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Abstract: Small sized electric motors providing high specific torque and power are required for
many mobile applications. Air gap windings technology allows to create innovative lightweight and
high-power electric motors that show low phase inductances. Low inductance leads to a small motor
time constant, which enables fast current and torque control, but requires a high switching frequency
and short sampling time to keep current ripples and losses in an acceptable range. This paper proposes
an optimal torque feedforward control method, minimizing either torque ripples or motor losses,
combined with a very robust and computation-efficient modal current feedback control. Compared to
well-known control methods based on the Clarke-Park Transformations, the proposed strategy reduces
torque ripples and motor losses significantly and offers a very fast implementation on standard
microcontrollers with high robustness, e.g., against measurement errors of rotor angle. To verify
the accuracy of the proposed control method, an experimental setup was used including a wheel
hub motor built with a slotless air gap winding of low inductance, a standard microcontroller and
GaN (Gallium Nitride) Power Devices allowing for high PWM switching frequencies. The proposed
control method was validated first by correlation of simulation and experimental results and second
by comparison to conventional field-oriented control.

Keywords: optimal control; modal current control; feedforward torque control; feedback current
control; torque ripples and loss minimization; low inductance permanent magnet motor

1. Introduction

Manufacturers of electric vehicles or electric planes require electric motors with small size,
lightweight construction and maximum efficiency, providing at the same time high torque and power.
For low-power applications (<200 W), electrical motor weight can be reduced by air gap winding
designs offered, e.g., by Faulhaber and Maxxon [1]. A new slotless air gap winding design for a 15-inch
wheel-hub motor providing high power of 40 kW at a speed of 1500 rpm and a very low weight of 20 kg
is presented in References [2–4]. Wheel hub motors take a new step in technology of electric vehicles
as they allow to create completely new designs of mobile applications without a lot of the mechanics
used today and a lot more room for passengers and baggage. High specific power and torque densities
are the main indicators of the quality of wheel hub motors. This way, the very lightweight wheel hub
motors based on air gap windings [2–4] are most promising.

Usually, motors are based on slotted windings, which significantly increase the motor weight
and reduce specific torque and power density. Slotless air gap winding design reduces the weight of
electric motors, as it avoids a big part of stator back-iron needed for conventional slotted machines.
Additionally, a very high torque can be generated without any torque ripple induced by slotted
geometry. However, low number of turns and low iron volume in air gap winding designs lead
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to very low phase inductances of only several µH, which makes control a challenge [4,5]. For this
reason, a high pulse width modulation (PWM) switching frequency of about 100 kHz is needed to
keep current ripples, and accordingly torque ripples and associated losses, in a demanded range.
In addition, the motor control must be adapted to low phase inductance and high PWM frequency for
microcontrollers with a very small sampling step size.

Depending on the phase current waveform, conventional control methods for permanent magnet
(PM) motors can be divided into two groups: based on the block commutation [5–9] and based on
the Clarke-Park Transformations [10–16]. The first one is usually used for low-cost and low-power
applications because of low manufacturing costs and simple design. On the other hand, this leads to a
high torque ripple waveform caused by non-ideal commutation currents [5–9]. This disadvantage is
even more significant for PM motors with low inductance due to the inverse relationship between
phase inductances and current ripples. Trigonometric Clarke-Park Transformations transfer phase
currents into a torque generating Q-part and a field generating D-part (DQ control), dependent on
rotor position [10–16]. This gives the opportunity for smoother phase commutations, which decreases
current and torque ripple but assumes pure sinusoidal waveforms for B-field (magnetic flux density)
and phase currents. For high sampling frequencies, calculation of transformations is a high burden
for the microcontroller. If the B-field consists of significantly higher harmonics, they should be
compensated by adding additionally higher harmonic parts to the phase currents. This method may
be unacceptable for high-frequency control, and only iterative approaches are known [10–14].

