Environmental and Economic Sustainability of Electric Vehicles: Life Cycle Assessment and Life Cycle Costing Evaluation of Electricity Sources †
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Life Cycle Assessment
3.2. Cumulative Energy Demand
3.3. Carbon Footprint
3.4. Life Cycle Costing
4. Results
4.1. ReCiPe 2016 Midpoint
4.2. ILCD 2011
4.3. CML-IA
4.4. IMPACT 2002+
4.5. EPD (2013)
4.6. ReCiPe 2016 Endpoint
4.7. Cumulative Energy Demand
4.8. Carbon Footprint
4.9. Life Cycle Costing
5. Discussion
5.1. Midpoint Method Comparison
5.2. Endpoint Method
5.3. Single Issue Method
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Qiao, H.; Zheng, F.; Jiang, H.; Dong, K. The greenhouse effect of the agriculture-economic growth-renewable energy nexus: Evidence from G20 countries. Sci. Total Environ. 2019, 671, 722–731. [Google Scholar] [CrossRef] [PubMed]
- Adedeji, A.R.; Zaini, F.; Mathew, S.; Dagar, L.; Petra, M.I.; De Silva, L.C. Sustainable energy towards air pollution and climate change mitigation. J. Environ. Manag. 2020, 260, 109978. [Google Scholar] [CrossRef] [PubMed]
- De Cian, E.; Sue Wing, I. Global Energy Consumption in a Warming Climate. Environ. Resour. Econ. 2019, 72, 365–410. [Google Scholar] [CrossRef]
- Li, J.; Wang, L.; Li, T.; Zhu, S. Energy security pattern spatiotemporal evolution and strategic analysis of G20 countries. Sustainability 2019, 11, 1629. [Google Scholar] [CrossRef] [Green Version]
- Pao, H.T.; Chen, C.C. Decoupling strategies: CO2 emissions, energy resources, and economic growth in the Group of Twenty. J. Clean. Prod. 2019, 206, 907–919. [Google Scholar] [CrossRef]
- Marmiroli, B.; Messagie, M.; Dotelli, G.; Van Mierlo, J. Electricity generation in LCA of electric vehicles: A review. Appl. Sci. 2018, 8, 1384. [Google Scholar] [CrossRef] [Green Version]
- Lombardi, L.; Tribioli, L.; Cozzolino, R.; Bella, G. Comparative environmental assessment of conventional, electric, hybrid, and fuel cell powertrains based on LCA. Int. J. Life Cycle Assess. 2017, 22, 1989–2006. [Google Scholar] [CrossRef]
- Bekel, K.; Pauliuk, S. Prospective cost and environmental impact assessment of battery and fuel cell electric vehicles in Germany. Int. J. Life Cycle Assess. 2019, 24, 2220–2237. [Google Scholar] [CrossRef]
- Marmiroli, B.; Venditti, M.; Dotelli, G.; Spessa, E. The transport of goods in the urban environment: A comparative life cycle assessment of electric, compressed natural gas and diesel light-duty vehicles. Appl. Energy 2020, 260, 114236. [Google Scholar] [CrossRef]
- Rosenfeld, D.C.; Lindorfer, J.; Fazeni-Fraisl, K. Comparison of advanced fuels—Which technology can win from the life cycle perspective? J. Clean. Prod. 2019, 238, 117879. [Google Scholar] [CrossRef]
- Malandrino, O.; Rapa, M.; Ruggieri, R.; Vinci, G. Is the electric mobility really green? A Life Cycle Thinking approach. In Proceedings of the 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe, Madrid, Spain, 9–12 June 2020. [Google Scholar]
- Meyer, I.; Leimbach, M.; Jaeger, C.C. International passenger transport and climate change: A sector analysis in car demand and associated CO2 emissions from 2000 to 2050. Energy Policy 2007, 35, 6332–6345. [Google Scholar] [CrossRef]
- Streimikiene, D.; Baležentis, T.; Baležentiene, L. Comparative assessment of road transport technologies. Renew. Sustain. Energy Rev. 2013, 20, 611–618. [Google Scholar] [CrossRef]
