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Abstract: Integration of modeling and optimization of a thermal management system simultaneously
depends on heat transfer performance of the components and the topological characteristics of the
system. This paper introduces a heat current method to construct the overall heat current layout
of a typical double-loop thermal management system. We deduce the system heat transfer matrix
as the whole system constraint based on the overall heat current layout. Moreover, we consider
the influences of structural and operational parameters on the thermal hydraulic performances
of each heat exchanger by combining the empirical correlations of the heat transfer and pressure
drop. Finally, the minimum pressure drop is obtained by solving these optimal governing equations
derived by the Lagrange multiplier method considering the physical constraints and operational
conditions. The optimization results show that the minimum pressure drop reduces about 8.1% with
the optimal allocation of mass flow rates of each fluid. Moreover, the impact analyses of structural
and operating parameters and boundary conditions on the minimum and optimal allocation present
that the combined empirical correlation-heat current method is feasible and significant for achieving
integrated component-system modeling and optimization.

Keywords: thermal management system; component-system; heat current method; empirical
correlation; integration optimization

1. Introduction

The thermal management system has played an increasingly essential and promising role in
such fields as data center [1], building [2], electric/fuel cell vehicles [3–5], energy storage [6], and
spacecraft [7,8]. For example, with the development of the Cloud service and the 5th generation
wireless systems, data processing centers with high-power electric devices require a higher efficiency
thermal management system. Meanwhile, with extensive utilization of electric and fuel cell systems in
the transportation field, the mobile communication equipment industry, and the distributed integrated
energy system, guaranteeing the optimal operation requirements of batteries (55~65 ◦C for electric
vehicles and fuel cell vehicles [9–11]) using a thermal management system has attracted more attention.
In general, a typical thermal management system consists of various heat transfer components (heat
exchangers), flow equipment (pump and fan), and power and control systems (power sources). In this
system, each component has its own unique physical characteristics, however, each component also
generates some highly linked behaviors with other components [12], which pose significant impacts on
the overall performance of the thermal management system [13]. Therefore, synergy of the component
structure design and system performance optimization is essential for a comprehensive analyses of a
thermal management system.
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In recent years, many researchers have made significant efforts to promote the design of heat
exchangers and thermal management system optimization. The former stage attached more attention
to enhancing the heat transfer process [14,15], heat transfer empirical correlations for various
applications [16,17], and structural parameters optimization [18–20]. The later stage focused far
more on thermal system modeling and optimization by introducing entropy generation [21,22],
exergy analysis [23,24], entransy dissipation [25,26], and thermoeconomics theory [27,28] combining
with some heuristic algorithms [29–32]. Meanwhile, some researchers have considered heat transfer
component structure in thermal system optimization and developed some solutions by combining
with Computational Fluid Dynamics (CFD) simulation [33,34]. Although a CFD simulation can
obtain more information about temperature, velocity, and pressure distributions of the convective
heat transfer in the heat transfer component, a simulation is not straightforward. Calculating time
and simulation complexity increase accompanied by an increase in heat transfer component quantity.
In addition, distributions of temperature and velocity are not always necessary for system simulation
and optimization in some cases. For example, local temperature, velocity, and pressure are not requisites
for optimizing a building heat transport and gas refrigeration system [35]. Therefore, a suitable and
feasible solution for integrating modeling and synergy optimization of components and systems in a
thermal management system is highly desired.