This article proposes a combined optimal torque feedforward and modal current feedback
control method for PM motors with very low phase inductance. Previously, in References [17,18],
a high-frequency Combined Optimal Torque and Modal Current Control (OTMIC) was proposed for
low inductance PM motors focused on the minimization of motor losses. In this article, this method
for loss minimization is described as mathematically complete. Further, it is extended to torque
ripple minimization to give a powerful optimization method flexibly adaptable to different goals.
Limitations of References [17,18] given by growing size of symbolic expressions will be avoided by a
new matrix formulation of the algorithm that allows for adaptive real-time applications. It is possible to
switch online between both optimization strategies to fulfill changing demands depending on certain
operation points (e.g., low speed→minimal torque ripple, high speed→minimal loss). In case of
motors based on air gap winding designs, motor B-field is nearly independent of speed, torque and
phase currents. This conclusion was used to explicitly take into consideration all harmonics of B-field
for torque control. In an off-line optimization step, optimal current values for a set of electric angles
are stored in a table for on-line usage under hard real-time conditions. By means of a very robust
modal current control approach, which works independently on rotor angle, the 3-phase current
control problem can be reduced to a 2-phase modal one, based on a linear model of the PM machine
with constant coefficients. It becomes evident that the non-controllable state (one of the 3-phase
currents) can be eliminated without any pre-conditions, e.g., on B-field waveform, and all statements
on stability are global using this approach. Additionally, modal transformation matrices are constant,
especially independent of electrical angle and any physical parameter. This reduces computation effort
significantly compared, e.g., to Park-Clarke Transformation, where transformation matrices change
with the angle. Errors of angle measurement or estimation have only a very limited effect on current
control. Thus, independence of motor parameters increases the robustness of the transformation
due to any physical changes, further allowing for a very fast software implementation on a low-cost
microcontroller with an acceptable sampling step size. Optimization as well as control problem can be
solved symbolically, allowing for very fast and adaptive implementations.

In the second section of this article, a new approach of PM motor control based on the mathematical
model of slotless air gap winding PM motor with very low phase inductance is presented. The proposed
method combines modal feedback control to guarantee the desired stability, dynamics and robustness
margins with optimal feedforward control to minimize important motor features like ohmic losses or
torque ripple. The last section shows the experimental and simulation results of the proposed method
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and comparison of the proposed control with conventional Field-Oriented Control (FOC) based on DQ
Clarke-Park Transformations (DQ control). A PM wheel hub motor with slotless air gap windings and
very small inductances (near 1.5 µH per phase) was used as a test object.

2. Design of the Proposed Combined Optimal Feedforward Torque and Modal Current Feedback
Control for Low Inductance PM Motors

2.1. Operation Principle of PM Motor with Very Low Phase Inductance

The dynamic model of a PM motor with slotless air gap winding is obtained considering the
following assumptions [3]:

1. Rotor consists of surface-mounted permanent magnets.
2. No cogging torque due to slotless design.
3. Harmonic magnetic field density generated by permanent magnets.
4. B-field harmonics and inductance are constant, e.g., independent from speed and phase currents

due to very small current-induced magnetic fields of the windings.
5. Stator has symmetric 3-phase star-connected windings commutated by a 3-phase inverter

(B6-bridge).

A model is shown in Figure 1, where R—phase resistance, L, M—phase self and mutual

inductance, e =
[

ea eb ec
]T

—phase back-EMFs (back electromotive force), u =
[

ua ub uc
]T

,

i =
[

ia ib ic
]T

—phase voltages and currents, uS—voltage at star point and uDC, iDC—input direct
voltage, current to PM motor inverter [2–4].
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Considering the Y-connection, Kirchhoff’s first Law

ia + ib + ic = 0 (1)

and Kirchhoff’s second Law
ua

ub
uc

 =


R 0 0
0 R 0
0 0 R




ia
ib
ic

+


L −M −M
−M L −M
−M −M L




dia/dt
dib/dt
dic/dt

+


ea

eb
ec

+


1
1
1

uS (2)

or more compact
u = R i + L di/dt + e + uS (3)

state the mathematical model of a 3-phase PM motor. The 3-phase back-EMF values

e = ω kM B(ϕ), (4)
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depend on ω—the mechanical angular velocity of the rotor, kM—a motor geometric constant and

B =
[

Ba(ϕ) Bb(ϕ) Bc(ϕ)
]T

—the vector of averaged B-fields acting on air gap winding phases [3],

which itself depends on ϕ—the electrical angle. Obviously, Ba(ϕ) = B(ϕ), Bb(ϕ) = B
(
ϕ− 2π

3

)
and

Bc(ϕ) = B
(
ϕ− 4π

3

)
are given by the harmonic magnetic field density generated by permanent magnets,

calculated by:
B(ϕ) =

∑
k

bk sin(k ϕ). (5)

as a function of electric angle and odd harmonic coefficients, bk. Either FE analysis of the underlying
magnetic circuit or line-fitting of measured back-EMF values give the B-field harmonic coefficients
with very good accuracy [2–4].

