Water Conservation Potential of Self-Funded Foam-Based Flexible Surface-Mounted Floatovoltaics
Abstract
:1. Introduction
- (1)
- (2)
- (3)
- (4)
2. Materials and Methods
2.1. Data Collection
2.1.1. Lake Evaporation Data
2.1.2. FPV Panel Data Collection
2.2. Water Evaporation Modeling
2.3. Energy Production Modeling
2.3.1. FPV Operating Temperature
2.3.2. Other Loss Factors
2.3.3. Parameters Used for Energy Yield Simulation
2.4. Water Savings Capability and Efficiency of the System
3. Results
3.1. Water Evaporation
3.2. Energy Production
3.2.1. FPV Operating Temperature Model
3.2.2. Energy Yield and Water Savings of an FPV System Installed on Lake Mead
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Glossary
Symbol | Name | Unit |
actual saturation vapor pressure | (kPa) | |
aerodynamic resistance | (s/m) | |
air density | (kg/m3) | |
albedo | - | |
altitude | (m) | |
average daily air temperature | (°C) | |
average daily air temperature | (°C) | |
average daily atmospheric pressure | (kPa) | |
average daily dew temperature | (°C) | |
average daily water temperature | (°C) | |
average daily wind speed | (m/s) | |
clear sky radiation | (MJ/m2/day) | |
cloud coverage fraction | - | |
effective depth of the lake | (m) | |
effective operating temperature | (°C) | |
efficiency at reference temperature | (%) | |
electrical efficiency | (%) | |
emissivity of water | - | |
equilibrium temperature | (°C) | |
extraterrestrial radiation | (MJ/m2/day) | |
global horizontal irradiation | (W/m2) | |
global horizontal irradiation | (MJ/m2/day) | |
heat capacity of air | (kJ/kg/°C) | |
heat capacity of water | (MJ/kg/°C) | |
heat storage flux | (MJ/m2/day) | |
incoming longwave radiation | (MJ/m2/day) | |
lake evaporation | (mm) | |
latent heat of vaporization of water | (MJ/kg) | |
latitude | (rad) | |
maximum daily air temperature | (°C) | |
maximum daily relative humidity | (%) | |
maximum daily water temperature | (°C) | |
mean saturation vapor pressure | (kPa) | |
mean uniform temperature of water | (°C) | |
minimum daily air temperature | (°C) | |
minimum daily relative humidity | (%) | |
minimum daily water temperature | (°C) | |
net longwave radiation | (MJ/m2/day) | |
net radiation at wet-bulb temperature | (MJ/m2/day) | |
net shortwave radiation | (MJ/m2/day) | |
net solar radiation | (MJ/m2/day) | |
outgoing longwave radiation | (MJ/m2/day) | |
outgoing longwave radiation at wet-bulb temperature | (MJ/m2/day) | |
output power | (W) | |
photovoltaic surface | (m2) | |
photovoltaic system efficiency | (%) | |
psychrometric constant | (kPa/°C) | |
reference temperature | (°C) | |
saturation vapor pressure curve at wet-bulb temperature | (kPa/K) | |
slope of saturation vapor pressure curve | (kPa/°C) | |
Stephan–Boltzmann constant | (MJ/m2/K4/day) | |
surface of the lake | (m2) | |
temperature coefficient of the PV panel | (%/°C) | |
time constant | (day) | |
time step | (h/day) | |
water density | (kg/m3) | |
wet-bulb temperature | (°C) | |
wind function | (MJ/m2/kPa/day) |
References
- Arnell, N. Climate change and global water resources. Glob. Environ. Chang. 1999, 9, S31–S49. [Google Scholar] [CrossRef]
- Kummu, M.; Ward, P.J.; de Moel, H.; Varis, O. Is physical water scarcity a new phenomenon? Global assessment of water shortage over the last two millennia. Environ. Res. Lett. 2010, 5, 034006. [Google Scholar] [CrossRef] [Green Version]
