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Abstract: This paper presents an extension theory-based assessment method to perform fault diagnosis
for inverters in motor driving systems. First, a three-level neutral-point clamped (NPC) inverter is
created using the PSIM software package to simulate faults for any power transistor in the NPC-type
inverter. Fast Fourier transformation is used to transform the line current signals in the time domain
into a spectrum in the frequency domain for analysis of the corresponding spectrum of features of
the inverter for faults with different power transistors. Then, the relationships between fault types
and specific spectra are established as characteristics for the extension assessment method, which is
then used to create a smart fault diagnosis system for inverters. Fault-tolerant control (FTC) is used
here when the rated output of a faulty inverter is decreased in order to maintain balanced output in
three phases by changing the framework of the transistor connection. This is performed to reinforce
the reliability of the inverter. Finally, by the simulation and experimental results, the feasibility of
the proposed smart fault diagnosis system is confirmed. The proposed fault diagnosis method is
advantageous due to its minimal use of data and lack of a learning process, which thereby reduces
the fault diagnosis time and makes the method easily used in practice. The proposed fault-tolerant
control strategy allows both online and smooth switching in the wiring structure of the inverter.

Keywords: extension theory; smart fault diagnosis; three-level neutral-point clamped inverters;
line current spectrum feature; fault-tolerant control

1. Introduction

Compared to two-level inverters, multi-level inverters [1–5] exert less voltage stress on switches,
feature smaller change rates in their output voltages (dv/dt), and can be applied in high power scenarios.
As multi-level inverters incorporate multiple power transistors that are connected in both series
and parallel, thus making the output line-to-ground voltage waves embedded with many step-like
waveforms, their waveforms become step-like voltage waveforms which are better approximated in
the form of sine waves, thus being suitable for reducing harmonic components.

Multi-level inverters are generally divided as diode-clamped, neutral-point clamped (NPC, I-type),
cascaded H-bridge (CHB), and flying capacitor inverters. Of these types, three-level diode-clamped
inverters [6] are widely used due to their simple circuit and ease of control. The inverter works
by dividing, using capacitors, the voltage on DC side equally into three voltage levels (+Vdc/2, 0,
and −Vdc/2), allowing the output voltage to change in three modes, thus, with diodes and switches,
clamping the output voltage at a neutral point on the DC side. Yet, as the switches may be damaged
when operating in high-current or high-temperature conditions over extended periods of time,
components aging, faulty drive circuits, and other faults, thereby resulting in an inability to work
normally, multi-level inverters should be designed with a fault detection mechanism and fault-tolerant
control in the hope of operation without disruption in the event of a faulty inverter component [7–9].
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In the past, faults in motor drive systems have been diagnosed based on messages from
measurement instruments that are shown directly by numbers or waveforms, which allows easy
and fast indication for fault occurrence. Such a practice requires on-site operators to determine
(directly and from their own experience) what fault a message indicates for subsequent repairs and
component replacement as needed. Such a conventional method of fault diagnosis [10,11] tends to
lead to misjudgment for fault points, causing unnecessary wastes of effort and time for repairs and
component replacement. Hence, a new technology for diagnosing system faults deserves study. In this
regard, there has been much effort made in both Taiwan and overseas [12–15]. The methods that
have resulted from these efforts combine more than two algorithms to form an artificial intelligence
(AI) system for motor fault diagnosis, which can increase the efficiency in fault diagnosis for motor
drive systems and thus helps save labor and time costs. These AI systems are only suitable for motor
fault diagnosis and cannot be directly applied to fault diagnosis for multi-level inverters. As such,
in the research of the same diagnosis, some researchers have used artificial neural networks (ANNs)
to create fault diagnosis systems [16–19]. ANN methods perform diagnosis faster, yet they require
massive data quantities for learning. Therefore, the accuracy of the fault diagnosis is based on the
amount of learning data and the correctness of the learning process. In [20], an effective control
strategy including fault detection, localization, and tolerant operation was proposed for a modular
multi-level converter with a transistor open-circuit fault; however, this method is only applicable to a
large number of series-connected two-level converter modules, and only for AC-to-DC converters.
A novel fault-tolerant control strategy was proposed in [21] for bypassing converter submodules (SM)
with faults and re-regulating the SM capacitor voltage and carrier phase-shift angle to maintain the
main components of circulating current, additionally reducing the total harmonic distortion (THD)
of the grid-connected current to enable the stable operation of the photovoltaic inverter; however,
this method is also only suitable for a large number of series-connected two-level inverters. A detailed
analysis of a single open-switch fault for a NPC active rectifier was presented in [22]. The study
proposed a fault-tolerant control method to reduce the effect of the open-switch fault via compensation
with a distorted reference voltage. Although this method could be used with a three-level NPC
converter, it can only be used in AC-to-DC converters, but not in inverters. A fast fault diagnosis
scheme in a grid-connected photovoltaic (PV) system based on applying the combination of wavelet
multi-resolution singular spectrum entropy and a support vector machine was proposed in [23] to
identify different types of grid faults in a three-phase grid-tied PV system; however, the calculation
procedure of this fault diagnosis method is quite complex and it is aimed at fault detection for a
PV system, rather than the diagnosis of the inverter. A fault prognostics method which makes full
use of the similarities between inverter clusters was proposed in [24]. Although the divergence of
inverter clusters could be used to predict inverter faults, the process for this fault diagnosis method
is quite complicated and the calculation procedure is also very complicated. A diagnostic method
for an open-circuit transistor failure in a hybrid active neutral-point clamped (HANPC) inverter was
proposed in [25]. By analyzing the individual characteristics of each transistor failure, it is possible
to detect the exact location of the failed transistors in a short period; however, this method can only
diagnose transistor faults in the same leg, and other legs will have the same characteristics, so it is
impossible to determine exactly which leg contains the faulty transistor.