- Faria, R.; Marques, P.; Moura, P.; Freire, F.; Delgado, J.; De Almeida, A.T. Impact of the electricity mix and use profile in the life-cycle assessment of electric vehicles. Renew. Sustain. Energy Rev. 2013, 24, 271–287. [Google Scholar] [CrossRef]
- Helmers, E.; Marx, P. Electric cars: Technical characteristics and environmental impacts. Environ. Sci. Eur. 2012, 24, 14. [Google Scholar] [CrossRef] [Green Version]
- Simpson, A.G. Full-cycle assessment of alternative fuels for light-duty road vehicles in Australia. In Proceedings of the Seventh Annual Environmental Research Conference, Sydney, Australia, 1–4 December 2003. [Google Scholar]
- Hacker, F.; Harthan, R.; Matthes, F.; Zimmer, W. Environmental impacts and impact on the electricity market of a large scale introduction of electric cars in Europe-Critical Review of Literature. ETC/ACC Tech. Pap. 2009, 4, 56–90. [Google Scholar]
- Majeau-Bettez, G.; Hawkins, T.R.; Strømman, A.H. Life Cycle Environmental Assessment of Lithium-Ion and Nickel Metal Hydride Batteries for Plug-In Hybrid and Battery Electric Vehicles. Environ. Sci. Technol. 2011, 45, 4548–4554. [Google Scholar] [CrossRef]
- Girardi, P.; Brambilla, C.; Mela, G. Life Cycle Air Emissions External Costs Assessment for Comparing Electric and Traditional Passenger Cars. Integr. Environ. Assess. Manag. 2020, 16, 140–150. [Google Scholar] [CrossRef] [Green Version]
- Temporelli, A.; Carvalho, M.L.; Girardi, P. Life Cycle Assessment of Electric Vehicle Batteries: An Overview of Recent Literature. Energies 2020, 13, 2864. [Google Scholar] [CrossRef]
- Cusenza, M.A.; Bobba, S.; Ardente, F.; Cellura, M.; Di Persio, F. Energy and environmental assessment of a traction lithium-ion battery pack for plug-in hybrid electric vehicles. J. Clean. Prod. 2019, 215, 634–649. [Google Scholar] [CrossRef]
- Peters, J.F.; Baumann, M.; Zimmermann, B.; Braun, J.; Weil, M. The environmental impact of Li-Ion batteries and the role of key parameters—A review. Renew. Sustain. Energy Rev. 2017, 67, 491–506. [Google Scholar] [CrossRef]
- Xu, L.; Yilmaz, H.Ü.; Wang, Z.; Poganietz, W.-R.; Jochem, P. Greenhouse gas emissions of electric vehicles in Europe considering different charging strategies. Transp. Res. Part D Transp. Environ. 2020, 87, 102534. [Google Scholar] [CrossRef]
- Kanz, O.; Reinders, A.; May, J.; Ding, K. Environmental Impacts of Integrated Photovoltaic Modules in Light Utility Electric Vehicles. Energies 2020, 13, 5120. [Google Scholar] [CrossRef]
- DeSantes, J.; Molina, S.; Küpper, K.; Lopez-Juarez, M. Comparative global warming impact and NOX emissions of conventional and hydrogen automotive propulsion systems. Energy Convers. Manag. 2020, 221, 113137. [Google Scholar] [CrossRef]
- Valente, A.; Iribarren, D.; Candelaresi, D.; Spazzafumo, G.; Dufour, J. Using harmonised life-cycle indicators to explore the role of hydrogen in the environmental performance of fuel cell electric vehicles. Int. J. Hydrog. Energy 2020, 45, 25758–25765. [Google Scholar] [CrossRef]
- Petit-Boix, A.; Llorach-Massana, P.; Sanjuan-Delmás, D.; Sierra-Pérez, J.; Vinyes, E.; Gabarrell, X.; Rieradevall, J.; Sanyé-Mengual, E. Application of life cycle thinking towards sustainable cities: A review. J. Clean. Prod. 2017, 166, 939–951. [Google Scholar] [CrossRef] [Green Version]