- Coyle, E.D. (Ed.) Understanding the Global Energy Crisis; Purdue Studies in Public Policy; Purdue University Press: West Lafayette, IN, USA, 2014; ISBN 978-1-55753-661-7. [Google Scholar]
- Brown, L.R. Full Planet, Empty Plates: The New Geopolitics of Food Scarcity, 1st ed.; W.W. Norton & Company: New York, NY, USA, 2012; ISBN 978-0-393-08891-5. [Google Scholar]
- Baum, S.D.; Denkenberger, D.C.; Pearce, J. Alternative Foods as a Solution to Global Food Supply Catastrophes. Solutions 2016, 7, 31–35. [Google Scholar]
- Rockström, J.; Falkenmark, M.; Karlberg, L.; Hoff, H.; Rost, S.; Gerten, D. Future water availability for global food production: The potential of green water for increasing resilience to global change: Water availability for food production. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef] [Green Version]
- Misra, A.K. Climate change and challenges of water and food security. Int. J. Sustain. Built Environ. 2014, 3, 153–165. [Google Scholar] [CrossRef] [Green Version]
- Cook, J.; Oreskes, N.; Doran, P.T.; Anderegg, W.R.L.; Verheggen, B.; Maibach, E.W.; Carlton, J.S.; Lewandowsky, S.; Skuce, A.G.; Green, S.A.; et al. Consensus on consensus: A synthesis of consensus estimates on human-caused global warming. Environ. Res. Lett. 2016, 11, 048002. [Google Scholar] [CrossRef]
- Solomon, S.; Intergovernmental Panel on Climate Change (Eds.) Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2007; ISBN 978-0-521-88009-1. [Google Scholar]
- Kellogg, W.W.; Schware, R. Climate Change and Society: Consequences of Increasing Atmospheric Carbon Dioxide, 1st ed.; Routledge: New York, NY, USA, 2019; ISBN 978-0-429-04873-9. [Google Scholar]
- Bates, B.; Kundzewicz, Z.W.; Wu, S.; Palutikof, J.P. (Eds.) Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change; IPCC Technical Paper 6; IPCC Secretariat: Geneva, Switzerland, 2008; ISBN 978-92-9169-123-4. [Google Scholar]
- Baker, E.; Fowlie, M.; Lemoine, D.; Reynolds, S.S. The Economics of Solar Electricity. Annu. Rev. Resour. Econ. 2013, 5, 387–426. [Google Scholar] [CrossRef] [Green Version]
- de Wit, M.; Stankiewicz, J. Changes in Surface Water Supply Across Africa with Predicted Climate Change. Science 2006, 311, 1917–1921. [Google Scholar] [CrossRef] [Green Version]
- Edenhofer, O.; Pichs-Madruga, R.; Sokohana, Y.; Farahani, E.; Kadner, S.; Seyboth, K.; Adler, A.; Baum, I.; Brunner, S.; Eickemeier, P.; et al. (Eds.) IPCC Climate Change 2014: Mitigation of Climate Change: Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014; ISBN 978-1-107-05821-7. [Google Scholar]
- Pearce, J.M. Photovoltaics—A path to sustainable futures. Futures 2002, 34, 663–674. [Google Scholar] [CrossRef]
- Creutzig, F.; Agoston, P.; Goldschmidt, J.C.; Luderer, G.; Nemet, G.; Pietzcker, R.C. The underestimated potential of solar energy to mitigate climate change. Nat. Energy 2017, 2, 17140. [Google Scholar] [CrossRef]
- Calvert, K.; Pearce, J.M.; Mabee, W.E. Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity. Renew. Sustain. Energy Rev. 2013, 18, 416–429. [Google Scholar] [CrossRef] [Green Version]
- SEIA Siting, Permitting & Land Use for Utility-Scale Solar. Available online: https://www.seia.org/initiatives/siting-permitting-land-use-utility-scale-solar (accessed on 13 November 2020).