In contrast, extension theory-based methods do not require large data quantities for training
as they feature models of matter-elements, the coupling of qualification and quantification,
and non-closure [26–30], while the distances and rank values makes it possible to establish correlation
functions for fault types, and the correlation degrees can be used to identify fault types, thus reducing
the learning process and making determination easier, faster, and more accurate. Hence, this study
proposes an intelligent fault-tolerant control system based on extension theory for locating faults
in a three-level NPC-type inverter. First, the frequency spectra of output line current waveforms
are extracted during a power transistor failure event and used as feature values for fault detection.
Therefore, the proposed extension theory-based method can be applied to accurately locate a faulty
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power transistor. Subsequently, a fault-tolerant control strategy is used to maintain the three-phase
balanced line voltage output if any power semiconductor switch of the inverter fails. Figure 1 illustrates
the overall architecture of the extension theory-based fault-diagnosis and fault-tolerant control system
proposed herein for NPC-type inverters.
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neutral-point clamped-type (NPC-type) inverters.

This paper is organized as follows: First, the characteristics of switch faults for three-level
NPC-type inverters are discussed in Section 2. Then, in Section 3, the concept of extension theory is
described in detail. The procedure for using the extension theory-based fault diagnosis method for
a three-level NPC-type inverter is explained in Section 4. Practical tests are detailed in Section 5 to
demonstrate the effectiveness of the proposed fault diagnosis method. Finally, in Section 6, fault-tolerant
control in the event of power switch failure in the three-level NPC-type inverter is analyzed, and the
simulation and experimental results are used to prove the feasibility of the method.

2. Characteristics of Faults for Three-Level Inverters

Considering research on inverter fault diagnosis, this paper targets a three-level NPC inverter as
shown in Figure 2. In general, faults for inverters come in three types: short-circuit faults, open-circuit
faults, and trigger signal faults. A short-circuit fault arises when a switch component is blown due to
an overly high voltage across both ends of the switch. An open-circuit fault refers to a power transistor
without a trigger signal to actuate conductivity through it. A trigger signal fault is the receipt, by a
switch component, of an incorrect trigger signal for command.
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The PSIM software package is the ultimate simulation environment for power electronics and
motor control and was developed by PowerSIM. Using the PSIM software package, a simulation
environment for three-level NPC inverters was created and used to investigate the diagnosis of faults
occurring on any switch at any time. It was observed from the simulations and analysis that the
output waveform measured on an inverter in normal working conditions was a balanced three-phase
waveform. For example, when the inverter has a working frequency at 60 Hz without a faulty power
transistor, the output waveforms of its line currents and their frequency spectra are given as shown in
Figures 3 and 4, respectively. Figure 3 reveals that the waveforms for the line currents are of the same
magnitude and all are sine waves, where each is different in phase by 120◦, which is typical of the
balanced three-phase characteristic. Regarding the parameter setting of the motor drive, a 300 V DC
inverter with a switching frequency of 18 kHz was connected to an induction motor. The frequency
spectra for line currents ia, ib, and ic for an inverter working at 60 Hz without a faulty switch are
shown in Figure 4. We can see from Figure 4 that the frequency spectra at m f − 5, m f + 1, and m f + 5,
multiplied by the working frequency, are very small. Hence, the values of the frequency spectra at
such frequencies were used in this paper as the feature spectra for faults, where m f is defined as the
frequency modulation index:

m f ,
fcarrier

fre f erence
=

ftri
fsin

(1)

where ftri is the frequency of a triangular carrier wave, i.e., the switching frequency of inverter (18 kHz
here) and fsin is a sine wave frequency (60 Hz here) and also the working frequency of the inverter.
Therefore, its frequency modulation index m f is 300. Based on this, the frequency spectra for line
currents ia, ib, and ic for an inverter working at 60 Hz without a faulty switch at m f − 5, m f + 1,
and m f + 5, multiplied by the working frequency, are 17.7, 18.06, and 18.3 kHz, respectively.
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Figure 3. Output waveforms of line currents for an inverter working at 60 Hz without any
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If any switch in the inverter is faulty, the characteristics of the inverter change. For instance,
when a switch of the inverter Sa1

+ is faulty, a distorted waveform of its output line current ia can be seen
as shown in Figure 5. Figure 6 shows the waveform of the line current ib with the fault inverter switch
Sb2
−, where the waveform obviously differs from the one in normal working conditions. Figure 7

shows the waveform of the line current ic with the faulty switch Sc2
+, where the distortion is apparent.
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It is clear from the above analysis that anomalies can be observed in current frequency spectra
when an inverter is faulty, as in the case of an inverter working at 60 Hz with faulty switch Sc2

+,
where the resultant current frequency spectrum is given as shown in Figure 8. When compared with
the frequency spectra without a fault in Figure 4, this demonstrates that the frequency spectrum of
line current ic has a feature spectrum with relatively major changes at the positions of m f + 1, m f + 5,
and m f − 5.
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Relevant data for power transistor faults can be obtained by simulation and analysis. These data
can be used with extension theory to create an inverter fault diagnosis system for detecting faults in
power semiconductor switches in the main circuits of three-level NPC inverters.