Electrical torque is generated by Lorentz force [2–4]:

TE = kM
[

Ba Bb Bc
]

ia
ib
ic

 = kMBTi (6)

acting on the airgap winding. Loss torque:

TL = d ω+ c (7)

collects linear mechanical friction together with back-iron and airgap winding eddy losses into the
linear friction coefficient d and mechanical coulomb friction together with back-iron hysteresis losses
into the constant friction coefficient c. It will be noted that loss torque TL and resulting loss power
depends only on speed and is independent of motor current. Electrical torque TE reduced by loss
torque TL gives motor output torque:

TM = TE − TL. (8)

Equations (1)–(8) describe the motor model in terms of back-EMF, output torque and phase
currents based on information of angular position ϕ, angular velocity ω, B-field harmonics and motor
parameters kM, d and c. Torque Equation (6) shows that the adaptation of phase current waveforms
taking into account the B-field harmonics is the key to motor torque control [2–4].

Phase currents i(ϕ), like B-field, can also be defined as harmonic functions of electrical angle ϕ:

i(ϕ) =
∑

k

ak sin(k ϕ). (9)

Cosine terms are omitted. If included, they would vanish during optimization. From (1), we get
additional constraints:

a3k = 0 (10)

for current coefficients. Average electrical torque:

TA =
1

2π

∫ 2π

0
TE dϕ =

3
2

kM

∑
k

akbk (11)

can then be expressed by Fourier coefficients of phase current and B-Field. Using Equations (5) and
(8)–(11), in this paper will be proposed a new method to generate optimal phase currents to generate
a given torque TRe f for an arbitrary harmonic B-field, while minimizing either the motor losses or
alternatively while minimizing the output torque ripples.
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2.2. Optimal Control for Minimal Motor Losses

Generation of a given torque TRe f with maximum efficiency or, equivalently expressed,
with minimum losses PL is a typical design requirement of an electrical motor. Averaged total
motor losses consist of ohmic and non-ohmic losses [3]:

PL = 1
2π

∫ 2π
0

(
R
(
i2a + i2b + i2c

)
+ d ω2 + c ω

)
dϕ

PL = 3R
2

∑
k

a2
k + d·ω 2 + c·ω,

(12)

where non-ohmic losses depend only on the average angular speed in a pole pair segment:

ω =

∫ 2π

0
ωdϕ and ω 2 =

∫ 2π

0
ω2dϕ (13)

and ohmic losses can be expressed by Fourier coefficients of phase currents according to (9).
Given demands lead to the mathematical optimization problem for minimization of motor losses PL

while generating a demanded torque TRe f :

Min = PL with constraint TA = TRe f (14)

for unknown parameters ak of the phase current harmonics based on the given harmonics bk of the
B-field. The solution of this quadratic optimization problem can be determined analytically, e.g.,
by combining cost function and constraints in a Lagrange function, calculating derivatives and solving
first-order conditions for unknown coefficients:

am =
2
3

TRe f

kM

bm

b
2 (15)

with the sum of squares of selected harmonics of B-field:

b
2
=

∑
m

b2
m (16)

and the selection indices:
m = 1, 5, 7, 11, 13, 17, 19, 23 . . . (17)

Remaining parameters ak are zero. Selection indices show that some odd harmonics of phase
current {3, 9, 15, . . . } will not contribute to torque. The optimal current waveforms can be calculated
from (15) for each electrical angle taking into account the harmonics of B-field, motor constant kM and
given reference torque TRe f . This approach achieves that each demanded torque can be generated with
minimum motor losses for arbitrary B-field and regardless of motor speed. Air gap winding PM motor
design allows to have nearly ideally constant B-field harmonics with minor sensitivity to temperature
changes. If necessary, e.g., for application to other motor types, the effect of temperature on B-field and
phase resistances can be easily incorporated into the model and adapted online.