- Kenny, R.; Law, C.; Pearce, J.M. Towards real energy economics: Energy policy driven by life-cycle carbon emission. Energy Policy 2010, 38, 1969–1978. [Google Scholar] [CrossRef]
- Groesbeck, J.G.; Pearce, J.M. Coal with Carbon Capture and Sequestration is not as Land Use Efficient as Solar Photovoltaic Technology for Climate Neutral Electricity Production. Sci. Rep. 2018, 8, 13476. [Google Scholar] [CrossRef] [PubMed]
- FAO (Ed.) How does International Price Volatility Affect Domestic Economies and Food Security; The state of food insecurity in the world; FAO: Rome, Italy, 2011; ISBN 978-92-5-106927-1. [Google Scholar]
- Yasmeena, S.; Das, G.T.R. A Review on New Era of Solar Power Systems: Floatovoltaic Systems or Floating Solar Power Plants. JIC 2015, 3, 1–8. [Google Scholar] [CrossRef]
- Majid, Z.A.A.; Ruslan, M.H.; Sopian, K.; Othman, M.Y.; Azmi, M.S.M. Study on Performance of 80 Watt Floating Photovoltaic Panel. J. Mech. Eng. Sci. 2014, 7, 1150–1156. [Google Scholar] [CrossRef]
- Trapani, K.; Millar, D.L. The thin film flexible floating PV (T3F-PV) array: The concept and development of the prototype. Renew. Energy 2014, 71, 43–50. [Google Scholar] [CrossRef]
- do Sacramento, E.M.; Carvalho, P.C.; de Araújo, J.C.; Riffel, D.B.; da Cruz Corrêa, R.M.; Neto, J.S. Scenarios for use of floating photovoltaic plants in Brazilian reservoirs. Iet Renew. Power Gener. 2015, 9, 1019–1024. [Google Scholar] [CrossRef]
- Trapani, K.; Santafé, M.R. A review of floating photovoltaic installations: 2007–2013. Prog. Photovolt. Res. Appl. 2015, 23, 524–532. [Google Scholar] [CrossRef] [Green Version]
- Patil, S.S.; Wagh, M.M.; Shinde, N.N. A review on floating solar photovoltaic power plants. Int. J. Sci. Eng. Res. 2017, 8, 789–794. [Google Scholar]
- Kumar, N.M.; Kanchikere, J.; Mallikarjun, P. Floatovoltaics: Towards improved energy efficiency, land and water management. Int. J. Civ. Eng. Technol. 2018, 9, 1089–1096. [Google Scholar]
- Haugwitz, F. Floating Solar PV Gains Global Momentum. Available online: https://www.pv-magazine.com/2020/09/22/floating-solar-pv-gains-global-momentum/ (accessed on 3 October 2020).
- Rosa-Clot, M.; Rosa-Clot, P.; Tina, G.M.; Scandura, P.F. Submerged photovoltaic solar panel: SP2. Renew. Energy 2010, 35, 1862–1865. [Google Scholar] [CrossRef]
- Tina, G.M.; Rosa-Clot, M.; Rosa-Clot, P.; Scandura, P.F. Optical and thermal behavior of submerged photovoltaic solar panel: SP2. Energy 2012, 39, 17–26. [Google Scholar] [CrossRef]
- Ferrer-Gisbert, C.; Ferrán-Gozálvez, J.J.; Redón-Santafé, M.; Ferrer-Gisbert, P.; Sánchez-Romero, F.J.; Torregrosa-Soler, J.B. A new photovoltaic floating cover system for water reservoirs. Renew Energy 2013, 60, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Abdulgafar, S.A.; Omar, O.S.; Yousif, K.M. Improving the efficiency of polycrystalline solar panel via water immersion method. IJIRSET 2014, 3, 96–101. [Google Scholar]
- Mehrotra, S.; Rawat, P.; Debbarma, M.; Sudhakar, K. Performance of a solar panel with water immersion cooling technique. Int. J. Sci. Environ. Technol. 2014, 3, 1161–1172. [Google Scholar]
- McKay, A. Floatovoltaics: Quantifying the Benefits of a Hydro-Solar Power Fusion; Pomona College: Claremont, CA, USA, 2013. [Google Scholar]
- Santafé, M.R.; Gisbert, P.S.F.; Romero, F.J.S.; Soler, J.B.T.; Gozálvez, J.J.F.; Gisbert, C.M.F. Implementation of a photovoltaic floating cover for irrigation reservoirs. J. Clean. Prod. 2014, 66, 568–570. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Muni, B.; Sen, D. Design parameters of 10 KW floating solar power plant. In Proceedings of the International Advanced Research Journal in Science, Engineering and Technology (IARJSET), National Conference on Renewable Energy and Environment (NCREE-2015), Ghaziabad, India, 1 May 2015; Volume 2. [Google Scholar]
