forecasts.

Appendix C. MBFog Statistical Evaluation with Respect to Other Fog Forecast Methods

In this appendix we report MBFog performances with respect to the following alternative methods available
in the open literature:

(a) FSI test: Fog Stability Index under a fixed threshold (31), as reported in [38];
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(b) RH/Wind test: RH larger than a fixed threshold (90%) and Wind Speed smaller than a fixed threshold
(2 ms−1), as reported in [34];

(c) Visibility test: Visibility obtained from Liquid Water Content (LWC) using Kunkel’s law [41] less than a fixed
threshold (1 km), as reported in [37,41].

It is important to remark that all variables used in these comparisons (surface temperature, surface dew
point temperature, wind speed at 10 m, temperature at 850 hPa, wind speed at 850 hPa, surface mixing ratio)
are obtained from the same IMAA-CNR WRF runs used in MBFog performance evaluation, i.e., daytime hourly
outputs of 35 runs selected in the period January–April 2018.

In the following tables all the statistical performances for each of the selected sites are reported. Overall,
based on the IMAA-CNR WRF runs outputs, we can conclude that MBFog improves the performance compared
to the other considered methods.

Table A2. Performances of several fog prediction methods for Milano Linate site

LIML (Milano Linate)

tp tn fp fn n_total Accuracy BIAS POD FAR POFD SR TS ETS HKD HSS ORSS

(a) 16 100 1 4 141 0.82 1.85 0.8 0.57 0.17 0.43 0.39 0.30 0.63 0.46 0.9
(b) 2 121 0 18 141 0.88 0.1 0.1 0 0 1 0.1 0.09 0.1 0.16 1
(c) 4 120 1 16 141 0.88 0.25 0.2 0.2 0.01 0.8 0.19 0.16 0.19 0.28 0.93

MBFog 14 119 2 6 141 0.94 0.8 0.7 0.12 0.02 0.88 0.64 0.6 0.68 0.75 0.99

Table A3. Performances of several fog prediction methods for Milano Malpensa site

LIMC (Milano Malpensa)

tp tn fp fn n_total Accuracy BIAS POD FAR POFD SR TS ETS HKD HSS ORSS

(a) 7 92 20 1 120 0.82 3.37 0.87 0.74 0.18 0.26 0.25 0.20 0.70 0.33 0.94
(b) 0 111 1 8 120 0.92 0.12 0 1 0.09 0 0 −0.07 −0.01 −0.01 −1
(c) 3 111 1 5 120 0.95 0.5 0.37 0.25 0.01 0.75 0.33 0.31 0.37 0.48 0.97

MBFog 7 109 3 1 120 0.97 1.25 0.88 0.3 0.03 0.7 0.64 0.61 0.85 0.76 0.99

Table A4. Performances of several fog prediction methods for Verona site

LIPX (Verona)

tp tn fp fn n_total Accuracy BIAS POD FAR POFD SR TS ETS HKD HSS ORSS

(a) 10 99 7 5 121 0.9 1.13 0.67 0.41 0.07 0.59 0.45 0.4 0.6 0.57 0.93
(b) 1 106 0 14 121 0.88 0.07 0.07 0 0 1 0.07 0.06 0.07 0.11 1
(c) 2 105 1 13 121 0.88 0.2 0.13 0.33 0.01 0.67 0.12 0.10 0.12 0.19 0.88

MBFog 12 104 2 3 121 0.96 0.93 0.8 0.14 0.02 0.86 0.71 0.67 0.78 0.8 0.99

Table A5. Performances of several fog prediction methods for Venezia site

LIPZ (Venezia)

tp tn fp fn n_total Accuracy BIAS POD FAR POFD SR TS ETS HKD HSS ORSS

(a) 12 110 1 0 136 0.9 2.17 1 0.54 0.11 0.46 0.46 0.41 0.89 0.58 1
(b) 3 124 0 9 136 0.93 0.25 0.25 0 0 1 0.25 0.23 0.25 0.38 1
(c) 7 121 3 5 136 0.94 0.83 0.58 0.3 0.02 0.7 0.47 0.43 0.56 0.6 0.97

MBFog 11 122 2 0 136 0.99 1.17 1 0.14 0.02 0.86 0.86 0.84 0.98 0.91 1

Table A6. Performances of several fog prediction methods for Bologna site

LIPE (Bologna)

tp tn fp fn n_total Accuracy BIAS POD FAR POFD SR TS ETS HKD HSS ORSS

(a) 3 108 21 1 133 0.83 6 0.75 0.87 0.16 0.12 0.12 0.09 0.59 0.17 0.88
(b) 1 129 0 3 133 0.98 0.25 0.25 0 0 1 0.25 0.24 0.25 0.39 1
(c) 1 119 10 3 133 0.9 2.75 0.25 0.91 0.08 0.09 0.07 0.05 0.17 0.09 0.6

MBFog 3 127 2 1 133 0.98 1.25 0.75 0.4 0.02 0.6 0.5 0.49 0.73 0.66 0.99
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Table A7. Performances of several fog prediction methods for Ferrara site

LIPF (Ferrara)

tp tn fp fn n_total Accuracy BIAS POD FAR POFD SR TS ETS HKD HSS ORSS

(a) 29 84 22 5 140 0.81 1.5 0.85 0.43 0.21 0.57 0.52 0.38 0.65 0.55 0.91
(b) 3 105 1 31 140 0.77 0.12 0.09 0.25 0.01 0.75 0.09 0.06 0.08 0.11 0.82
(c) 12 104 2 22 140 0.83 0.41 0.35 0.14 0.02 0.86 0.33 0.26 0.33 0.42 0.93

MBFog 22 104 2 12 140 0.9 0.71 0.65 0.08 0.02 0.92 0.61 0.54 0.63 0.7 0.98

Table A8. Performances of several fog prediction methods for Frontone site

LIVF (Frontone)

tp tn fp fn n_total Accuracy BIAS POD FAR POFD SR TS ETS HKD HSS ORSS

(a) 2 17 0 10 29 0.66 0.17 0.17 0 0 1 0.17 0.1 0.17 0.19 1
(b) 0 16 0 12 29 0.55 0.08 0 1 0.06 0 0 −0.03 −0.06 −0.07 −1
(c) 7 15 2 5 29 0.76 0.75 0.58 0.22 0.12 0.78 0.5 0.32 0.47 0.48 0.83

MBFog 12 16 1 0 29 0.97 1.08 1 0.08 0.06 0.92 0.92 0.87 0.94 0.93 1
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