3. Extension Theory

Extension theory, which was proposed by Dr. Cai Wen in 1983, is a formalized tool for studying and
solving problems with qualitative and quantitative methods [29]. The theory structurally consists of
matter-element theory and extension mathematics, in which the extension theory uses logic algorithms
with matter elements. The matter-element theory deals with extensibility and the change of matter
elements, describes them in formalized language, and details computation and reasoning. Extension
mathematics builds adaptive mathematical tools from extension sets and correlation functions. As such,
extension theory creates matter-element models and uses the property transformation of matter
elements for qualitative and quantitative transformation, then determining qualitative and quantitative
effects via correlation functions to clearly express the effects of features.

Extension theory is a science of solving contradictory problems by dealing with extensibility and
rules and methods of transformation. It features (1) the idea of changing contradictory problems into
compatible ones and (2) creates matter-element theory to provide new ways of solving contradictory
problems with matter-element transformation based on the extensibility of matter elements. Extension
theory also (3) creates extension set theory, giving quantitative descriptions of quantitative change to
qualitative changes in the extension domain and critical elements, thus realizing quantitative extension
mathematics in the extension theory based on extension sets [26–30].

3.1. Basic Concept of Extension Matter-Element Theory

In dealing with contradictory problems, if concepts, characteristics, and their corresponding
data are brought together for consideration, it is possible to deduce problem solving methods.
Hence, the concept of “matter elements” was introduced [30], which consists of “name” and
“characteristic” of a matter and the “value” that corresponds to the characteristic. Matter elements are
the basic elements in extension theory that describe matters, denoted by R, N (name), c (characteristic),
and v (value) as an expression as follows:

R = (N, c, v) (2)

Additionally, via the above definition for a matter element, the correlation between the
characteristics of these three basic elements and the corresponding value can be expressed by the
equation below:

v = c(N) (3)

Thus, Equation (2) for a matter element is converted into the following form:

R = (N, c, c(N)) (4)

To understand the relationships between basic matter elements, references can be made to the
expression by a space of matter elements, as Figure 9 shows, where the name, characteristic, and value
are plotted in the x-, y- and z-axes, which also displays the feature of the change of such a combination.
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to the values of characteristics, i.e., v1, v2, . . . vm, in an equation for their correlations as follows:

R =


N, c1, v1

c2, v2

. . . . . .
cm, vm

 =


R1

R2

. . .
Rm

 (5)

In Equation (5), R is called an m-dimensional matter element, whose components are expressed
by Rk = (N, ck, vk) (k = 1, 2, . . . , m). Thus, Equation (5) can be rewritten as R = (N, C, V), where matrix
C = [c1, c2, . . . cm]

T and matrix V = [v1, v2, . . . vm]
T. Therefore, by the way of a multi-dimensional

definition, it enables describing any single thing in the real world.
The characteristic value corresponding to a characteristic can be a single point or a single range.

In the latter case, such a range is referred to as a classical domain which is contained in a neighborhood
domain. Assume point f is any point in the interval F =< aq, bq >, and F0 ∈ F, then, the matter element,
R0, corresponded by F0 =< ap, bp > can be expressed by Equation (6), where C is a characteristic and
Vp is the value for C, i.e., its classical domain:

R0 = (F0 , C , Vp )

=


F0, c1, Vp1

c2, Vp2
...

...
cm, Vpm


=


F0, c1, < ap1 , bp1 >

c2, < ap2 , bp2 >
...

...
cm, < apm , bpm >



(6)
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A matter element, RF, corresponded by F, can be expressed by Equation (7). Similarly, C is the
value of the characteristic for F and Vq is the value for C, i.e., its neighborhood domain:

RF = (F , C , Vq )

=


F, c1, Vq1

c2, Vq2
...

...
cm, Vqm


=


F, c1, < aq1 , bq1 >

c2, < aq2 , bq2 >
...

...
cm, < aqm , bqm >



(7)

3.2. Correlation Function

If F0 ∈ F, then the correlation function K(f ) can be defined as follows:

K( f ) =
ρ( f , F0)

D( f , F0, F)
(8)

If set K(f ) ≤ 1, then:

ρ( f , F0) =

∣∣∣∣∣∣ f − ap + bp

2

∣∣∣∣∣∣− bp − ap

2
(9)

D( f , F0, F) =

ρ( f , F) − ρ( f , F0) f < F0

−
|(ap−bp)|

2 f ∈ F0
(10)

where:

ρ( f , F) =

∣∣∣∣∣∣ f − aq + bq

2

∣∣∣∣∣∣− bq − aq

2
(11)

Correlation functions can be used to determine the membership grade between f and F0. Extension
correlation functions are given in Figure 10. The figure indicates that if K(f ) > 0, it means that point
f currently lies within domain F0. If K (f ) < −1, it means point f will not be within either of the two
domains, and if −1 ≤ K(f ) ≤ 0, it means that the point lies not within domain F0, but within domain F.
In extension domains, it is possible to make use of transformation of conditions such that f can belong
to the domain of F0.
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4. Extension Theory-Based Fault Diagnosis for Inverters

The inverter fault diagnosis system operates when a switch fails to actuate normally as a result
of having worked in over-current or high-temperature conditions for an extended period of time or
after aging, among other causes. Hence, the present research considers testing switch faults with the
framework for three-level NPC inverters as shown in Figure 2, where the positions of faulty transistors
are identified by extension theory.

