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Abstract: Policy and electricity price uncertainty provide disincentives to investors considering
renewable energy investments. While electricity price uncertainty impacts on investment decisions
relating to any energy investment, whether renewable or non-renewable, policy uncertainty will affect
renewable energy investment decisions to a far greater extent. In this study, we consider the two main
sources of uncertainty a solar Photovoltaic (PV) project is exposed to: electricity price uncertainty
and policy uncertainty. We focus our analysis on utility-scale solar photovoltaics in the Pennsylvania,
Jersey, Maryland Power Pool (PJM) electricity market and the New Jersey Solar Renewable Energy
Credit (SREC) market. Using Solar Renewable Energy Credits as a proxy for policy, we find that
there is considerable volatility in both electricity prices and policy. In a sample covering eleven years,
we implement univariate Generalized Autoregressive Conditional Heteroskedastic (GARCH) and
combinations of GARCH models with different weighting schemes and find that combination models
provide superior forecasts. In renewable energy markets, policy supports have a significant impact
on an investment’s profitability. The implication for policymakers is clear: to foster investment in
solar PV, policy stability is critical.
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1. Introduction

Described by the United Nations as “one of the most pervasive issues of our time”, climate change
is an area that has attracted increasing attention in the literature. In order to mitigate the effects of
environmental issues, divesting from fossil fuels and attracting investment to renewable sources of
energy is essential. Notwithstanding the admirable advances in renewable energy technologies, to be a
commercially viable option, most require some kind of policy support in order to garner investment, at
least initially. While most studies rightly focus on the volatility of future electricity prices to accurately
price the risk of investing in renewable energy, other sources of uncertainty are likely to also be of
concern to potential investors (see for example [1]). In its 2020 Renewables Report [2], the International
Energy Agency (IEA) find that policy certainty is key to attracting renewables. They suggest that
whereas renewables have proved to be relatively unscathed by the Covid-19 pandemic, they are not
resilient to policy uncertainties; and that both solar Photovoltaic (PV) and wind could be increased
by an extra 25% each globally were countries to address policy uncertainties. Specifically, they note
that the U.S. could achieve a much more rapid decarbonization of the U.S. power sector if solar PV
and wind generation were supplemented with additional policy supports. Burns [3] considers the
U.S. policy environment and finds evidence that higher policy uncertainty leads to lower investment
in renewables.
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Renewable energy projects have large upfront capital costs and generate revenue over a long
period of time, often twenty or thirty years. For many renewable energy investments, much of the
return to investors is generated from the policy supports in place, so investors must allow for the
possibility that these incentives will not last (examples of policy support include subsidies, feed-in tariffs,
green certificates, tax breaks, etc.). This will increase the required rate of return on such investments
and lead to decreased investment. There are several examples of policy supports for renewable
energy being abruptly changed or withdrawn. For example, Spain initiated a generous programme of
subsidies for both solar and wind in 2004 but suddenly ended the scheme following the financial crisis,
leading to heavy losses for investors. Similarly, the Czech Republic decreased feed-in tariffs by 26% and
the green bonus by 28% for a three-year period between 2011 and 2013, affecting previously installed
renewable energy projects. Greece initiated policy changes in 2012 imposing levies on both wind and
solar of between 10% and 30%. Finland, France, Italy, and Bulgaria have also implemented policy
changes that have affected previous installations. In many instances, this has seen bankruptcies as a
direct result of the policy changes. Introducing changes such as these leads to an immediate increase
in the risk premium associated with investing in these technologies thus decreasing the attractiveness
of investment. Hence, it is important to factor in not only electricity price but also policy uncertainty
when assessing renewable investment opportunities.

One of the most successful examples of a well-designed and comprehensive solar support scheme
is the Solar Renewable Energy Credit (SREC) system in place in New Jersey, United States. Since its
introduction, New Jersey’s solar PV capacity has increased dramatically, going from less than 50 MW in
2007 to more than 2900 MW in 2019. The SREC is part of the nationwide Renewable Portfolio Standard
(RPS) program. Its SREC system is the most mature in the U.S. and dates back to 2009. The RPS in
New Jersey mandates electricity suppliers to produce a specific amount of electricity from solar energy
(known as a “solar carve-out”): 4.1% by 2028. Suppliers have to comply with this solar carve-out by
trading SRECs, which certify that the electricity produced derives from solar. Specifically, one SREC is
issued when 1 MWh of electricity is generated from solar. SRECs are completely independent of the
developers’ electricity profits, therefore acting as a separate source of income for developers [4,5]. It is
for this reason that SRECs are deemed a key factor in stimulating the solar industry in the U.S. [5,6].

In this study, we add to the literature by considering both electricity price uncertainty and policy
uncertainty to price the risk of investing in utility-scale solar photovoltaic. We confine our analysis
to the Pennsylvania, Jersey, Maryland Power Pool (PJM) electricity market and the New Jersey Solar
Renewable Energy Credit (SREC) market. We implement a Generalized Autoregressive Conditional
Heteroskedastic (GARCH) modelling approach to estimate the volatility of both electricity prices and
policy. Our findings suggest that policy uncertainty is an extremely important factor when considering
investing in solar photovoltaic and that failing to include policy uncertainty could lead to incorrect
investment decisions. Further, investors who have concerns surrounding policy uncertainty are likely
to seek higher returns due to increased risk of investment, thus reducing the overall investment
into the very technologies that are essential to help address the negative impact of climate change.
Therefore, it is up to policymakers to ensure appropriate, long-term, stable policy in areas they are
seeking to attract renewable energy investment.