- Rosa-Clot, M.; Tina, G.M.; Nizetic, S. Floating photovoltaic plants and wastewater basins: An Australian project. Energy Procedia 2017, 134, 664–674. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Q.; Lin, H.; Li, H.; Sun, Q.; Wennersten, R. Power Generation Efficiency and Prospects of Floating Photovoltaic Systems. Energy Procedia 2017, 105, 1136–1142. [Google Scholar] [CrossRef]
- Mittal, D.; Saxena, B.K.; Rao, K.V.S. Floating solar photovoltaic systems: An overview and their feasibility at Kota in Rajasthan. In Proceedings of the 2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT), Kollam, India, 20–21 April 2017; IEEE: New York, NY, USA, 2017; pp. 1–7. [Google Scholar]
- Mittal, D.; Saxena, B.K.; Rao, K.V.S. Potential of floating photovoltaic system for energy generation and reduction of water evaporation at four different lakes in Rajasthan. In Proceedings of the 2017 International Conference on Smart Technologies for Smart Nation (SmartTechCon), Bengaluru, India, 17–19 August 2017; pp. 238–243. [Google Scholar]
- Abid, M.; Abid, Z.; Sagin, J.; Murtaza, R.; Sarbassov, D.; Shabbir, M. Prospects of floating photovoltaic technology and its implementation in Central and South Asian Countries. Int. J. Environ. Sci. Technol. 2019, 16, 1755–1762. [Google Scholar] [CrossRef]
- Teixeira, L.E.; Caux, J.; Beluco, A.; Bertoldo, I.; Louzada, J.A.S.; Eifler, R.C. Feasibility Study of a Hydro PV Hybrid System Operating at a Dam for Water Supply in Southern Brazil. JPEE 2015, 3, 70–83. [Google Scholar] [CrossRef] [Green Version]
- Vasco, G.; Silva, J.S.; Beluco, A. Feasibility Study of a PV Hydro Hybrid System, With Photovoltaic Panels on Floating Structures. Iop Conf. Ser. Mater. Sci. Eng. 2018, 366, 012011. [Google Scholar] [CrossRef]
- Kamuyu, W.C.L.; Lim, J.; Won, C.; Ahn, H. Prediction Model of Photovoltaic Module Temperature for Power Performance of Floating PVs. Energies 2018, 11, 447. [Google Scholar] [CrossRef] [Green Version]
- Ranjbaran, P.; Yousefi, H.; Gharehpetian, G.B.; Astaraei, F.R. A review on floating photovoltaic (FPV) power generation units. Renew. Sustain. Energy Rev. 2019, 110, 332–347. [Google Scholar] [CrossRef]
- Lee, A.-K.; Shin, G.-W.; Hong, S.-T.; Choi, Y.-K. A study on development of ICT convergence technology for tracking-type floating photovoltaic systems. SGCE 2014, 3, 80–87. [Google Scholar] [CrossRef]
- Song, J.; Choi, Y. Analysis of the Potential for Use of Floating Photovoltaic Systems on Mine Pit Lakes: Case Study at the Ssangyong Open-Pit Limestone Mine in Korea. Energies 2016, 9, 102. [Google Scholar] [CrossRef]
- Choi, Y.K.; Choi, W.S.; Lee, J.H. Empirical Research on the Efficiency of Floating PV Systems. Sci. Adv. Mater. 2016, 8, 681–685. [Google Scholar] [CrossRef] [Green Version]
- Stachiw, J.D. Performance of Photovoltaic Cells in Undersea Environment. J. Manuf. Sci. Eng. 1980, 102, 51–59. [Google Scholar] [CrossRef]
- Rathod, M.K.; Banerjee, J. Thermal stability of phase change materials used in latent heat energy storage systems: A review. Renew. Sustain. Energy Rev. 2013, 18, 246–258. [Google Scholar] [CrossRef]
- Ho, C.J.; Chou, W.-L.; Lai, C.-M. Thermal and electrical performance of a water-surface floating PV integrated with a water-saturated MEPCM layer. Energy Convers. Manag. 2015, 89, 862–872. [Google Scholar] [CrossRef]
- Ho, C.J.; Chou, W.-L.; Lai, C.-M. Thermal and electrical performances of a water-surface floating PV integrated with double water-saturated MEPCM layers. Appl. Therm. Eng. 2016, 94, 122–132. [Google Scholar] [CrossRef]
- Mayville, P.; Patil, N.V.; Pearce, J.M. Distributed Manufacturing of After Market Flexible Floating Photovoltaic Modules. J. Clean. Prod. 2020, in press. [Google Scholar] [CrossRef]
- Moreo, M.T.; Swancar, A. Evaporation from Lake Mead, Nevada and Arizona, March 2010 through February 2012; Scientific Investigations Report; U.S. Geological Survey: Reston, VA, USA, 2013; p. 52.
- NPS Overview of Lake Mead-Lake Mead National Recreation Area (U.S. National Park Service). Available online: https://www.nps.gov/lake/learn/nature/overview-of-lake-mead.htm (accessed on 29 June 2020).