To begin with, the waveforms of the line currents in three phases on the inverter under simulation
were subjected to fast Fourier transformation (FFT) to generate the feature frequency spectra for the
line currents at mf + 1, mf + 5, and mf − 5 as input signals in the fault diagnosis system that were built
based on extension theory. The faults were divided into 12 types by switches Sa1

+, Sa2
+, Sa1

−, Sa2
−,

Sb1
+, Sb2

+, Sb1
−, Sb2

−, Sc1
+, Sc2

+, Sc1
−, and Sc2

−.
Additionally, from the 84 records for the feature frequency spectra that were measured with twelve

different switch faults with the inverter working at a frequency range of 30–90 Hz, and additionally
based on the values for the feature frequency spectra of the twelve fault types, the upper and lower
limits for the neighborhood domains in each fault type were identified. The classical domains were
further set by the feature frequency spectra of each fault type.

The diagnosis and identification process for inverter faults with extension theory is delineated
as follows:

Step 1: Create a matter-element model for fault characteristics C1, C2, and C3 on the frequency spectra
for the line current for each fault type.

Rg = (F, C, Vp) =


F0 C1 < x1, y1 >

C2

C3

< x2, y2 >
< x3, y3 >

 , g = 1, 2, . . . , 12 (12)

Step 2: Input uncategorized fault characteristics C1, C2, and C3 with the frequency spectra of the line
current to create a matter-element model.

Rnew =


Fnew C1 Vnew1

C2

C3

Vnew2

Vnew3

 (13)

Step 3: Assign weights to the characteristics of each fault type (W1, W2, and W3) which represent the
significance of these characteristics. Set W1 = W2 = W3 = 1/3 here.

Step 4: Calculate the correlation between uncategorized fault characteristics on the frequency spectra
of the line current and each existing fault type.

λg =
3∑

j=1

W jKg j, g = 1, 2, . . . , 12 (14)

Step 5: The maximum correlation value from the calculation determines the category of the
uncategorized fault characteristics C1, C2, and C3 on the frequency spectra of the line current.
Thus, the fault type is identified.

5. Test Results

In order to identify faulty power transistors, all the fault types were divided into 12 switch fault
conditions, i.e., Sa1

+, Sa2
+, Sa1

−, Sa2
−, Sb1

+, Sb2
+, Sb1

−, Sb2
−, Sc1

+, Sc2
+, Sc1

−, and Sc2
−, as shown in

Table 1.
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Table 1. Types of fault diagnosis.

Fault Condition Type

A faulty Sa1
+ switch F1

A faulty Sa2
+ switch F2

A faulty Sa1
− switch F3

A faulty Sa2
− switch F4

A faulty Sb1
+ switch F5

A faulty Sb2
+ switch F6

A faulty Sb1
− switch F7

A faulty Sb2
− switch F8

A faulty Sc1
+ switch F9

A faulty Sc2
+ switch F10

A faulty Sc1
− switch F11

A faulty Sc2
− switch F12

Tables 2 and 3 show the data for the characteristic frequency spectra of the line currents with a
faulty switch working at 40 and 80 Hz. These measured data were used as inputs in the fault diagnosis
system, generating the results of identification shown in Tables 4 and 5. The two tables indicate that the
data for every fault were accurately identified. For example, considering F5 in the test data in Table 2,
it is clear from the identification results in Table 4 that F5 was determined according to the highest
output correlation at 0.78784, while the correlation F12 was the lowest at −0.33376, which suggests that
F12 was least likely.

Table 2. Data for feature frequency spectra for faulty switches in an inverter working at 40 Hz.

Fault Type
ia Characteristic Frequency

Spectrum (mA)
ib Characteristic Frequency

Spectrum (mA)
ic Characteristic Frequency

Spectrum (mA)

mf + 1 mf + 5 mf − 5 mf + 1 mf + 5 mf − 5 mf + 1 mf + 5 mf − 5

F1 0.59 0.14 0.15 0.26 0.11 0.11 0.33 0.03 0.06
F2 0.43 0.26 0.23 0.17 0.13 0.14 0.26 0.14 0.10
F3 0.37 0.28 0.27 0.22 0.13 0.10 0.15 0.16 0.18
F4 0.56 0.21 0.22 0.31 0.06 0.07 0.26 0.15 0.15
F5 0.26 0.10 0.11 0.58 0.23 0.21 0.30 0.16 0.13
F6 0.21 0.10 0.11 0.32 0.31 0.33 0.12 0.22 0.21
F7 0.13 0.20 0.20 0.36 0.28 0.28 0.24 0.08 0.08
F8 0.32 0.13 0.12 0.56 0.20 0.21 0.26 0.10 0.13
F9 0.31 0.08 0.07 0.28 0.10 0.11 0.59 0.19 0.18
F10 0.19 0.14 0.14 0.18 0.13 0.15 0.37 0.27 0.27
F11 0.20 0.11 0.17 0.19 0.11 0.14 0.39 0.22 0.28
F12 0.22 0.14 0.14 0.25 0.11 0.09 0.48 0.26 0.29

Table 3. Data for feature frequency spectra for faulty switches in an inverter working at 80 Hz.