Assessing the feasibility of all types of renewable energy investment is becoming increasingly
important. Traditionally, such investment opportunities have been evaluated using Discounted
Cash-Flow (DCF) models that estimate expected revenue streams and discount them back to today
using the weighted average cost of capital of the investment. In a comprehensive assessment of solar
photovoltaic technologies, Sheik and Kocaoglu [7] observe that while many assessment methods
have been established and developed in the renewable energy space, more extensive and efficient
methodologies are required. Real option methodologies are now commonly suggested as a superior
approach because this method allows for the value of flexibility as uncertainties reveal themselves
over time, while the discounted cash flow approach is static in nature [8]. However, the valuation of
renewable energy projects using a real options approach depends crucially on a reliable estimate of
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the volatility of the future cash flows the project generates. In the absence of such a reliable estimate,
the real option value will be inaccurate. The research question underlying this study is therefore the
following: in order to implement valuation techniques that are often considered superior, how should
one accurately estimate and forecast the volatility of the main sources of uncertainty?

In this study, we do just that by identifying the main sources of uncertainty, namely, policy uncertainty
and electricity price uncertainty, and by choosing the best models or combinations of models to estimate
both. This study is, to the best of our knowledge, the first to model both electricity price and policy
volatility for utility-scale solar PV. The remainder of this study proceeds as follows: in Section 2,
we discuss the background and related literature, in Section 3 we present methodology, and the data
are presented in Section 4. Results and discussion are presented in Section 5, while Section 6 concludes.

2. Background and Related Literature

When making an investment decision, investors consider the cash flows the project will generate
in the future and compare it with the cost of investing today. Any uncertainty surrounding the
estimates of the future cash flows adds to the investors’ perceived risk of investing in the project.
The greater the perceived risk is, the higher the required rate of return the investor will demand to
compensate for undertaking the uncertainty. The net cash flows from a solar energy project arise as
a result of considering the total revenues the project will generate over its lifetime less the overall
costs of the solar PV system. The total costs include upfront capital costs such as hardware costs,
land costs, system design, and connection costs, as well as ongoing operational and maintenance costs.
The ongoing operational and maintenance costs can be reliably estimated and thus have little volatility.
The main sources of uncertainty with such projects are therefore confined to uncertainties surrounding
the cash inflows associated with the project, so we focus our attention on these. The cash inflows arise
as a result of the amount of electricity generated times the electricity price and any cash inflows that
arise as a result of policy supports such as tax breaks and renewable energy credits. We proceeded by
consulting previous literature to identify the main sources of uncertainty to the cash inflows of a solar
energy project.

2.1. Electricity Price Uncertainty

The cash inflows generated by energy technologies depend crucially on the electricity price,
and previous studies find that the primary source of volatility is due to changes in electricity prices.
For example, Zhang et al. [9] examine the relationship between electricity prices and non-renewable
energy cost and find evidence indicating that the uncertainty related to the costs of coal-fired generation
is embedded in the electricity price uncertainty. The authors assume that the long-term price of
electricity is equal to the non-renewable energy costs (the average cost of coal-fired generation).
Torani et al. [10] also identify electricity prices as one of the main sources of volatility for solar
energy. The volatility of the electricity price depends on various aspects of the electricity market:
inelastic demand, high transportation costs, seasonal effects, non-storability, etc., and is dynamically
very similar to the volatility of financial markets, as electricity is traded on competitive wholesale
markets [11]. Electricity prices are also taken into account as a source of uncertainty for renewables by
Monjas-Barroso and Balibrea-Iniesta [12], who analyse the mechanisms of public support for renewable
energy. Similar work has been carried out by Boomsma et al. [13], who analyse investment timing for
renewable energy projects under different support schemes, and Biondi and Moretto [14], who evaluate
the uncertainties surrounding the Italian PV market. Given these findings, we included electricity
price uncertainty in our analysis.

2.2. Policy Uncertainty

The second major source of volatility for investors that we considered was policy uncertainty.
There is increasing evidence to suggest that policy uncertainty can be a significant deterrent to
renewable energy investment. For example, Reuter et al. [15] find that the certainty of support levels
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plays a considerable role in a producers’ decision to adopt a technology. A major source of contention
in the literature is how to model climate policy volatility. Several previous studies have opted for
carbon price uncertainty to proxy for policy uncertainty [16,17]; while others such as Abadie et al. [18]
take an alternative approach and model emission trading schemes. Deeney et al. [19] highlight the
importance of considering the impact legislative decisions have on market participants’ reactions by
analysing the European Emissions Trading System (ETS). Other studies involve analysing specific
areas of policy and affected sectors, such as [20], which models the effect of policy uncertainty in the
agricultural industry by analysing the carbon tax, and [21], which models feed-in tariffs for renewable
energy sources.

In the New Jersey market, two types of support policies are in place for solar PV plants. At the
federal level, the Investment Tax Credit (ITC) allows developers to receive a specific percentage of
their upfront costs in tax credits in the first year. For plants built in 2019, an amount equal to 30% of
the upfront cost is received in tax credits, while a ramp-down schedule exists for plants built after 2019.
The Investment Tax Credit is known and certain, so there is no uncertainty associated with this policy.
At the state level, Solar Renewable Energy Credits (SRECs) are implemented as part of the Renewable
Portfolio Standards (RPSs). SRECs represent the renewable features of solar generation, and one SREC
represents proof that 1 MWh of electricity has been generated from solar. All electricity suppliers are
obliged to use the SREC program to prove compliance with the RPS, by trading the certificates daily
at regional level. SREC market participants are continually exposed to fluctuations in the prices of
these certificates and profits generated from the trading of SRECs represent one of the major sources of
income for solar developers. Hence, we confined our analysis to this policy uncertainty.