- Monteith, J.L. Evaporation and environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar] [PubMed]
- Allen, R.G.; FAO. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; ISBN 978-92-5-104219-9. [Google Scholar]
- Hayibo, K.S.; Pearce, J.M. Calculations for Water Conservation Potential of Self-funded Foam-Based Flexible Surface-Mounted Floatovoltaics. OSF 2020. Available online: https://osf.io/twexy/ (accessed on 16 October 2020).
- World Bank Group; ESMAP; SERIS. Where Sun Meets Water: Floating Solar Handbook for Practitioners; World Bank Group: Washington, DC, USA, 2019. [Google Scholar]
- US Department of Commerce, N.O. and A.A. NDBC Station Page. Available online: http://www.ndbc.noaa.gov/station_page.php?station=nbba3 (accessed on 22 June 2020).
- Weather Underground Las Vegas, NV Weather History | Weather Underground. Available online: https://www.wunderground.com/history/daily/us/nv/las-vegas/KLAS/date/2018-2-28 (accessed on 22 June 2020).
- Solcast Solar Irradiance Data 2020. Available online: https://solcast.com (accessed on 19 September 2020).
- NPS Storage Capacity of Lake Mead-Lake Mead National Recreation Area (U.S. National Park Service). Available online: https://www.nps.gov/lake/learn/nature/storage-capacity-of-lake-mead.htm (accessed on 22 June 2020).
- US Department of Commerce, N.O. and A.A. NDBC Station History Page. Available online: http://www.ndbc.noaa.gov/station_history.php?station=nbba3 (accessed on 23 June 2020).
- Hayibo, K.S. Soul-Ash/floating-pv: Lake Mead Data Cleaning Code; Zenodo, 2020; Available online: https://zenodo.org/record/3960777 (accessed on 26 July 2020).
- Zotarelli, L.; Dukes, M.D.; Romero, C.C.; Migliaccio, K.W. Step by Step Calculation of the Penman-Monteith Evapotranspiration (FAO-56 Method); University of Florida: Gainesville, FL, USA, 2018. [Google Scholar]
- Weiss, A.; Hays, C.J. Calculating daily mean air temperatures by different methods: Implications from a non-linear algorithm. Agric. For. Meteorol. 2005, 128, 57–65. [Google Scholar] [CrossRef]
- Shi, T.-T.; Guan, D.-X.; Wu, J.-B.; Wang, A.-Z.; Jin, C.-J.; Han, S.-J. Comparison of methods for estimating evapotranspiration rate of dry forest canopy: Eddy covariance, Bowen ratio energy balance, and Penman-Monteith equation. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Sunpower® SunPower Flexible Solar Panels | SPR-E-Flex-110. Available online: https://us.sunpower.com/sites/default/files/110w-flexible-panel-spec-sheet.pdf (accessed on 13 October 2020).
- Foam Factory Foam Factory. Data Sheets | Foam Factory, Inc. Available online: https://www.foambymail.com/datasheets.html (accessed on 13 October 2020).
- Domany, M.A.; Touchart, L.; Bartout, P.; Nedjai, R. The Evaporation From Ponds In The French Midwest. Lakes Reserv. Ponds 2013, 7, 75–88. [Google Scholar]
- Abtew, W.; Melesse, A. Evaporation and Evapotranspiration; Springer: Dordrecht, The Netherlands, 2013; ISBN 978-94-007-4736-4. [Google Scholar]
- Jensen, M.E.; Dotan, A.; Sanford, R. Penman-Monteith Estimates of Reservoir Evaporation. In Proceedings of the Impacts of Global Climate Change; American Society of Civil Engineers: Anchorage, AK, USA, 2005; pp. 1–24. [Google Scholar]
- Finch, J.W.; Hall, R.L.; Great Britain; Environment Agency. Estimation of Open Water Evaporation: A Review of Methods; Environment Agency: Bristol, UK, 2005; ISBN 978-1-85705-604-4.