Fault Type
ia Characteristic Frequency

Spectrum (mA)
ib Characteristic Frequency

Spectrum (mA)
ic Characteristic Frequency

Spectrum (mA)

mf + 1 mf + 5 mf − 5 mf + 1 mf + 5 mf − 5 mf + 1 mf + 5 mf − 5

F1 0.59 0.13 0.14 0.28 0.08 0.08 0.3 0.05 0.06
F2 0.25 0.24 0.24 0.12 0.12 0.12 0.13 0.12 0.11
F3 0.19 0.28 0.30 0.11 0.12 0.13 0.07 0.16 0.16
F4 0.55 0.19 0.19 0.28 0.08 0.08 0.26 0.11 0.10
F5 0.26 0.09 0.10 0.55 0.20 0.20 0.29 0.12 0.11
F6 0.11 0.12 0.13 0.17 0.31 0.31 0.07 0.19 0.19
F7 0.07 0.19 0.18 0.17 0.31 0.31 0.11 0.12 0.13
F8 0.29 0.13 0.11 0.55 0.20 0.20 0.26 0.09 0.10
F9 0.30 0.08 0.07 0.26 0.10 0.11 0.56 0.18 0.17
F10 0.10 0.15 0.14 0.10 0.13 0.15 0.19 0.27 0.29
F11 0.09 0.14 0.17 0.10 0.13 0.14 0.19 0.27 0.32
F12 0.23 0.12 0.14 0.27 0.09 0.09 0.51 0.21 0.23
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Table 4. Results for the identification of different switch faults in an inverter working at 40 Hz.

Fault Type F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 Identification Result
F1 0.559732 −0.2341 −0.30163 −0.25791 −0.35161 −0.28997 −0.28827 −0.37557 −0.13128 −0.19571 −0.09069 0.122352 F1
F2 −0.31894 0.529985 0.19564 0.101215 −0.24656 −0.39278 −0.13254 −0.18231 −0.38297 −0.06586 −0.03606 −0.39277 F2
F3 −0.32544 0.153303 0.480904 −0.28298 −0.35341 −0.24157 −0.23005 −0.45123 −0.15916 −0.30098 −0.31193 −0.30453 F3
F4 −0.19607 −0.02785 −0.05336 0.669501 −0.25911 −0.38318 −0.191 −0.29812 −0.35435 −0.31991 −0.25472 −0.35481 F4
F5 −0.30139 −0.1844 −0.11302 −0.27134 0.78784 −0.14891 −0.31367 0.170666 −0.27814 −0.28528 −0.1707 −0.33376 F5
F6 −0.5183 −0.40867 −0.23671 −0.5169 −0.1806 0.410636 −0.05613 −0.31277 −0.3506 −0.35322 −0.1498 −0.15425 F6
F7 −0.35259 −0.12849 −0.3183 −0.11627 −0.33122 −0.09984 0.386716 −0.25002 −0.54508 −0.20199 −0.1635 −0.48438 F7
F8 −0.19771 −0.04102 −0.25002 −0.07334 0.370901 −0.22944 −0.12948 0.729028 −0.28932 −0.14899 −0.15479 −0.23812 F8
F9 −0.10774 −0.24794 −0.13496 −0.26971 −0.19914 −0.13057 −0.42272 −0.2614 0.729557 −0.40752 −0.27084 −0.06767 F9
F10 −0.21181 −0.04626 0.010629 −0.39599 −0.31255 −0.06477 −0.34739 −0.33145 −0.31563 0.35106 0.337094 0.172031 F10
F11 −0.20393 −0.17468 −0.14651 −0.38417 −0.24391 0.13807 −0.3556 −0.2593 −0.17523 0.138607 0.454056 0.202084 F11
F12 −0.11796 −0.17041 −0.18303 −0.36593 −0.38078 −0.13336 −0.31591 −0.39715 −0.15802 0.096222 0.373375 0.5391 F12

Table 5. Results for the identification of different switch faults in an inverter working at 80 Hz.