We used SREC prices as a proxy for policy uncertainty, a practice not uncommon in the literature.
In a real options study of wind energy, Eryilmaz and Homans [1] model two sources of policy uncertainty:
Production Tax Credits (PTCs) and Renewable Energy Credits (RECs) and find the investment decision
is sensitive to both. Boomsma et al. [13] also model policy uncertainty for wind energy by looking
at Renewable Energy Credits (RECs). Ioannou et al. [22] identify changes in Renewable Portfolio
Standard targets as a source of risk for renewable energy investments, and Rodríguez et al. [23]
recognize volatile prices of renewables certificates as a major source of uncertainty investors are
exposed to. This is confirmed by Zeng et al. [24], who acknowledge that changing certificate prices
will have a growing impact on the optimal investment timing decision. It has been noted by Felder
and Lockley, and Mann [25,26] that volatility in SREC prices is greater than certificate volatility for
other renewables, supporting our hypothesis that policy volatility in renewable energy investment is
of considerable importance.

2.3. Modelling Volatility

To estimate the volatility of the two sources of uncertainty we have identified, we implemented
a GARCH methodology, consistent with previous approaches. Examples can be seen in [27–32].
The time-varying volatility of energy markets has traditionally been estimated using different GARCH
models (developed by [33], in addition to previous work by [34]), where the conditional variance is a
deterministic function of past data and of the parameters of the model. Several empirical studies of the
energy market use a GARCH(1,1) model ([35,36], for example). Simple models of GARCH(1,1) are
considered very useful in estimating volatility, compared to more complicated multivariate GARCH
models, as they converge fast to a quasi-maximum likelihood estimation and result in strong forecasting
performance [11,37–39].

In this study, we considered not only individual GARCH models but also combinations of the
individual models. The motivation to combine GARCH models derives from the absence of a single best
model for forecasting volatility and the fact that many models perform similarly. Initially implemented
by Bates and Granger [40], combining forecasts from different models has subsequently been applied
extensively to electricity markets (see [41–50] as examples). (For the purpose of clarification, we applied
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the GARCH model to estimate the volatility. Should we have needed to calculate the historical volatility,
we would have applied the methodology outlined in [51]).

3. Methodology

3.1. GARCH Models

GARCH models are widely implemented across finance and economics, and many variations exist.
Given our contention is that implementing alternative methods to traditional discounted cash flow
models, such as real options models, will only lead to improved results if the volatility is accurately
estimated, we considered several individual GARCH models, summarized in Table 1, and combinations
of models, described in Section 3.2.

Table 1. Autoregressive Conditional Heteroskedastic (ARCH)-type models [30] (ht denotes conditional
variance,ω the constant, α the ARCH effect, and β the GARCH effect).

ARCH(1) ht =ω + αε2
t−1

GARCH(1,1) ht =ω + αε2
t−1 + βht−1

GARCH-M rt =ω + βxt +θht + εt

PARCH ht =ω + αεϕt−1 + βhϕ/2
t−1

NGARCHK ht =ω + βht-1 + α1(εt−1 − k0)2 + α2(εt−1 − k0)2

IGARCH ht =ω + αε2
t−1 + (1-α)ht−1

SAARCH ht =ω + αε2
t−1 + γεt−1+ βht−1

TGARCH ht =ω + α|εt−1| + γ|εt−1| I (εt−1 > 0) + βht−1
GJR-GARCH ht =ω + αε2

t−1+ βht−1 + γI(εt−1 <0) ε2
t−1

APARCH hδ/2
t =ω + α(|εt−1| + γεt−1)δ + βhδ/2

t−1
EGARCH ln(ht) =ω + α(| εt−1√

ht−1
| −
√

2/π) + γ εt−1√
ht−1

+ βln(ht−1)

GARCH, Generalized Autoregressive Conditional Heteroskedastic. GARCH-M, GARCH in mean.
PARCH, Power ARCH. NGARCHK, Nonlinear GARCH. IGARCH, Integrated GARCH. SAARCH,
Simple asymmetric ARCH. TGARCH, Threshold GARCH. GJR GARCH, Glosten-Jagannathan-Runkle
GARCH. APARCH, Asymmetric power ARCH. EGARCH, Exponential GARCH.

A mix of symmetric and asymmetric models were considered. Asymmetric models take account
of the fact that negative news has a greater impact on conditional volatility than positive news [52].
This is referred to as the leverage effect and is denoted by γ. Before applying GARCH to the
conditional variance equation, an autoregressive moving average (ARMA) model was applied for the
conditional mean. All models were augmented by specifying different ARMA(p,q) models for the
mean equations, where AR(p) refers to the autoregressive model of order p and MA(q) refers to the
moving average model of order q. For electricity prices, an ARMA(2,1) was specified for the mean
equation, with innovations following a Student’s t distribution, and a weekday dummy to take into
account weekly periodicity. Utilizing a weekday dummy to account for short-term seasonality of
electricity prices is a common approach, and examples can be seen in [30,53–55]. Dummy variables
are preferred to alternative specifications when analysing seasonal behaviour due to their ease of
interpretation and intuition [56]. Additionally, weekday dummy variables shed light on issues such
as the “weekend effect”, where lower electricity prices can be spotted on weekends, observed in a
number of studies (for example, [32,57]).