- McJannet, D.L.; Webster, I.T.; Cook, F.J. An area-dependent wind function for estimating open water evaporation using land-based meteorological data. Environ. Model. Softw. 2012, 31, 76–83. [Google Scholar] [CrossRef]
- Idso, S.B.; Jackson, R.D. Thermal radiation from the atmosphere. J. Geophys. Res. 1969, 74, 5397–5403. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. The blue water footprint of electricity from hydropower. Hydrol. Earth Syst. Sci. 2012, 16, 179–187. [Google Scholar] [CrossRef] [Green Version]
- Jegede, O.O.; Ogolo, E.O.; Aregbesola, T.O. Estimating net radiation using routine meteorological data at a tropical location in Nigeria. Int. J. Sustain. Energy 2006, 25, 107–115. [Google Scholar] [CrossRef]
- Niclòs, R.; Valor, E.; Caselles, V.; Coll, C.; Sánchez, J.M. In situ angular measurements of thermal infrared sea surface emissivity—Validation of models. Remote Sens. Environ. 2005, 94, 83–93. [Google Scholar] [CrossRef]
- de Bruin, H.A.R. Temperature and energy balance of a water reservoir determined from standard weather data of a land station. J. Hydrol. 1982, 59, 261–274. [Google Scholar] [CrossRef]
- Finch, J.W. A comparison between measured and modelled open water evaporation from a reservoir in south-east England. Hydrol. Process. 2001, 15, 2771–2778. [Google Scholar] [CrossRef]
- McJannet, D. Estimating Open Water Evaporation for the Murray-Darling Basin; CSIRO: Water for a Healthy Country National Research Flagship: Canberra, Australia, 2008. [Google Scholar] [CrossRef]
- Duffie, J.A.; Beckman, W.A. Chapter 23-Design of Photovoltaic Systems. In Solar Engineering of Thermal Processes; John, A.D., William, A.B., Eds.; John Wiley: Hoboken, NJ, USA, 2013; ISBN 978-0-470-87366-3. [Google Scholar]
- Shaari, S.; Sopian, K.; Amin, N.; Kassim, M.N. The Temperature Dependence Coefficients of Amorphous Silicon and Crystalline Photovoltaic Modules Using Malaysian Field Test Investigation. Am. J. Appl. Sci. 2009, 6, 586–593. [Google Scholar] [CrossRef]
- Kamkird, P.; Ketjoy, N.; Rakwichian, W.; Sukchai, S. Investigation on Temperature Coefficients of Three Types Photovoltaic Module Technologies under Thailand Operating Condition. Procedia Eng. 2012, 32, 376–383. [Google Scholar] [CrossRef] [Green Version]
- MathWorks Multiple Linear Regression-MATLAB Regress. Available online: https://www.mathworks.com/help/stats/regress.html (accessed on 30 July 2020).
- Maghami, M.R.; Hizam, H.; Gomes, C.; Radzi, M.A.; Rezadad, M.I.; Hajighorbani, S. Power loss due to soiling on solar panel: A review. Renew. Sustain. Energy Rev. 2016, 59, 1307–1316. [Google Scholar] [CrossRef] [Green Version]
- Fouad, M.M.; Shihata, L.A.; Morgan, E.I. An integrated review of factors influencing the perfomance of photovoltaic panels. Renew. Sustain. Energy Rev. 2017, 80, 1499–1511. [Google Scholar] [CrossRef]
- Jacobson, M.Z.; Jadhav, V. World estimates of PV optimal tilt angles and ratios of sunlight incident upon tilted and tracked PV panels relative to horizontal panels. Sol. Energy 2018, 169, 55–66. [Google Scholar] [CrossRef]
- Taboada, M.E.; Cáceres, L.; Graber, T.A.; Galleguillos, H.R.; Cabeza, L.F.; Rojas, R. Solar water heating system and photovoltaic floating cover to reduce evaporation: Experimental results and modeling. Renew. Energy 2017, 105, 601–615. [Google Scholar] [CrossRef] [Green Version]
- Las Vegas Valley Water District Water Rates. Available online: https://www.lvvwd.com/customer-service/pay-bill/water-rates.html (accessed on 16 October 2020).
- Karambelkar, S. Hydropower Operations in the Colorado River Basin: Institutional Analysis of Opportunities and Constraints; Hydropower Foundation: Littleton, CP, USA, 2018; p. 91. [Google Scholar]
- Trabish, H.K. Hoover Dam, the Drought, and a Looming Energy Crisis. Available online: https://www.utilitydive.com/news/hoover-dam-the-drought-and-a-looming-energy-crisis/281133/ (accessed on 13 November 2020).
- Westenburg, C.L.; De Meo, G.A.; Tanko, D.J. Evaporation from Lake Mead, Arizona and Nevada, 1997–1999; U.S. Geological Survey: Reston, VA, USA, 2006; p. 34.