Fault Type F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 Identification Result
F1 0.622689 −0.34653 −0.43611 −0.06351 −0.32677 −0.28556 −0.30873 −0.27985 −0.34084 −0.23062 −0.18383 −0.13332 F1
F2 −0.38422 0.592683 0.4343 −0.09045 −0.25795 −0.38591 −0.06168 −0.31945 −0.35681 −0.21063 −0.05411 −0.33311 F2
F3 −0.58218 −0.28377 0.547845 −0.56388 −0.3993 −0.3059 −0.50629 −0.56016 −0.41968 −0.28528 −0.13195 −0.44254 F3
F4 0.06017 0.043765 −0.23491 0.561843 −0.33158 −0.35213 0.19983 −0.17871 −0.29778 −0.28035 −0.17302 −0.29794 F4
F5 −0.36619 −0.07315 −0.25264 −0.24308 0.585479 −0.27545 −0.20206 0.325634 −0.21915 −0.27345 −0.18597 −0.38598 F5
F6 −0.46206 −0.39656 −0.16292 −0.52598 −0.31768 0.599934 0.122139 −0.29312 −0.27273 −0.14926 −0.08569 −0.31517 F6
F7 −0.50241 −0.04344 −0.06313 −0.13996 −0.31732 0.130542 0.403082 −0.39168 −0.55918 −0.37664 −0.19821 −0.52746 F7
F8 −0.18896 −0.09863 −0.27318 −0.18287 0.249617 −0.28389 −0.10745 0.686704 −0.36196 −0.19957 −0.1727 −0.25936 F8
F9 −0.17866 −0.19605 −0.01026 −0.32171 −0.17182 −0.15735 −0.38808 −0.29794 0.773997 −0.39863 −0.25987 0.095117 F9
F10 −0.39289 −0.05756 −0.16112 −0.47144 −0.42423 −0.19086 −0.21326 −0.40214 −0.47384 0.664821 0.341783 −0.13587 F10
F11 −0.34599 −0.00483 −0.19398 −0.4578 −0.50207 −0.32113 −0.22635 −0.47022 −0.51012 0.347249 0.458702 −0.19029 F11
F12 0.1033 −0.28286 −0.18499 −0.22448 −0.27963 0.12889 −0.33649 −0.22669 0.053569 −0.15907 0.002915 0.446516 F12
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6. Fault-Tolerant Control for Three-Level NPC Inverters

6.1. Analysis of Tolerant Control

The switch faults of a three-level NPC inverter are divided into two types: external switch faults
and internal switch faults. In the framework of a three-level NPC inverter in Figure 2, if any of the
external switches Sa1+, Sa2−, Sb1+, Sb2−, Sc1+, and Sc2− are faulty because of an open circuit, then it is
necessary to alter both the switching condition of the inverter and the phase angle of sine reference
voltage in the pulse width modulation (PWM) control signals to keep the output voltage of the inverter
in a balanced three-phase form. The parameters of the induction motor are listed in Table 6.

Table 6. Parameter of the three-phase inductor motor.

Horsepower
(Hp)

Rotor
Resistance

(Ω)

Rotor
Leakage

Inductance
(H)

Stator
Resistance

(Ω)

Stator
Leakage

Inductance
(H)

Magnetization
Inductance

(H)

Moment
of Inertia
(kg-m2)

1 10.4 0.04 11.6 0.04 0.557 0.004

6.1.1. Tolerant Control Strategy for External Switch Faults

When an external switch, for example Sa1
+ or Sa2

−, encounters an open-circuit fault, the a-phase
half-bridge switches (Sa1

+ and Sa2
−) must be deactivated to activate the internal (neutral-point) switches

(Sa1
− and Sa2

+). Specifically, point a is connected to the neutral point and b- and c-phase are still
switched normally. The fault-tolerant control for the occurrence of an open-circuit fault in Sa1

+ is
shown in Figure 11. The voltage phasor diagram corresponding to this situation is illustrated in
Figure 12a. As illustrated in the figure, the phasor positions of the line voltages Vab and Vca without
any switch fault in Figure 11 become those of Vab1 and Vca1, with the voltage magnitude decreasing
by 0.577 times relative to the original line voltage. The line voltage Vbc1 remains unchanged; however,
because the voltage vao is 0, the phase angle of the b-phase voltage should be simultaneously adjusted
to be 150◦ behind that of the a-phase voltage, and the phase angle of the c-phase voltage should be
150◦ ahead of that of the a-phase voltage. After the occurrence of a fault, the three-phase voltage can
still maintain the operation of the balanced three-phase system and the corresponding voltage phasor
diagram of the system is shown in Figure 12b. The phasor positions of the line voltages Vab1 and Vca1
presented in Figure 12a shift to those of Vab2 and Vca2, with the magnitude of the line voltage Vbc2
decreasing by 0.577 times relative to that of the original line voltage Vbc1. Considering switch Sa1

+

with an open-circuit fault as an example, the waveforms of the sine reference voltages in three phases
are shown in Figure 13.
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Analysis of the tolerant control strategy for other external switch failures shows the same results
and is not be repeated here for the sake of brevity.

6.1.2. Tolerant Control Strategy for Internal Switch Faults

In the framework of a three-level NPC inverter, in order to exercise the tolerant control of internal
(neutral point) switches, it is necessary to connect a serial-connected H-bridge switch in parallel to
the neutral-point switches in each arm (Sa2+, Sa1−; Sb2+, Sb1−; and Sc2+, Sc1−) as shown in Figure 14.
If any of the internal (neutral point) switches Sa2+, Sa1−, Sb2+, Sb1−, Sc2+, and Sc1− in the inverter
encounter an open-circuit fault, in order for the inverter to remain in operation, it is necessary to
make every parallel-connected tolerant control switch operate at once while altering the switching
condition of the inverter. For example, if switch Sc2+ has an open-circuit fault, where, in this case,
the c phase output of the faulty inverter cannot connect to neutral point o, the c phase voltage, vco,
becomes erroneous and causes current distortion; hence, it is necessary to activate the tolerant control,
i.e., disconnecting H-bridge switches in the c phase (Sc1−, Sc2+), maintaining the tolerant bypass
switches (Sc+, Sc−), and allowing the H-bridge switches (Sa1+, Sa2−, Sb1+, Sb2−, Sc1+, and Sc2−) to
actuate two-level switching of voltage P and voltage N, that is, changing the three-level inverter output
voltage into two-level output where three-phase balanced output is still maintained. Figures 15 and 16
show the fault-tolerant control and the PWM control signal waveforms for the case of inverter internal
switch Sc2+ with an open-circuit fault, respectively.