- Tintelecan, A.; Constantinescu-Dobra, A.; Martis, C. LCA Indicators in Electric Vehicles Environmental Impact Assessment. In Proceedings of the 2019 Electric Vehicles International Conference, Bucharest, Romania, 3–4 October 2019. [Google Scholar]
- Carradori, S.; D’Ascenzo, F.; Esposito, A.; Musarra, M.; Rapa, M.; Rocchi, A. A sustainable innovation in the Italian glass production: LCA and Eco-Care matrix evaluation. J. Clean. Prod. 2019, 223, 587–595. [Google Scholar] [CrossRef]
- EC-JRC-Institute for Environment and Sustainability. Characterisation Factors of the ILCD Recommended Life Cycle Impact Assessment methods, Database and Supporting Information, 1st ed.; Publications Office of the European Union: Luxembourg, 2012; ISBN 9789279227271. [Google Scholar]
- Guinee, J.B. Handbook on life cycle assessment operational guide to the ISO standards. Int. J. Life Cycle Assess. 2002, 7, 311–313. [Google Scholar] [CrossRef]
- Sleeswijk, A.W.; Van Oers, L.F.; Guinée, J.B.; Struijs, J.; Huijbregts, M.A. Normalisation in product life cycle assessment: An LCA of the global and European economic systems in the year 2000. Sci. Total. Environ. 2008, 390, 227–240. [Google Scholar] [CrossRef]
- Jolliet, O.; Margni, M.; Charles, R.; Humbert, S.; Payet, J.; Rebitzer, G.; Rosenbaum, R. IMPACT 2002+: A new life cycle impact assessment methodology. Int. J. Life Cycle Assess. 2003, 8, 324–330. [Google Scholar] [CrossRef] [Green Version]
- Rapa, M.; Vinci, G.; Gobbi, L. Life Cycle Assessment of Photovoltaic Implementation: An Italian Case Study. Int. J. Civ. Eng. Technol. 2019, 10, 1657–1663. [Google Scholar]
- Vinci, G.; Esposito, A.; Rapa, M.; Rocchi, A.; Ruggieri, R. Sustainability of Technological Innovation Investments: Photovoltaic Panels Case Study. Int. J. Civ. Eng. Technol. 2019, 10, 2301–2307. [Google Scholar]
- Dealy, J.M. Handbook of industrial energy analysis, I. Boustead and G. F. Hancock, John Wiley & Sons, New York, 1979, 422 pages. $69.50. AIChE J. 1980, 26, 174. [Google Scholar] [CrossRef]
- Pimentel, D.; Hurd, L.E.; Bellotti, A.C.; Forster, M.J.; Oka, I.N.; Sholes, O.D.; Whitman, R.J. Food production and the energy crisis. Science 1973, 182, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Frischknecht, R.; Wyss, F.; Knöpfel, S.B.; Lützkendorf, T.; Balouktsi, M. Cumulative energy demand in LCA: The energy harvested approach. Int. J. Life Cycle Assess. 2015, 20, 957–969. [Google Scholar] [CrossRef]
- Campiglia, E.; Gobbi, L.; Marucci, A.; Rapa, M.; Ruggieri, R.; Carradori, S. Hemp Seed Production: Environmental Impacts of Cannabis Sativa L. Agronomic Practices by Life Cycle Assessment (LCA) and Carbon Footprint Methodologies. Sustainability 2020, 12, 6570. [Google Scholar] [CrossRef]
- Vinci, G.; Rapa, M. Hydroponic cultivation: Life cycle assessment of substrate choice. Br. Food J. 2019, 121, 1801–1812. [Google Scholar] [CrossRef]
- Langdon, D. Towards a Common European Methodology for Life Cycle Costing (LCC)—Literature Review; Davis Langdon Management Consulting: London, UK, 2007; pp. 43–49. [Google Scholar]
- Korpi, E.; Ala-Risku, T. Life cycle costing: A review of published case studies. Manag. Audit. J. 2008, 23, 240–261. [Google Scholar] [CrossRef] [Green Version]
- Vinci, G.; Ruggeri, M.; Rapa, M.; Ruggieri, R. Smart cities in Italy: An intelligent contribution to sustainable development. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 105–110. [Google Scholar]