For SREC prices, an ARMA(0,1) was specified for the mean equation, with innovations following
a normal distribution. A naïve model taking the form of an AR(1) was also included in the analysis to
assure the superiority of the other models in terms of forecasting performance.



Energies 2020, 13, 6233 6 of 20

3.2. Weighted Average Forecast Combinations

We continued by developing combination schemes made up of all the individual models listed in
Table 1. Six combination schemes were considered, in line with [47], and the aim was to assign weights
wkt to the individual K forecasts ĥkt to obtain a weighted forecast ĥc

t :

ĥc
t =

K∑
k=1

wktĥkt (1)

Simple and geometric averaging: We computed a simple arithmetic and geometric mean for
all forecasts produced by the individual models. This methodology is commonly used in economic
forecasting and is very robust, see for example [58–60], and [47]. For the geometric average computation,
the simple average of the log of volatility forecasts is taken, and then the exponential of the average log
volatility is taken.

ĥc
t =

1
K

K∑
k=1

ĥkt (2)

ĥc
t =

K

√√√ K∏
k=1

ĥkt (3)

Inverse Root Mean Squared Error (IRMSE): We assigned weights to the different individual
GARCH model forecasts by looking at the inverse of the Root Mean Squared Error (RMSE). The models
producing the smaller RMSE will obtain higher weights compared to other models and therefore affect
the final combined forecast in a greater way. We are essentially giving more weight to the models that
perform best individually. The weights assigned to each individual model can be defined as follows:

wkt =

1
RMSEkt−1∑K

k=1
1

RMSEkt−1

(4)

where RMSEkt denotes the out-of-sample forecast performance of the individual models.
Principal Component Analysis (PCA): PCA is a statistical method that decreases data

dimensionality by carrying out a covariance analysis between factors. Since many of the individual
models are similar, PCA allows us to isolate the common variation of volatility. We took the first
eigenvector of the variance–covariance matrix of the standardized forecasts as weights for each
individual model.

Constrained Least Square (CLS): We regressed the volatility proxy (squared returns) on all volatility
forecasts and obtained estimated coefficients for each model. The estimated coefficients were then
used as weights for each individual model. Three constraints were applied to the ordinary least square
estimation: the intercept is zero, all weights are positive, and the sum of the weights is equal to 1.
The CLS regression was

σ̂2
t = w0t +

K∑
k=1

wktĥkt + ηt (5)

and the constraints were as follows:

w0t = 0, wkt > 0 and
K∑

k=1

ŵkt = 1, ∀ k, t (6)
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The forecasts were then calculated as

ĥc
t =

K∑
k=1

ŵkt−1ĥkt (7)

Bayesian Model Averaging (BMA): BMA allows us to apply weights not only to different models
but also to different combinations of models (increasing the possible combinations from 1 to 2k).
We used Raftery et al.’s [61] BMA package in R. The weights were computed as posterior probabilities
for the regression of the volatility proxy on separate ensembles of individual forecasts.

wlt =
L(σ̂2

t−1|ml, D)ρ(ml)∑2K

j=1 L(σ̂2
t−1|m j, D)ρ

(
m j

) (8)

where ml represents a combination of models, and L(σ̂2
t−1 |ml, D) the log likelihood of ml. For a more

extensive explanation of the BMA combination method see [61].

3.3. Forecast Evaluation

To evaluate the forecast accuracy of the models and combinations of models we did not rely on
a single measure of error, instead opting for various loss functions: the Mean Squared Error (MSE),
the Root Mean Squared Error (RMSE), the Mean Absolute Error (MAE) and the Quasi-Likelihood
(QLIKE) (see Equations (9)–(12), where ht denotes the forecasted volatility and σ̂2

t denotes the actual
volatility). Zhang and Zhang [62] highlight the importance of not relying on a single loss function, as it
is unclear which one is most suitable for the assessment of volatility models. Patton [63] suggests using
both the MSE and QLIKE functions when utilizing an imperfect volatility proxy. The QLIKE measure
is asymmetric in how it penalizes over- and under-prediction of volatility (under-prediction is heavily
penalized), while the MSE focuses on point forecast accuracy. The MAE function is extremely robust to
outliers; however it is influenced by the noise in the volatility proxy. The RMSE, simply the root of the
MSE, is reported solely for reference as it is used in the computation of the IRMSE combination scheme.

MSE =
1
T

T∑
t=1

(σ̂2
t − ht)

2
(9)

RMSE =

√√√
1
T

T∑
t=1

(σ̂2
t − ht)

2 (10)

MAE =
1
T

T∑
t=1

|σ̂2
t − ĥt| (11)

QLIKE =
1
T

T∑
t=1

log(ht) +
σ̂2

t

ĥt
(12)

4. Data

In order to forecast daily volatility for electricity and SREC prices, we focussed on the New Jersey
area by applying the analysis to the Pennsylvania, Jersey, Maryland Power Pool (PJM) electricity
market and to the New Jersey SREC market. Taking Pt as the price on day t, we carried out the analysis
on the daily log price return rt, defined in the following way:

rt = ln(Pt) − ln(Pt−1)
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Since the underlying volatility is unobservable, we used daily squared log returns as a proxy,
in accordance with previous studies (see, for example [64–68]). Squared log returns are an unbiased
estimator for true volatility, as outlined in [68,69]. One-step ahead forecasts are produced for the two
sources of uncertainties. Investors are constantly exposed to daily changes in electricity and SREC
prices, and an accurate forecast of these daily changes will aid in taking long-term investment decisions.
Day-ahead electricity price forecasting is at the centre of decision-making optimization for electricity
market participants [70]. For example, as discussed in [71], companies hedge and bid against daily
volatility in electricity prices in the short term for long-term risk management. In the literature, one-step
ahead electricity price forecasts are common, and examples can be seen in [46,72,73], just to mention a
few. Our sample ranges from January 2007 to January 2018, for a total of 4014 observations, with our
out-of-sample period starting in January 2014 and comprising 1460 observations. (An out-of-sample
period of 4 years is used to ensure that at least one-third of the sample is utilized for the out-of-sample
forecast, in order to increase the robustness of the analysis).