2.3. Optimal Control for Minimal Torque Ripples

Generation of a given torque TRe f with minimum torque ripples is another typical design
requirement of an electrical motor, especially if vibrations and noise are critical. Torque ripple is
defined as mean square deviation between electrical torque TE and average torque TA:

T2
R =

1
2π

∫ 2π

0
(TE − TA)

2 dϕ (18)
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In this case, optimal current can be determined solving the optimization problem:

Min = T2
R with constraint TA = TRe f (19)

Inserting current definition (9) into the integral (18), the optimization problem stated in (19) again
can be solved analytically by formulating Lagrange function, calculating derivatives and solving the
first-order conditions. Besides this straightforward path, there exists another approach, which leads to
more simple expressions and allows further insight into the solution. Starting from (5), (6) harmonics

tk =
1
π

∫ 2π

0
TE cos(6 k ϕ)dϕ (20)

of electrical torque TE can be determined and collected in vector

t = A a (21)

with matrix

A =
2
3

kM



2b1 2b5 2b7 2b11 2b13 2b17 2b19 2b23

b7 − b5 b11 − b1 b13 + b1 b17 + b5 b19 + b7 b23 + b11 b13 b17

b13 − b11 b17 − b7 b19 − b5 b23 − b1 b1 b5 b7 b11

b19 − b17 b23 − b13 −b11 −b7 −b5 −b1 b1 b5

−b23 −b19 −b17 −b13 −b11 −b7 −b5 −b1

0 0 −b23 −b19 −b17 −b13 −b11 −b7

0 0 0 0 −b23 −b19 −b17 −b13

0 0 0 0 0 0 −b23 −b19


(22)

and vector of current harmonics

a = [a1, a5, a7, a11, a13, a17, a19, a23] (23)

for an example with 23 harmonics. Only average value at zero and multiples of the sixth harmonic
appear. All other coefficients are zero. Matrix A is square and has full rank. Defining the torque
harmonics

t =
[
2 TRe f , 0, 0, 0, 0, 0, 0, 0

]
(24)

in a way that the zero coefficient is given by the demanded torque TRe f and all other torque harmonics
vanish, delivers the solution for the above-mentioned optimization problem by solving the linear
system of equations defined by (21). For practical applications, a much smaller number of harmonics
than given in (23) will be sufficient. The larger number presented here helps to demonstrate the
structure of the matrix. It is important to state that also the torque ripples minimization leads to an
analytical solution for optimal currents that is well suited for online and adaptive applications.

2.4. Modal Current Control

So far, we have two feedforward strategies to implement either loss minimal or torque ripples
minimal operation of the motor. Both strategies rely on current control, which is able to deal with
higher current harmonics, which means also with higher frequencies. A modal current control method,
exploiting all structural benefits of given control problem and allowing for very high-speed control,
will be presented in more detail in this section. The complete model of the PM motor with air gap
winding is defined by (1)–(3). Node Equation (1) shows that only 2 of the 3 phase currents are
independent. Taking this dependency into account, (3) can be written as

G(u− e) = R i + Ldi/dt (25)
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with

G =
1
3


2 −1 −1
−1 2 −1
−1 −1 2

. (26)

For simplicity, back-EMF e can be neglected and later added to input voltage u as a feedforward
compensation or simply treated as a disturbance for the controller. This coupled system for the 3 phase
currents i can be completely decoupled with a modal transformation

JΣ

J1

J2

 = 1
3


1 1 1
−1 −1 2
−1 2 −1

︸                  ︷︷                  ︸
W


ia
ib
ic

 (27)

applied to system (25) in a way that modal inductance matrix

Λ = W L W−1 =


L− 2M 0 0

0 L + M 0
0 0 L + M

 (28)

gets diagonal. Phase currents i are transformed to modal currents J =
[

JΣ J1 J2
]T

. Considering (1)
and the first row of the transformation matrix defined in (27), modal current JΣ will be zero. Thus, only
2 out of 3 modal currents associated with the modal inductances L + M are relevant. The decoupled
modal system

1
3


0 0 0
−1 −1 2
−1 2 −1




ua

ub
uc

 =


R 0 0
0 R 0
0 0 R




JΣ

J1

J2

+


L− 2M 0 0
0 L + M 0
0 0 L + M




dJΣ/dt
dJ1/dt
dJ2/dt

 (29)

shows that modal current JΣ is not controllable as the associated row of the modal input matrix is
completely zero. The remaining 2 modal currents, J1 and J2, come from 2 identical first-order systems
with time constant L+M