Energies 2020, 13, 6302 18 of 25
Energies 2020, 13, x FOR PEER REVIEW 18 of 25 

 

 
Figure 14. Framework of three-level NPC inverter with additional tolerant control switches. 

 
Figure 15. The fault-tolerant control for the occurrence of an open-circuit fault in Sc2+. 

Figure 14. Framework of three-level NPC inverter with additional tolerant control switches.

Energies 2020, 13, x FOR PEER REVIEW 18 of 25 

 

 
Figure 14. Framework of three-level NPC inverter with additional tolerant control switches. 

 
Figure 15. The fault-tolerant control for the occurrence of an open-circuit fault in Sc2+. Figure 15. The fault-tolerant control for the occurrence of an open-circuit fault in Sc2+.



Energies 2020, 13, 6302 19 of 25

Energies 2020, 13, x FOR PEER REVIEW 19 of 25 

 

0.1 0.105 0.11 0.115 0.12 0.125 0.13 0.135
Time (s)

0

-0.5

-1

-1.5

0.5

1

1.5
Vt1 V34 Vsc

 
Figure 16. The PWM control signal waveforms for the case of inverter switch Sc2+ with an open-circuit 
fault. 

6.2. Tolerant Control Simulations 

When applying tolerant control to an open-circuit fault with external switch Sa1+, for example, 
its output line voltage and line current is given as shown in Figure 17. In the case of internal (neutral 
point) switch Sc2+ with an open-circuit fault, its output line voltage and line current are also shown 
in Figure 18. From Figures 17 and 18, we can observe that if an open-circuit fault occurs at 0.12 s, 
which would cause the line current of the corresponding phase and three-phase output line voltage 
to be distorted, particularly so in the affected phase, and the tolerant control strategy is enacted at 
0.18 s, then it may observed in the figures that once the tolerant control strategy is enacted that the 
three-phase output line voltage is downgraded from three-level to two-level output, but it remains a 
balanced three-phase system despite the fault. Moreover, although the three-phase line current 
displays a small amount of lag in the beginning of tolerant control due to inductive loads, it maintains 
a balanced three-phase system output. 

Figure 16. The PWM control signal waveforms for the case of inverter switch Sc2+ with an
open-circuit fault.

6.2. Tolerant Control Simulations

When applying tolerant control to an open-circuit fault with external switch Sa1+, for example,
its output line voltage and line current is given as shown in Figure 17. In the case of internal (neutral
point) switch Sc2+ with an open-circuit fault, its output line voltage and line current are also shown
in Figure 18. From Figures 17 and 18, we can observe that if an open-circuit fault occurs at 0.12 s,
which would cause the line current of the corresponding phase and three-phase output line voltage
to be distorted, particularly so in the affected phase, and the tolerant control strategy is enacted at
0.18 s, then it may observed in the figures that once the tolerant control strategy is enacted that the
three-phase output line voltage is downgraded from three-level to two-level output, but it remains
a balanced three-phase system despite the fault. Moreover, although the three-phase line current
displays a small amount of lag in the beginning of tolerant control due to inductive loads, it maintains
a balanced three-phase system output.



Energies 2020, 13, 6302 20 of 25
Energies 2020, 13, x FOR PEER REVIEW 20 of 25 

 

0

-1.5

-3

-4.5

1.5

3

4.5
Iu Iv Iw

0

-100

-200

-300

100

200

300

Vuv

0

-100

-200

-300

100

200

300

Vvw

0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.3 0.33 0.36 0.39 0.42 0.45 0.48
Time (s)

0

-100

-200

-300

100

200

300

Vwu

Sa1+ fault Fault-tolerant control activated

(V)

300

200

100

-200

-300

(V)

(V)

0

-100

300

200

100

-200

-300

0

-100

300

200

100

-200

-300

0

-100

4.5

3

1.5

-3

-4.5

0

-1.5

vab

vbc

vca

(A)ia ib ic

Normal
operation

 
Figure 17. Waveforms of the output line voltage and line current of external switch Sa1+ with an open-
circuit fault and tolerant control. 

0

-1.5

-3

-4.5

1.5

3

4.5
Iu Iv Iw

0

-100

-200

-300

100

200

300

Vuv

0

-100

-200

-300

100

200

300

Vvw

0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.3 0.33 0.36 0.39 0.42 0.45 0.48
Time (s)

0

-100

-200

-300

100

200

300

Vwu

300

200

100

-200

-300

0

-100

300

200

100

-200

-300

0

-100

300

200

100

-200

-300

0

-100

4.5

3

1.5

-3

-4.5

0

-1.5

(V)

(V)

(V)

vab

vbc

vca

Sc2
+ fault Fault-tolerant control activated

(A)ia ib ic

Normal
operation

 
Figure 18. Waveforms of the output line voltage and line current of internal switch Sc2+ with an open-
circuit fault and tolerant control. 