We present the electricity log returns series in Figure 1. It is clear from the graph that the series is
characterized by high volatility and spikes. Prices were obtained from the website of Engie. The PJM
market in the United States is the largest market, covering fourteen states.

Figure 1. Pennsylvania, Jersey, Maryland Power Pool (PJM) electricity prices log returns.

SREC log returns are presented in Figure 2. We used New Jersey daily SREC prices since New
Jersey is the oldest and most developed SREC market in the U.S. The data ranging from January 2007
to March 2016 were obtained from NJC Clean Energy, while the data from March 2016 to the end of
the sample period were obtained from Bloomberg. As our dataset contains observations from two
separate sources, we carried out a reduced sample analysis using only data from NJC Clean Energy,
excluding data from March 2016 onwards for robustness purposes. The volatility in SREC prices
reduced dramatically starting from March 2016, as can be seen in Figure 2, giving us a further reason
to carry out the same analysis on the reduced sample. The decrease in SREC price volatility is likely
linked to the extension of the solar Investment Tax Credit (ITC) at the end of 2015: a 30% three year
extension and an additional subsequent two year ramp down [74]. This extension provided the solar
industry in the U.S. with a more stable investment climate, thus explaining the decrease in volatility.
As a further robustness test, the reduced sample analysis was carried out not only on SREC prices but
also on electricity prices.
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Figure 2. New Jersey Solar Renewable Energy Credit (SREC) prices log returns.

For both electricity prices and SREC prices, four years were left for the out-of-sample forecast
comparison: the first year out-of-sample was used to initialize the weight estimations for the model
combinations. As the forecast date progressed, the calibration window was enlarged to incorporate
more data. The final three years out-of-sample were used for forecast comparison by computing loss
functions for each combination scheme and each individual model. Refer to Table A1 for clarification,
if needed.

Descriptive statistics for each log return series are provided in Table 2. The Skewness–Kurtosis
test for normality tests the null hypothesis of normality and is rejected at the 1% level of significance
for all series. The Augmented Dickey–Fuller (ADF) test tests for the presence of a unit root, as well as
the Phillips–Perron (PP) test. Both the ADF and PP tests reject the null hypothesis of a unit root at
the 1% significance level, implying that the series are stationary, an important assumption for time
series analysis.

Table 2. Descriptive statistics of log returns.

Electricity SREC

Observations 4014 4015
Mean 0.0003 0.0000

Standard deviation 0.1678 0.2432
Skewness 0.2828 0.2454
Kurtosis 9.4892 20.7567

Skewness–Kurtosis test for normality 592.70
(0.0000)

982.69
(0.0000)

ADF
(5% critical value: −2.860) −23.456 −23.374

PP
(5% critical value: −2.860) −65.119 −159.708

SREC, Solar Renewable Energy Credit; ADF, Augmented Dickey–Fuller; PP, Phillips–Perron.

5. Results and Discussion

5.1. Estimation Results

The in-sample estimation results for each of the volatility models are presented in Tables 3 and 4
for both time series. As is evident from the results, the estimated coefficients of all individual
models were similar, both in terms of scale and statistical significance. In general, SREC prices show
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slightly higher degrees of persistence than electricity prices. This was reflected in β values closer to
1, significant at the 1% level. Inverse leverage effect was present for electricity prices, reflected by
negative and significant γ values. This suggests that positive shocks to prices have a greater impact on
the variance than negative shocks. This finding is consistent with those of [29,75,76]. The models were
tested for white noise process in the residuals through the Ljung–Box Q test, and for the presence of
heteroscedasticity through the ARCH test and Bartlett test. The results for these diagnostic tests can
be found in the Appendix A (Tables A2 and A3). As this paper focuses on forecasting rather than on
estimation, we did not place much emphasis on the in-sample fit of the models. Rather than limiting
the best model selection to the in-sample fit, reliance on out-of-sample performance is crucial [67,77].
Furthermore, as noted by Zhang and Zhang, and Wang et al. [62,78], investors and other market players
are more interested in the out-of-sample performance, because their concerns rely on the models’
future performance.

5.2. Forecasting Results

Table 5 shows the loss functions for electricity prices. The best performing models were the ones
with the smallest loss functions, signifying that the forecast error produced was small. In general,
four points were clear: first, all the models produced similar loss functions, reaffirming the notion that
all models perform similarly. Second, none of the forecast combination methods outperformed the best
individual models in terms of MSE and MAE. Instead, the GJR-GARCH was the best forecasting model.
Third, the QLIKE loss function favoured the combination methods, particularly CLS. This suggests
the individual models were under-predicting volatility. Finally, the worst performing combination
method was PCA, as it generated inferior forecasts in comparison with any individual model. All four
results were robust to the out-of-sample size.

We applied the Diebold–Mariano test to the best performing models/combinations, GJR-GARCH
and CLS, to assess whether their superior performance was actually statistically significant, and the
results can be found in the Appendix A (Table A4).