R . Eliminating non-controllable current JΣ gives the reduced controllable system

1
3

[
−1 −1 2
−1 2 −1

]
︸                  ︷︷                  ︸

Γ


ua

ub
uc

 =
[

R 0
0 R

][
J1

J2

]
+

[
L + M 0

0 L + M

][
dJ1/dt
dJ2/dt

]
(30)

Thus, the 3-phase current control problem is reduced to the control of two completely identical
but decoupled first-order systems, associated with modal currents J1 and J2. The redundant total
current JΣ displays any errors in current control loop and can be used as an indicator of the quality
of the system online. Modal currents J1 and J2 are not connected and can be controlled completely
independent by modal input voltages

V =

[
V1

V2

]
= Γ · u, (31)

as shown in Figure 2. This simple separation based on the modal transformation given in (27)
does not use any trigonometric calculations based on the rotor angle as in conventional Clarke-Park
Transformations, is independent of motor parameters and is well defined for any shape of B-field.
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According to (30). motor transfer function is given by

GM(s) =
1/R

1 + L+M
R s

. (32)

For high-speed control of low inductance PM motors with high number of poles, current sensor
dynamics must be included in the control loop with a first-order sensor model

GS(s) =
1

1 + TSs
(33)

and sensor time constant TS. As a microcontroller-driven B6-bridge generates PWM pulses at frequency
fPWM = 1/∆t to control motor input voltage and ADC (Analog-to-Digital Converter) samples current
sensor signals with the same rate, time continuous transfer function

GMS(s) = GM(s)GS(s) (34)

has to be discretized with that frequency to get the discrete transfer function

DMS(z) =
(β− 1 + (1− α)δ)z + ((α− 1)δ− α)β+ α

R(δ− 1)(z− α)(z− β)
(35)

with sampling time ∆t, discrete eigenvalues of motor α = e−
R∆t

L+M , sensor β = e−
∆t
TS and motor/sensor

speed ratio δ = L+M
R TS

. Very small motor time constant due to low phase inductance allows to achieve
very fast current and electrical torque response with requested time constant TReq, which expands the
possibilities of design for more complex control systems like dynamic stability control or autonomous
driving. To get a controlled system of first order

D(z) =
1− zR

z− zR
(36)

with requested eigenvalues zR = e
−

∆t
TReq , it is necessary to use a discrete PID

(Proportional-Integral-Derivative) controller with filtered derivative action:

DC(z) = KP +
KI

z− 1
+

KD

ND + 1
z−1

. (37)

Control parameters can be determined by comparison of coefficients of discrete closed loop

D(z) =
DC(z)DMS(z)

1 + DC(z)DMS(z)
(38)
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and reference transfer function given in (36), as

KP =
(1−α+δ(β−1))R(zR−1)

(δ−1)(β−1)(α−1) ;

KI = R(zR − 1);

KD =
Rδ(zR−1)(β−α)2

(δ−1)2(β−1)2(α−1)2 ;

ND =
β−1+δ(1−α)

(δ−1)(β−1)(α−1) .

(39)

A saturation of output and I-part of the PID controller guarantees safe operation in the case of
limited supply voltages. Outputs from PID controllers DC(z) are two modal control voltages, V1 and
V2. According to (31), V1 and V2 must be transformed back to three control voltages u by means of a
Moore Penrose pseudo-inverse transformation matrix Γ+


ua

ub
uc

 =

−1 −1
0 1
1 0

︸        ︷︷        ︸
Γ+

[
V1

V2

]
. (40)

Modal current control ensures system stability regardless of fluctuations in system parameters
caused by changes of motor temperature and other factors. Moreover, it can be implemented for PM
synchronous motors with any waveform of B-field. However, it should be noted, that the motor model
should satisfy the mathematical model described with Equations (1)–(3), which can be very good when
performed for PM motors with air gap windings and also other PM motors.