- US EPA, O. Statistics and Facts. Available online: https://www.epa.gov/watersense/statistics-and-facts (accessed on 10 October 2020).
- U.S. Census Bureau. U.S. Census Bureau QuickFacts: Los Angeles City, California. Available online: https://www.census.gov/quickfacts/losangelescitycalifornia (accessed on 10 October 2020).
- U.S. Census Bureau. U.S. Census Bureau QuickFacts: Nevada. Available online: https://www.census.gov/quickfacts/NV (accessed on 13 October 2020).
- U.S. Census Bureau. U.S. Census Bureau QuickFacts: Reno City, Nevada; Las Vegas City, Nevada; Henderson City, Nevada. Available online: https://www.census.gov/quickfacts/fact/table/renocitynevada,lasvegascitynevada,hendersoncitynevada/PST045219 (accessed on 13 October 2020).
- Barsugli, J.J.; Nowak, K.; Rajagopalan, B.; Prairie, J.R.; Harding, B. Comment on “When will Lake Mead go dry?” by T. P. Barnett and D. W. Pierce: Commentary. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef] [Green Version]
- Rajagopalan, B.; Nowak, K.; Prairie, J.; Hoerling, M.; Harding, B.; Barsugli, J.; Ray, A.; Udall, B. Water supply risk on the Colorado River: Can management mitigate? Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Barnett, T.P.; Pierce, D.W. When will Lake Mead go dry? Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef] [Green Version]
- U.S. EIA. Frequently Asked Questions (FAQs)-U.S. Energy Information Administration (EIA). Available online: https://www.eia.gov/tools/faqs/faq.php (accessed on 10 October 2020).
- U.S. EIA. Electric Power Annual 2018; U.S. Energy Information Administration: Washington, DC, USA, 2019; p. 239.
- Prehoda, E.W.; Pearce, J.M. Potential lives saved by replacing coal with solar photovoltaic electricity production in the U.S. Renew. Sustain. Energy Rev. 2017, 80, 710–715. [Google Scholar] [CrossRef] [Green Version]
- Burney, J.A. The downstream air pollution impacts of the transition from coal to natural gas in the United States. Nat. Sustain. 2020, 3, 152–160. [Google Scholar] [CrossRef]
- Thurston, G.D.; Burnett, R.T.; Turner, M.C.; Shi, Y.; Krewski, D.; Lall, R.; Ito, K.; Jerrett, M.; Gapstur, S.M.; Diver, W.R.; et al. Ischemic Heart Disease Mortality and Long-Term Exposure to Source-Related Components of U.S. Fine Particle Air Pollution. Environ. Health Perspect. 2016, 124, 785–794. [Google Scholar] [CrossRef] [Green Version]
- Krewski, D.; Jerrett, M.; Burnett, R.T.; Ma, R.; Hughes, E.; Shi, Y.; Turner, M.C.; Pope, C.A., III; Thurston, G.; Calle, E.E.; et al. Extended Follow-Up and Spatial Analysis of the American Cancer Society Study Linking Particulate Air Pollution and Mortality; Health Effects Institute: Boston, MA, USA, 2009; p. 154. [Google Scholar]
- Spencer, R.S.; Macknick, J.; Aznar, A.; Warren, A.; Reese, M.O. Floating Photovoltaic Systems: Assessing the Technical Potential of Photovoltaic Systems on Man-Made Water Bodies in the Continental United States. Environ. Sci. Technol. 2019, 53, 1680–1689. [Google Scholar] [CrossRef]
- Gorjian, S.; Sharon, H.; Ebadi, H.; Kant, K.; Scavo, F.B.; Tina, G.M. Recent technical advancements, economics and environmental impacts of floating photovoltaic solar energy conversion systems. J. Clean. Prod. 2021, 278, 124285. [Google Scholar] [CrossRef]
- Dinesh, H.; Pearce, J.M. The potential of agrivoltaic systems. Renew. Sustain. Energy Rev. 2016, 54, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Pringle, A.M.; Handler, R.M.; Pearce, J.M. Aquavoltaics: Synergies for dual use of water area for solar photovoltaic electricity generation and aquaculture. Renew. Sustain. Energy Rev. 2017, 80, 572–584. [Google Scholar] [CrossRef] [Green Version]