- Woodward, D.G. Life cycle costing—Theory, information acquisition and application. Int. J. Proj. Manag. 1997, 15, 335–344. [Google Scholar] [CrossRef]
- Mahmud, M.; Huda, N.; Farjana, S.H.; Lang, C. Techno-Economic Operation and Environmental Life-Cycle Assessment of a Solar PV-Driven Islanded Microgrid. IEEE Access 2019, 7, 111828–111839. [Google Scholar] [CrossRef]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; Van Zelm, R. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Wolf, M.-A.; Düpmeier, C.; Kusche, O. The International Reference Life Cycle Data System (ILCD) Format-Basic Concepts and Implementation of Life Cycle Impact Assessment (LCIA) Method Data Sets. In Proceedings of the EnviroInfo, Ispra, Italy, 5–7 September 2011; pp. 809–817. [Google Scholar]
- Mehta, Y.D.; Shastri, Y.; Joseph, B. Economic analysis and life cycle impact assessment of municipal solid waste (MSW) disposal: A case study of Mumbai, India. Waste Manag. Res. 2018, 36, 1177–1189. [Google Scholar] [CrossRef] [PubMed]
- Heede, P.V.D.; Mignon, A.; Habert, G.; De Belie, N. Cradle-to-gate life cycle assessment of self-healing engineered cementitious composite with in-house developed (semi-)synthetic superabsorbent polymers. Cem. Concr. Compos. 2018, 94, 166–180. [Google Scholar] [CrossRef]
- Universiteit Leiden CML-IA Characterisation Factors. Available online: https://www.universiteitleiden.nl/en/research/research-output/science/cml-ia-characterisation-factors (accessed on 25 October 2020).
- De Moraes, P.J.U.; Allison, J.; Robinson, J.A.; Baldo, G.L.; Boeri, F.; Borla, P. life Cycle Assessment (LCA) and Environmental Product Declaration (EPD) of an Immunological Product for Boar Taint Control in Male Pigs. J. Environ. Assess. Policy Manag. 2013, 15, 1350001. [Google Scholar] [CrossRef]
- Hardy, J.; Owens, V. Life Cycle Analysis and Environmental Product Declarations: North American Market Analysis; Light House Sustainable Building Centre Society: Vancouver, BC, Canada, 2013. [Google Scholar]
- Del Borghi, A.; Gallo, M.; Strazza, C. An evaluation of environmental sustainability in the food industry through Life Cycle Assessment: The case study of tomato products supply chain. J. Clean. Prod. 2014, 78, 121–130. [Google Scholar] [CrossRef]
- Huijbregts, M.; Steinmann, Z.J.N.; Elshout, P.M.F.M.; Stam, G.; Verones, F.; Vieira, M.D.M.; Zijp, M.; van Zelm, R. ReCiPe 2016; National Institute for Public Health and the Environment: Catharijnesingel, The Netherlands, 2016. [Google Scholar]
- Mehmeti, A.; Angelis-Dimakis, A.; Arampatzis, G.; McPhail, S.J.; Ulgiati, S. Life Cycle Assessment and Water Footprint of Hydrogen Production Methods: From Conventional to Emerging Technologies. Environments 2018, 5, 24. [Google Scholar] [CrossRef] [Green Version]
- Huijbregts, M.A.J.; Hellweg, S.; Frischknecht, R.; Hendriks, H.W.M.; Hungerbühler, K.; Hendriks, A.J. Cumulative Energy Demand as Predictor for the Environmental Burden of Commodity Production. Environ. Sci. Technol. 2010, 44, 2189–2196. [Google Scholar] [CrossRef] [Green Version]
- Patel, M. Cumulative energy demand (CED) and cumulative CO2 emissions for products of the organic chemical industry. Energy 2003, 28, 721–740. [Google Scholar] [CrossRef]