2.5. Control Diagram of OTMIC

The proposed control diagram of Combined Optimal Torque and Modal Current Control (OTMIC)
is shown in Figure 3. The control algorithm uses a torque reference TRe f and measured electrical
angle ϕ to estimate optimal phase current waveforms for motor loss or torque ripples minimization,

iRe f =
[

iaRe f (ϕ) ibRe f (ϕ) icRe f (ϕ)
]T

, based on one of the optimization methods described in
Sections 3.1 and 3.2. The optimal currents iRe f are used as a reference for measured phase currents i.
Current errors ∆i as differences between reference and measured currents are fed to the Modal Current
Control described in Section 2.4 and used to generate the control voltages u, which set PM motor in
motion with the optimal torque waveform via a SVPWM (Space Vector Pulse Width Modulation) and a
B6-bridge. Architecture of OTMIC control allows to simplify the microcontroller torque/current control
loop by using constant matrices with simple coefficients for modal transformation.
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In addition, optimal reference currents according to (9) and (15)–(17) for minimal Loss Control or
from (9) and (21)–(24) for minimal Torque Ripple Control can be calculated off-line for a set of angles
and stored in a table. These simplifications allow to implement the control loop with very small step
size of ∆t < 10 µs on a common low-cost microcontroller.

3. Units Simulation and Experimental Results

3.1. Motivation and Experimental Setup

A wheel hub motor for a hub-less scooter, shown in Figure 4 on the experimental setup (left above)
and in the dissembled state (right) for better demonstration of the air gab winding, will be used for
verification of OTMIC control method. The motor has a very low total weight of 2.7 kg, a high nominal
power of 4.8 kW and a nominal torque of 80 Nm. More motor data is given in Table 1, where B odd
Harmonics are 1st, 3rd, 5th and 7th harmonic numbers. The experimental platform shown in Figure 4
was used to verify the proposed OTMIC method with either minimized motor losses or minimized
torque ripples for low inductance PM motors.Energies 2020, 13, x FOR PEER REVIEW 10 of 16 
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Table 1. Air gab winding wheel-hub motor parameters [17,18].

Symbol Description Value UOM

Motor Parameters
uDC DC voltage 48 V

Ls + Ms phase inductance 1.5 µH
Rs phase resistance 0.026 Ω
tM motor time constant 58 µs
p number of poles 94 −

kM motor constant 0.304 Nm/(TA)
bk B odd harmonics [1.15 0.2 0.06 0.01] T

c
constant of coulomb

friction and hysteresis
loss

0.0832 Nm

d constant of mechanical
friction and eddy loss 0.0008 Nm·s/rad

Control Parameters
KP Proportional term 0.166 V/A
KI Integral term 0.026 V/A
KD Derivative term 0.013 V/A
ND PID filter term 0.9854 −

TS sensor time constant 1 µs
∆t sampling time 10 µs

fPWM switching frequency 100 kHz
TReq requested time constant 20 µs
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Due to elimination of stator iron, motor inductance is very low (near 1.5 µH per phase). Thus,
motor needs an adapted control with high switching frequency of about 100 kHz to keep current
ripples and total losses in an acceptable range. Control parameters calculated according to (39) are also
given in Table 1.

To drive the motor, six GS61008P MOSFETs (metal–oxide–silicon transistors) from company GaN
Systems, able to switch up to 90 A at a rate up to 300 kHz, were connected as a B6-bridge. Due to limited
MOSFETs cooling of experimental boards, phase current was restricted to 20 A for the experiments.
Hall-effect-based sensors from Allegro ACS730 were used for phase current measurement with a
very small sensor time constant of 1 µs. Rotor angle is delivered by an encoder using 5 k increments.
100 kHz PWM switching frequency to power the B6-bridge requires a very small step size in the
microcontroller (lower than 10 µs). To achieve this requirement, an ARM Cortex-M4F has been used
running at 200 MHz. It allows to implement the control loop shown in Figure 3 in 8.3 µs. In comparison
to the proposed method, a conventional DQ control needs a minimum of 9.4 µs, which underlines the
effectiveness of the proposed method. This comparison can be seen in Figure 5.
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This means that OTMIC control can be calculated faster and in addition, gives the optimal torque
in contrast to FOC (DQ) based on the Clarke-Parke Transformations.

3.2. Verification of the Proposed Method

The simulation results presented in this study have been performed through Matlab/Simulink
environment based on the mathematical model of the PM motor described in Section 2 and the control
model presented in Section 3. Conventional DQ field-oriented vector control used as a reference to the
proposed OTMIC was also implemented in the experiment to control the wheel hub motor, with the
parameters in Table 1.