The loss functions for SREC prices are presented in Table 6. The NGARCHK model and the BMA
combination method are highlighted in bold to indicate their superior forecasting performance, as can
be seen from the small loss functions. Just as with electricity prices, PCA was the combination method
that consistently performed worst in terms of forecast accuracy, and this was reflected by the large
loss functions.
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Table 3. GARCH estimations and diagnostic tests for electricity prices. *** and ** denote significance at the 1% level and 5% level, respectively.

ARCH(1) GARCH(1,1) GARCH-M PARCH NGARCHK IGARCH SAARCH TGARCH GJR-GARCH APARCH EGARCH

ω 0.0153 *** 0.0013 *** 0.0019 *** 0.0014 0.0005 *** 0.0006 *** 0.0010 *** 0.0045 *** 0.0012 *** 0.0032 ** −0.1292 ***
α 0.3443 *** 0.1192 *** 0.1416 *** 0.1199 *** 0.1429 *** 0.0897 *** 0.0335 *** 0.0432 ** 0.0766 *** 0.1419 ***
β 0.8225 *** 0.7734 *** 0.8247 *** 0.9166 *** 0.8572 *** 0.8598 *** 0.9103 *** 0.8504 *** 0.8960 *** 0.9669 ***
γ 0.0089 *** 0.0811 *** 0.0876 *** 0.4723 *** 0.0736 ***
φ 1.9516 *** 1.2740 ***
α1 0.1891 ***
α2 −0.1332 ***
k0 −0.0368 **
ht 1.7077

ht−1 −1.8851 ***

Table 4. GARCH estimations and diagnostic tests for SREC prices. *** and ** denote significance at the 1% level and 5% level, respectively.

ARCH(1) GARCH(1,1) GARCH-M NGARCHK IGARCH PARCH SAARCH GJR-GARCH APARCH

ω 0.0138 *** 0.0000 *** 0.0000 *** 0.0000 *** 0.0000 *** 0.0000 *** 0.0000 ** 0.0000 *** 0.0000 ***
α 1.6326 *** 0.0758 *** 0.0763 *** 0.0507 *** 0.0700 *** 0.0792 *** 0.0958 *** 0.0655 ***
β 0.9419 *** 0.9420 *** 0.9503 *** 0.9494 *** 0.9389 *** 0.9387 *** 0.9439 *** 0.9429 ***
γ 0.0024 *** −0.0523 *** −0.1846 ***
φ 2.228 *** 2.0719 ***
α1 0.3210 ***
α2 −0.2585 ***
k0 −0.0106 ***
ht 2.5861 ***

ht−1 −2.5383 ***
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Table 5. Electricity log returns forecast loss functions. Best performing models/combinations in bold.
Combinations in italics.

Model MSE MAE QLIKE

AR(1) 0.00740 0.03268 15.82333
ARCH 0.00610 0.03005 −2.58865

GARCH 0.00543 0.02908 −2.71999
GARCH-M 0.00548 0.02867 −2.72530

PARCH 0.00544 0.02907 −2.71965
NGARCHK 0.00558 0.02921 −2.69208

IGARCH 0.00542 0.03134 −2.72385
SAARCH 0.00542 0.02884 −2.71543
TGARCH 0.00552 0.02852 −2.70458

GJR GARCH 0.00539 0.02891 −2.72011
APARCH 0.00546 0.02858 −2.71102
EGARCH 0.00554 0.02847 −2.70711

Simple 0.00545 0.02898 −2.72637
Geometric 0.00547 0.02878 −2.72292

CLS 0.00546 0.02992 −2.72772
PCA 0.00993 0.06333 −2.35884

IRMSE 0.00545 0.02898 −2.72628
BMA 0.00607 0.03745 −1.94074

CLS, Constrained Least Square; PCA, Principal Component Analysis; IRMSE, Inverse Root Mean Squared Error;
BMA, Bayesian Model Averaging.

Table 6. SREC prices forecast loss functions. Best performing models/combinations in bold.
Combinations in italics.

Model MSE MAE QLIKE

AR(1) 0.00199 0.01629 15.13625
ARCH 0.00242 0.02292 −3.79443

GARCH 0.00106 0.01055 −5.80241
GARCH-M 0.00105 0.01039 −5.80483

PARCH 0.00106 0.01057 −5.78668
NGARCHK 0.00099 0.00981 −5.85620

IGARCH 0.00105 0.00957 −5.78992
SAARCH 0.00106 0.01055 −5.84121

GJR GARCH 0.00105 0.01047 −5.79137
APARCH 0.00105 0.01048 −5.78757

Simple 0.00100 0.01113 −4.96500
Geometric 0.00101 0.01027 −5.73398

CLS 0.00099 0.01107 −4.74753
PCA 0.00210 0.02379 −4.44182

IRMSE 0.00101 0.01082 −5.12598
BMA 0.00099 0.00939 −5.03075

Diebold–Mariano tests were carried out to test the superior predictive ability of the two models,
NGARCHK and BMA, and the results can be found in the Appendix A in Table A5.