According to the analysis of the tolerant control in Section 6.1, other switch failures in different 
phases will also produce the same results. As such, additional results are not presented here for the 
sake of brevity. 
  

Figure 17. Waveforms of the output line voltage and line current of external switch Sa1
+ with an

open-circuit fault and tolerant control.

Energies 2020, 13, x FOR PEER REVIEW 20 of 25 

 

0

-1.5

-3

-4.5

1.5

3

4.5
Iu Iv Iw

0

-100

-200

-300

100

200

300

Vuv

0

-100

-200

-300

100

200

300

Vvw

0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.3 0.33 0.36 0.39 0.42 0.45 0.48
Time (s)

0

-100

-200

-300

100

200

300

Vwu

Sa1+ fault Fault-tolerant control activated

(V)

300

200

100

-200

-300

(V)

(V)

0

-100

300

200

100

-200

-300

0

-100

300

200

100

-200

-300

0

-100

4.5

3

1.5

-3

-4.5

0

-1.5

vab

vbc

vca

(A)ia ib ic

Normal
operation

 
Figure 17. Waveforms of the output line voltage and line current of external switch Sa1+ with an open-
circuit fault and tolerant control. 

0

-1.5

-3

-4.5

1.5

3

4.5
Iu Iv Iw

0

-100

-200

-300

100

200

300

Vuv

0

-100

-200

-300

100

200

300

Vvw

0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.3 0.33 0.36 0.39 0.42 0.45 0.48
Time (s)

0

-100

-200

-300

100

200

300

Vwu

300

200

100

-200

-300

0

-100

300

200

100

-200

-300

0

-100

300

200

100

-200

-300

0

-100

4.5

3

1.5

-3

-4.5

0

-1.5

(V)

(V)

(V)

vab

vbc

vca

Sc2
+ fault Fault-tolerant control activated

(A)ia ib ic

Normal
operation

 
Figure 18. Waveforms of the output line voltage and line current of internal switch Sc2+ with an open-
circuit fault and tolerant control. 

According to the analysis of the tolerant control in Section 6.1, other switch failures in different 
phases will also produce the same results. As such, additional results are not presented here for the 
sake of brevity. 
  

Figure 18. Waveforms of the output line voltage and line current of internal switch Sc2
+ with an

open-circuit fault and tolerant control.

According to the analysis of the tolerant control in Section 6.1, other switch failures in different
phases will also produce the same results. As such, additional results are not presented here for the
sake of brevity.
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6.3. Tolerant Control Experiments

Figure 19 shows the three-level neutral-point clamped (NPC) inverter used in this study. To verify
the experimental results, this study used the digital signal processor TMS320F28335 as the control core
and considered the occurrence of open-circuit faults in the switches to test the fault-tolerant control
strategy. Figure 20 shows that the occurrence of an open-circuit fault in the switch Sa1

+ would distort
the three-phase output line current and voltage. The fault is particularly severe in the ia, vab, and vca

phases, and the fault-tolerant control strategy can be implemented 0.015 s after the occurrence of
the fault. In this situation, the a phase half-bridge switches (Sa1

+ and Sa2
−) are deactivated and the

neutral-point switches (Sa1
− and Sa2

+) are activated. The b- and c-phase switches still operate normally.
The phase angle of the b phase voltage is simultaneously adjusted such that it is 150◦ behind the phase
angle of the a phase reference voltage, and the phase angle of the c phase reference voltage is adjusted
such that it is 150◦ ahead of that of the a phase voltage. After the implementation of the fault-tolerant
control strategy, the three-phase output line voltage is reduced from five to three levels (Figure 20b);
however, after the occurrence of the fault, the output line current and voltage are still maintained via
the operation of the balanced three-phase system. Therefore, the motor can still operate normally with
a reduced load.

Based on the tolerance control analysis detailed in Section 6.1, the same results can be obtained
when other external switches fail.

If any of the internal switches Sa2+, Sa1−, Sb2+, Sb1−, Sc2+, and Sc1− in the inverter experience
an open-circuit fault, in order for the inverter to remain in operation, it is necessary to make every
parallel-connected tolerant control switch (as shows in Figure 14) operate at once. If internal (neutral
point) switch Sc2+ experiences an open-circuit fault, its output line current and voltage are same as
shown in Figure 21. The output line current and voltage still maintain the operation of the balanced
three-phase system. Hence, the motor can also operate normally with a reduced load.
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According to the previous analysis in Section 6.1, other internal switch failures will also have the
same results.

7. Conclusions

This paper has presented a fault diagnosis system for inverters based on extension theory.
The system can identify the positions of faulty power transistors in a three-level NPC inverter.
The extension theory-based method, as applied here, can be implemented without requiring massive
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data quantities for training, thus being able to reduce the data volume and enable faster identification
with higher accuracy. In addition, the tolerant control strategy of the system is able to be implemented
as soon as any switch in the inverter becomes faulty, where the inverter is enabled to continue supplying
power, enhancing the reliability of power supply by the three-level NPC inverter. Finally, the simulation
and experimental results suggest that the system is able to correctly pinpoint the positions of faulty
power transistors, and, when any switch becomes faulty, it is able to maintain the output line voltage
and line current with three-phase balance by means of the tolerant control strategy, which verifies that
the method proposed herein is viable.
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