The motor dynamic behavior can be verified by means of step response of electrical torque TE.
As shown in Figure 6, measured and simulated torque of proposed OTMIC and conventional DQ
methods were carried out according to zero velocity, mechanically fixed rotor and 5 Nm reference
torque TRe f (green). Because torque sensor bandwidth was too low for this experiment, electrical torque
generated in air gap winding (grey) was calculated using (6) based on the values of measured currents
and the electric angle with a given motor geometric constant kM, and compared with the simulation
for OTMIC (blue) and DQ (red) control methods. As can be seen form Figure 6, the difference between
both methods is minimal due to the very low motor time constant. The exciting fast torque step
response within 35 µs underlines the very high dynamics of this type of motor. The slight difference
between simulation and measurement is due to parasitic inductances and capacitances in power lines
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and supply. This can be easily considered in the motor model but was not done in this experiment to
show the robustness of the control.
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For a more detailed demonstration of the basic principles of the proposed control algorithm,
Figure 7 shows the results of modeling the ideal optimal current waveforms to minimize the torque
ripples (OTMIC TRO) and losses (OTMIC LO) for two waveforms of B-Field (Case A with odd harmonic
coefficients bk from Table 1 and Case B with bk from Reference [19], which result from a change in the
air gap between stator and rotor). For a more detailed analysis, the torque RMS (root mean square)
and efficiency value are also presented for a sinusoidal current of conventional DQ control based on
the Clarke-Park Transformations. Figure 7 shows the simulation results of an ideal system without
any errors in the phase current or rotor position measurements. As can be seen, the optimal phase
current waveforms are able to the minimize torque ripples or maximize motor efficiency based on the
Equations (6) and (12). The advantages of the OTMIC TRO are seen very well in Figure 7. In an ideal
system, OTMIC TRO eliminants any torque fluctuations for any waveform of the B-field. OTMIC with
loss optimization (LO) changes the phase current waveform and improves loss rates and efficiency of
the system with increased torque ripples. The advantages of the OTMIC LO in comparison with the
standard DQ method are visible only in the presence of significant parasitic harmonics in the form of a
B-field. Simply said, the ideal sinusoidal B-field leads to the same torque ripples and motor loss for
every method.
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Simulated and measured phase currents and torque results during normal operation of
proposed OTMIC control with minimization of torque ripple (TRO Figure 8a—simulation,
Figure 9a—measurement) and losses (LO Figures 8b and 9b) as well as a conventional vector DQ control
(DQ Figures 8c and 9c) correspond to the references: ω = 8 rad/s and TRef = 10 Nm. The behavior of
phase currents and torque for both OTMIC optimizations given in Figure 9a,b has a slight asymmetry
caused by speed fluctuations of load machine and errors in angle measurements, which could not
be completely avoided in experimental setup. The current and torque harmonic distribution for
the aforementioned control approaches are shown in Figure 8d for simulation and in Figure 9d for
measured results. The amplitude of each harmonic component is normalized relative to that of a
fundamental one. The FFT (Fast Fourier transform) analyses of simulation currents and torques
underline the main idea of the proposed method. As shown in Figure 8d (left), the phase current
waveforms of OTMIC have 5th and 7th harmonics expected to conventional control. On the other
hand, the torque waveform of OTMIC with torque ripple optimization TRO (blue) is deprived of such
harmonics, which leads to the very small torque fluctuations as opposed to DQ control, as shown in
Figure 8d (right).Energies 2020, 13, x FOR PEER REVIEW 13 of 16 
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Figure 8. Simulation results of stator current and torque of: (a) OTMIC with torque ripples optimization,
(b) OTMIC with losses optimization, (c) conventional DQ control and (d) harmonic spectrum of phase
current (left) and torque (right) for every method [18].