- Pandey, D.; Agrawal, M.; Pandey, J.S. Carbon footprint: Current methods of estimation. Environ. Monit. Assess. 2011, 178, 135–160. [Google Scholar] [CrossRef]
- Caro, D. Carbon footprint. In Encyclopedia of Ecology; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780444641304. [Google Scholar]
- Wiedmann, T.; Minx, J. A Definition of ‘Carbon Footprint. Ecol. Econ. Res. Trends 2008, 1, 1–11. [Google Scholar]
- Attari, S.Z.; Krantz, D.H.; Weber, E.U. Climate change communicators’ carbon footprints affect their audience’s policy support. Clim. Chang. 2019, 154, 529–545. [Google Scholar] [CrossRef]
- Misra, A.; Panchabikesan, K.; Gowrishankar, S.K.; Ayyasamy, E.; Velraj, R. GHG emission accounting and mitigation strategies to reduce the carbon footprint in conventional port activities—A case of the Port of Chennai. Carbon Manag. 2017, 8, 45–56. [Google Scholar] [CrossRef]
- Pitcher, G.S. Management Accounting in Support of Strategy; Business Expert Press: New York, NY, USA, 2018; ISBN 9781947843813. [Google Scholar]
- Gransberg, D.D. Life Cycle Costing for Engineers. Constr. Manag. Econ. 2010, 28, 1113–1114. [Google Scholar] [CrossRef]
- Hunkeler, D.; Lichtenvort, K.; Rebitzer, G. Environmental Life Cycle Costing; Crc press: Boca Raton, FL, USA, 2008; ISBN 9781420054736. [Google Scholar]
CED Sub-Categories (MJ) | Biomass | Coal | Diesel | Hydropower | Lignite | Municipal Waste | Natural Gas | Peat | Photovoltaic | Wind |
---|---|---|---|---|---|---|---|---|---|---|
Non-renewable, fossil | 0.034 | 10.646 | 15.478 | 0.027 | 17.695 | 0.0594 | 12.639 | 11.378 | 0.887 | 0.113 |
Non-renewable, nuclear | - | 5.280 × 10−2 | - | 2.508 × 10−3 | 5.074 × 10−2 | 3.766 × 10−3 | - | 4.805 × 10−2 | 1.273 × 10−1 | 1.331 × 10−2 |
Non-renewable, biomass | - | 6.346 × 10−5 | - | - | 2.424 × 10−5 | 3.024 × 10−5 | - | 1.816 × 10−5 | 1.818 × 10−4 | - |
Renewable, biomass | - | 9.336 × 10−2 | - | - | 8.586 × 10−3 | 8.493 × 10−1 | - | 6.937 × 10−3 | 3.030 × 10−2 | - |
Renewable, wind, solar, geothermal | - | 5.380 × 10−3 | - | 2.497 × 10−6 | 5.139 × 10−3 | 1.271 | - | 4.376 × 10−3 | 3.860 | −1.253 × 10−3 |
Renewable, water | - | 2.565 × 10−2 | - | 4.236 | 3.062 × 10−2 | 7.345 × 10−1 | - | 2.097 × 10−2 | 1.304 × 10−1 | 4.204 × 10−3 |
Total | 0.034 | 10.823 | 15.479 | 4.267 | 17.791 | 6.918 | 12.639 | 11.457 | 5.035 | 0.130 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rapa, M.; Gobbi, L.; Ruggieri, R. Environmental and Economic Sustainability of Electric Vehicles: Life Cycle Assessment and Life Cycle Costing Evaluation of Electricity Sources. Energies 2020, 13, 6292. https://doi.org/10.3390/en13236292
Rapa M, Gobbi L, Ruggieri R. Environmental and Economic Sustainability of Electric Vehicles: Life Cycle Assessment and Life Cycle Costing Evaluation of Electricity Sources. Energies. 2020; 13(23):6292. https://doi.org/10.3390/en13236292
Chicago/Turabian StyleRapa, Mattia, Laura Gobbi, and Roberto Ruggieri. 2020. "Environmental and Economic Sustainability of Electric Vehicles: Life Cycle Assessment and Life Cycle Costing Evaluation of Electricity Sources" Energies 13, no. 23: 6292. https://doi.org/10.3390/en13236292
APA StyleRapa, M., Gobbi, L., & Ruggieri, R. (2020). Environmental and Economic Sustainability of Electric Vehicles: Life Cycle Assessment and Life Cycle Costing Evaluation of Electricity Sources. Energies, 13(23), 6292. https://doi.org/10.3390/en13236292