- Moustafa, K. Toward Future Photovoltaic-Based Agriculture in Sea. Trends Biotechnol. 2016, 34, 257–259. [Google Scholar] [CrossRef] [Green Version]
- Sica, D.; Malandrino, O.; Supino, S.; Testa, M.; Lucchetti, M.C. Management of end-of-life photovoltaic panels as a step towards a circular economy. Renew. Sustain. Energy Rev. 2018, 82, 2934–2945. [Google Scholar] [CrossRef]
- Farrell, C.C.; Osman, A.I.; Doherty, R.; Saad, M.; Zhang, X.; Murphy, A.; Harrison, J.; Vennard, A.S.M.; Kumaravel, V.; Al-Muhtaseb, A.H.; et al. Technical challenges and opportunities in realising a circular economy for waste photovoltaic modules. Renew. Sustain. Energy Rev. 2020, 128, 109911. [Google Scholar] [CrossRef]
- Lisperguer, R.C.; Cerón, E.M.; de la Casa Higueras, J.; Martín, R.D. Environmental Impact Assessment of crystalline solar photovoltaic panels’ End-of-Life phase: Open and Closed-Loop Material Flow scenarios. Sustain. Prod. Consum. 2020, 23, 157–173. [Google Scholar] [CrossRef]
- Pearce, J.M. Industrial symbiosis of very large-scale photovoltaic manufacturing. Renew. Energy 2008, 33, 1101–1108. [Google Scholar] [CrossRef] [Green Version]
- McDonald, N.C.; Pearce, J.M. Producer responsibility and recycling solar photovoltaic modules. Energy Policy 2010, 38, 7041–7047. [Google Scholar] [CrossRef] [Green Version]
- Kabamba, E.T.; Rodrigue, D. The effect of recycling on LDPE foamability: Elongational rheology. Polym. Eng. Sci. 2008, 48, 11–18. [Google Scholar] [CrossRef]
- Bedell, M.; Brown, M.; Kiziltas, A.; Mielewski, D.; Mukerjee, S.; Tabor, R. A case for closed-loop recycling of post-consumer PET for automotive foams. Waste Manag. 2018, 71, 97–108. [Google Scholar] [CrossRef]
- Al-Sabagh, A.M.; Yehia, F.Z.; Eshaq, G.H.; Rabie, A.M.; ElMetwally, A.E. Greener routes for recycling of polyethylene terephthalate. Egypt. J. Pet. 2016, 25, 53–64. [Google Scholar] [CrossRef] [Green Version]
Parameters | Value | Source |
---|---|---|
Solar PV temperature model | (Equation (27)) | This study |
Reference efficiency of the module | 23% | [70] |
Module inclination | 0° | This study |
Shading losses | 0% | This study |
Soiling | 3% | [60] |
Mismatch losses | 6% | [89] |
DC cable losses | 3% | [89] |
Lake Surface Percent Coverage | Water Savings at $0.35/m3 (Millions of $) | Water Savings at $1.37/m3 (Millions of $) | Energy Revenues at 2¢/kWh (Billions of $) |
---|---|---|---|
10% | 43.99 | 172.19 | 0.51 |
20% | 87.98 | 344.37 | 1.02 |
30% | 131.97 | 516.56 | 1.54 |
40% | 175.96 | 688.75 | 2.05 |
50% | 219.95 | 860.94 | 2.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayibo, K.S.; Mayville, P.; Kailey, R.K.; Pearce, J.M. Water Conservation Potential of Self-Funded Foam-Based Flexible Surface-Mounted Floatovoltaics. Energies 2020, 13, 6285. https://doi.org/10.3390/en13236285
Hayibo KS, Mayville P, Kailey RK, Pearce JM. Water Conservation Potential of Self-Funded Foam-Based Flexible Surface-Mounted Floatovoltaics. Energies. 2020; 13(23):6285. https://doi.org/10.3390/en13236285
Chicago/Turabian StyleHayibo, Koami Soulemane, Pierce Mayville, Ravneet Kaur Kailey, and Joshua M. Pearce. 2020. "Water Conservation Potential of Self-Funded Foam-Based Flexible Surface-Mounted Floatovoltaics" Energies 13, no. 23: 6285. https://doi.org/10.3390/en13236285
APA StyleHayibo, K. S., Mayville, P., Kailey, R. K., & Pearce, J. M. (2020). Water Conservation Potential of Self-Funded Foam-Based Flexible Surface-Mounted Floatovoltaics. Energies, 13(23), 6285. https://doi.org/10.3390/en13236285