The harmonic spectrum of measured phase current with OTMIC control shown in Figure 9d
(left) has parasitical 2nd, 4th and 6th harmonics due to inaccuracies in experimental setup, mainly
caused by interactions of control system and load machine, but they are less than 1% of that of the
fundamental one. The necessary 5th and 7th harmonics have a slight deviation of about 0.5% of the
fundamental one compared to simulation results. The current waveform of conventional DQ control
should be quite similar to a sinusoidal, as shown in the simulation results in Figure 8c and harmonic
analyses in Figure 8d (left). However, the harmonic spectrum of measured phase currents by the
conventional method consist of high 3rd and 4th harmonics due to the high sensitivity of the standard
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method based on the trigonometric transformations to errors in the control system, especially errors in
angle measurement.
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Figure 9. Experimental results of stator current and torque of: (a) OTMIC with torque ripples
optimization, (b) OTMIC with losses optimization, (c) conventional DQ control and (d) harmonic
spectrum of phase current (left) and torque (right) for every method [18].

The measured torque harmonic distribution shown in Figure 9d (right) consists of a large number
of harmonics due to speed errors in rotating shaft and additional torque produced by load machine.
However, the 6th and 12th harmonics retain their tendency and can be compared with the simulation.
In addition, the FFT analyses of measured torques in Figure 9d (right) shows that the proposed
OTMIC control with torque ripple minimization is able to compensate additional harmonics in
B-field. Summarized, the measured results show very good correspondence to theoretical calculations.
As opposed to OTMIC, the Clarke-Park Transformations need a very accurate rotor angle measurement,
which can be seen in the larger asymmetries given in Figure 9c. Thus, the proposed OTMIC method is
less sensitive to speed fluctuations and angle errors due to the absence of trigonometric transformations
of phase currents based on the electric angle.

Figure 10 compares the measured values of motor efficiency for OTMIC control with LO and TRO
and conventional DQ control. Motor efficiency was measured with given constant velocity of 30 rad/s,
variable torque from 1 to 10 Nm and output power from 30 to 300 W. Results show that OTMIC control
with loss minimization increases the system efficiency by 0.7% in compassion to the conventional
method, while delivering the same torque. However, for a correct analysis of the proposed control
in case of a motor loss and efficiency, any errors in the measurement system should be avoided and
motor torque and current should be increased to the rated values, which could not be fully realized in
our experimental setup. More detailed analyses of the system efficiency should be investigated in the
future work.
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Simulation and experimental results show that the OTMIC control system is less sensitive to errors
in the electrical angle and phase currents measurements compared to FOC. In addition, the proposed
method worked very robustly independent of deviations of motor parameters like phase resistance
due to the temperature and the speed of fluctuations due to the load motor.

4. Conclusions

This paper proposed a Combined Optimal Torque feedforward and Modal Current feedback
Control architecture (OTMIC) for PM motors with very low inductance and higher harmonic B-field,
which minimizes motor losses or torque ripples/motor noise by means of offline calculation of optimal
current waveform. Optimal three-phase currents are used as reference values to the measured currents.
The optimization algorithm considers all relevant coefficients of B-field harmonic distribution to
calculate the appropriate current waveform off-line and employs an extremely fast table-lookup for
real-time implementation in the microcontroller. Modal current feedback control provides stability,
high system dynamics without deviation of a given reference and high robustness against variation of
motor parameters or errors in rotor angle measurement.

Compared to classical field-oriented control methods based on the cumbersome and complex
Clarke-Park Transformations, the proposed control is simpler for implementation on the microcontroller
and allows to minimize either torque ripples or motor losses. As a result, the proposed OTMIC
control can reach its full potential in high-frequency systems, where simplicity of the control algorithm
and microcontroller calculation time matters. Due to the transformations used in the conventional
DQ method, the phase currents’ waveforms have to be nearly ideally sinusoidal. This means that
conventional methods to achieve the specified requirements of motor torque or total losses demand
the special concepts and additional real-time calculations to adapt the phase current waveform to
the non-sinusoidal waveform of the magnetic field. It complicates the control system and increases
the calculation time in the microcontroller. Moreover, in real high-frequency control systems with
errors in current and angle measurements, this problem can be more significant. Experimental
results show that the Clarke-Park Transformations for electric drives with a very small motor time
constant and high number of poles introduces significant current deviations from the values given.
In this case, the proposed OTMIC control method used for PM synchronous motors with a very
low phase inductance and tested experimentally shows a very good match between simulated and
measured waveforms of phase current and torque. The proposed control can also be applied to other
electric motors such as brushless DC (BLDC), asynchronous or PM motors, with any waveform of
B-field waveform.
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