6. Conclusions and Policy Implications

The main aim of this study was to forecast policy volatility in the solar photovoltaic market
given the abrupt changes to renewable energy policy, particularly with respect to solar, in many
countries in recent years. The need for improved accuracy in volatility forecasting for renewable energy
technologies is evident in the increasing implementation of investment decision-making methodologies
that move away from static discounted cash-flow techniques, towards non-static models that include
the value of flexibility in the decision-making process, such as real options. In order to accurately
evaluate a potential investment using these methodologies, a reliable estimate of the volatility of the



Energies 2020, 13, 6233 13 of 20

future cash flows is essential. We explored the importance of policy and electricity price uncertainty
for renewable investment decisions in solar photovoltaic and the most accurate way to forecast both.
We used Solar Renewable Energy Credits to proxy for policy uncertainty and applied our analysis to
the Pennsylvania, Jersey, Maryland Power Pool (PJM) electricity and the New Jersey SREC market,
the largest in the United States. We considered a number of GARCH-class models and combinations
of such models to model the volatility of the two sources of uncertainty over a period of study of
11 years. By focusing on the out-of-sample forecasting performance of the models and combinations
of models and through the computation of loss functions, we reached several important conclusions.
First, by implementing a combination approach, we were able to obtain superior forecasts for policy
and electricity price volatility compared to the majority of individual models, with results that are
robust to a smaller sample range. Our findings were that individual models under-predict volatility.
While several previous studies consider and forecast electricity price volatility in solar energy, this is
the first study, to our knowledge, that includes both electricity price and policy volatility. We used
SREC prices as a proxy for policy volatility because SREC market participants are constantly exposed
to fluctuations in the prices of these certificates. Moreover, profits made from the trading of the SRECs
represent one of the major sources of income for developers. Hence, we modelled policy uncertainty
by analysing SREC prices.

Our study has important implications for both policymakers and investors. We have shown
that there is significant volatility surrounding Solar Renewable Energy Credits, our proxy for policy
(a high degree of volatility persistence, as displayed by the β parameter close to 1). We chose to
analyse the New Jersey market as it has one of the most established SREC markets. Despite the rapid
decline in the cost of solar photovoltaic and other renewable technologies, recent reports suggest that
investment in renewable energy is slowing. Traditionally, in order to attract investment in renewable
energy, policy supports are introduced to make such investment attractive and competitive with
non-renewable energy sources. Consequently, a large part of the return investors receive is based
on the revenue generated from these policy supports. In markets that use Solar Renewable Energy
Credits, these credits provide a large incentive for solar investment. Due to the reliance on such policy
supports to drive the investors return, uncertainty that these incentives will persist over the lifetime of
the investment will be factored into the investors’ required rate of return. Previous examples of abrupt
and significant policy changes from around the world suggest that investors are absolutely correct to
be concerned about policy instability. The more uncertainty that exists, the riskier the investment will
be perceived to be. As a result, higher policy volatility will lead to a higher risk premium, and hence a
higher cost of capital for renewable energy projects. This will lead to lower investment in such projects,
slowing the move towards alternatives to fossil fuels.

Governments around the world have been unveiling incredibly ambitious strategies for combating
climate change, the majority of which include plans to significantly increase the amount of energy
sources from renewables. For example, Ireland plans to generate 70% of electricity from renewable
sources by 2030, while Spain has targeted 100% generation from renewables by 2050. Canada plans to
phase out coal by 2030 and triple renewable energy generation over the same time period, and the United
Kingdom has planned to achieve a 57% reduction in greenhouse gas emissions over 1990 levels. Each of
these countries has also unveiled a series of policies to assist in achieving these ambitions. What is clear
is that implementing appropriate policy is essential and that the stability of policy is of considerable
importance in order to attract sufficient investment to achieve these targets. For policymakers, it is clear
that in order to move towards reaching CO2 emissions reduction targets, keeping policy uncertainty
to a minimum will foster further investment in solar PV by reducing perceived risk and attracting
more capital at a lower required rate of return. One potential tool for policymakers to reduce policy
uncertainty, in this case SREC price uncertainty, is by setting a price ceiling and a price floor in
order to reduce the large volatility in SREC prices. In the state of New Jersey, there is a penalty for
non-compliance with the SREC system called the Alternative Compliance Payment (ACP). The ACP
sets the maximum amount of incentive receivable for the particular year, therefore acting as the upper
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bound of the SREC prices: if the SREC price goes above the ACP, suppliers will simply pay the penalty
price. However, there is currently no price floor in the SREC market, leaving investors exposed to
downside price uncertainty. Inserting a price floor could ensure a minimum SREC inflow. For potential
investors, we have identified improved forecasts for the major sources of uncertainty surrounding
investment in solar PV, namely, electricity price uncertainty and policy uncertainty. This information
can be combined and incorporated into real options valuation, allowing for a more accurate valuation
of solar PV projects. Alternatively, investors can utilize the volatility estimate to alter the discount rate
of the investment. The discount rate applicable to projects can change over time as the risks facing a
firm change. Investors could express the discount rate as a function of volatility, so that in periods of
high volatility, the discount rate can be increased to reflect the higher risk, and vice versa.
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Appendix A

Table A1. Out-of-sample details.

Range 01/01/07–01/01/18 01/01/14–01/01/18

Out of sample Year 1: weight estimations Years 2–4: loss function computation
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Table A2. Models’ diagnostic tests for electricity prices, Ljung–Box Q, ARCH, and Bartlett test results are reported.

Diagnostic Tests ARCH(1) GARCH(1,1) GARCH-M PARCH NGARCHK IGARCH SAARCH TGARCH GJR-GARCH APARCH EGARCH

Q(20) 338.7831
[0.0000]

31.4653
[0.0493]

36.8489
[0.0122]

32.0447
[0.0428]

24.5856
[0.2177]

34.0167
[0.0260]

42.1856
[0.0026]

76.0232
[0.0000]

34.0402
[0.0259]

56.4840
[0.0000]

59.4982
[0.0000]

ARCH(20) 207.509
[0.0000]

27.540
[0.1207]

33.808
[0.0275]

28.063
[0.1079]

21.949
[0.3433]

31.296
[0.0514]

37.929
[0.0090]

71.248
[0.0000]

30.178
[0.0670]

51.964
[0.0001]

55.363
[0.0000]

B 2.9441
[0.0000]

1.7461
[0.0045]

1.5373
[0.0177]

1.7838
[0.0034]

0.9293
[0.3536]

1.5432
[0.0171]

2.1029
[0.0003]

3.3496
[0.0000]

1.7366
[0.0048]

2.7288
[0.0000]

2.8610
[0.0000]

Table A3. Models’ diagnostic tests for SREC prices. Ljung–Box Q, ARCH, and Bartlett test results are reported.

Diagnostic Tests ARCH(1) GARCH(1,1) GARCH-M NGARCHK IGARCH PARCH SAARCH GJR-GARCH APARCH

Q(20) 116.7365
[0.0000]

22.0905
[0.3356]

18.4212
[0.5597]

17.7214
[0.6058]

35.3338
[0.0184]

21.8372
[0.3494]

20.7718
[0.4107]

20.6662
[0.4170]

20.6217
[0.4197]

ARCH(20) 100.200
[0.0000]

22.125
[0.3338]

18.479
[0.5559]

17.680
[0.6084]

35.630
[0.0170]

21.895
[0.3462]

20.719
[0.4138]

20.698
[0.4151]

20.668
[0.4169]

B 1.3635
[0.0486]

1.8870
[0.0016]

1.6496
[0.0087]

0.6078
[0.8538]

2.4106
[0.0000]

1.8576
[0.0020]

1.8809
[ 0.0017]

1.8013
[0.0030]

1.7982
[0.0031]
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Table A4. Electricity prices: Diebold–Mariano test statistic for forecast accuracy of GJR-GARCH and
CLS. MSE and MAE are used as criteria (following Mohammadi and Su, [79]. In panel A, we evaluate
the forecast accuracy of the GJR-GARCH compared to that of all other models; while in panel B,
we evaluate the CLS combination with all other models.

Model Criteria: MSE Criteria: MAE

A. Benchmark: GJR-GARCH

AR −1.581 −5.03 ***
ARCH −1.082 −2.134 **

GARCH −1.608 −1.399
GARCH-M −1.018 0.7794

PARCH −1.571 −1.299
NGARCHK −1.109 −1.01

IGARCH −0.3787 −2.533 **
SAARCH −4.256 *** 0.5236
TGARCH −1.269 0.7777
APARCH −1.315 0.8923
EGARCH −1.165 0.7751

Simple −0.9942 −0.5939
Geometric −1.038 0.4159

CLS −1.031 −1.871 *
PCA −2.1 1** −8.647 ***

IRMSE −0.9984 −0.6264
BMA −3.378 *** −5.075 ***

B. Benchmark: CLS

AR −1.605 −2.57 **
ARCH −1.078 −0.1233

GARCH 0.7346 1.722*
GARCH-M −0.3296 1.529

PARCH 0.6831 1.695 *
NGARCHK −1.073 1.583

IGARCH 0.517 −3.173 ***
SAARCH 0.8164 1.791 *
TGARCH −1.11 1.403

GJR GARCH 1.031 1.871 *
APARCH 0.2457 1.531
EGARCH −1.077 1.347

Simple 0.5145 1.43
Geometric −0.05019 1.468

PCA −2.146 ** −9.689 ***
IRMSE 0.5358 1.433
BMA −3.462 *** −4.097 ***

*** Indicates significance at the 1% level, ** at 5%, and * at 10%.
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Table A5. SREC prices: Diebold–Mariano test statistic for forecast accuracy of NGARCHK and BMA.
MSE and MAE are used as criteria (following Mohammadi and Su, [79]). In panel A, we evaluate the
forecast accuracy of the NGARCHK compared to that of all other models; while in panel B, we evaluate
the BMA combination with all other models.

Model Criteria: MSE Criteria: MAE

A. Benchmark: NGARCHK

AR −3.122 *** −3.588 ***
ARCH −2.369 ** −15.22 ***

GARCH −1.512 −2.106 **
GARCH-M −1.484 −2.045 **

PARCH −1.486 −1.873 *
IGARCH −1.38 1.337
SAARCH −1.539 −2.059 **

GJR GARCH −1.331 −1.787 *
APARCH −1.334 −1.724 **

Simple −0.9922 −10.03 ***
Geometric −1.11 −2.451 **

CLS −0.1049 −4.883 ***
PCA −2.611 *** −4.291 ***

IRMSE −1.146 −6.094 ***
BMA −0.04666 0.7067

B. Benchmark: BMA

AR −3.178 *** −3.493 ***
ARCH −2.388 ** −12.93 ***

GARCH −1.646 * −1.294
GARCH-M −1.645 −1.205

PARCH −1.593 −1.25
NGARCHK 0.04666 −0.7067

IGARCH −1.596 −0.2902
SAARCH −1.67 * −1.282

GJR GARCH −1.487 −1.209
APARCH −1.477 −1.201

Simple −0.5043 −2.612 ***
Geometric −1.222 −1.2

CLS 0.01375 −3.814 ***
PCA −2.614 *** −3.831 ***

IRMSE −0.8751 −2.018 **

*** Indicates significance at the 1% level, ** at 5%, and * at 10%.
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