For a heat exchanger, which is a fundamental component of a thermal management system,
the corresponding empirical correlations of heat transfer factor (j-factor) and flow resistance friction
factor (f -factor) by experiments or simulations are very significant and essential to its design
and performance analysis. According to these corresponding empirical correlations, the log
mean temperature difference (LMTD) method or the effectiveness-number of transfer units (NTU)
method [36–38] are practical solutions for the design or rating problems of a single heat exchanger by
introducing an implicit relationship between design parameters and requirements. However, a simple
combination of empirical correlations and LMTD or effectiveness-NTU method is not suitable for
thermal system integration and optimization under the conditions limited by these implicit relationships
and some intermediate parameters. Recently, as an alternative to the above analysis perspective,
a new heat current (power flow) method that considered the dual characteristics of the heat transfer
conservation and irreversibility [39–42] was proposed. It has been widely applied to both the structural
design of a single heat exchanger and the analysis and optimization of heat transfer systems for good
reasons [43–46]. It directly describes the heat flux passing through the thermal resistance driven by the
linear temperature difference and represents all factors that influence heat transfer performance, by an
explicit relationship including the heat exchanger area, heat transfer coefficient, mass flow rates of
hot and cold fluids, and the flow arrangement [42]. Therefore, a combination of empirical correlation
and heat current method provides an alternative and feasible solution for the overall integration and
optimization of a thermal energy system by considering the heat transfer component performance and
system characteristics.

This research introduces a typical double-loop thermal management system consisting of a
cross-flow plate-fin heat exchanger and a counter-flow heat exchanger, as well as a cooling plate. Then,
we apply the heat current method to construct the overall heat current layout and deduce the whole
heat transfer matrix by Kirchhoff’s law. In the matrix, the network thermal resistance reflects the
transfer and transport resistance of thermal energy. Moreover, we introduce the empirical correlations
of heat transfer and flow resistance in different heat exchangers for analyzing the structural parameters
of each heat exchanger as optimization variables. Finally, the minimum pressure drop is considered
to be the optimization objective by considering the overall system-level heat transfer constraint and
heat exchanger structure constraints. The optimization results present the feasibility of the proposed
component-system optimization solution.
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2. The Structure of a Typical Double-Loop Thermal Management System

Figure 1 shows a typical double-loop thermal management system used in such fields as spacecraft
environment control, battery energy management, and building energy management, etc. In general,
a typical double-loop thermal management system includes an internal loop heat transfer subsystem,
an external loop heat transfer subsystem, and a power subsystem. To satisfy different thermal demands,
such as the indoor temperature, cooling temperature, and electronic device working temperature in
a thermal management system, there are various flow arrangement heat exchanges in the internal
loop, as presented in Figure 1. In a thermal management system, inner-circulating fluid with a
lower temperature successively flows through the cross-flow plate-fin heat exchanger (HX1) and two
double-pipe counter-flow heat exchangers (HX2 and HX3), and then enters the intermediate heat
exchanger (HX4) with a higher temperature after absorbing some heat in the internal loop. While in
the external loop, the outer-circulating fluid absorbs the heat through the intermediate heat exchanger,
and then releases it to the environment through the cooling plate, i.e., the heat radiator. In addition,
a fan and four pumps use the same power system to drive the fluid flow in this system.
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Figure 1. A typical double-loop thermal management system.

In the internal loop, the temperatures of the inner-circulating cold fluid entering HX1, HX2, and HX3

are Tc,in_1, Tc,in_2, and Tc,in_3, respectively, and the corresponding temperatures of hot air or hot fluid
are Th,in_1, Th,in_2, and Th,in_3, respectively. In the intermediate heat exchanger, the inlet temperatures of
inner-circulating and outer-circulating fluids are Tc,in_4, and Tm_in, respectively. The outlet temperature
of the outer-circulating fluid entering HX4 is Tm_out. Meanwhile, the outside temperature of HXr, To,
is kept constant in this research for simplicity.

3. The Integrated Component-System Synergy Model of Heat Transfer

3.1. The Overall Heat Current Layout of the Thermal Management System

The heat current method provides a global perspective for system modeling by considering
the component performance and the system topology characteristics. According to the heat current
method-based modeling solution [35,42], the overall heat current layout of the double-loop thermal
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management system consists of isothermal nodes, thermal resistances, additional thermo-motive
forces, and a ground connection. Figure 2 shows the heat current layout of the introduced double-loop
thermal management system, including the thermal resistance element (R) and additive thermo-motive
force element (ε). These two essential elements reflect the thermal energy transfer process between hot
and cold fluids and the thermal energy transport process of the hot fluid or the cold fluid, respectively.
Additionally, Q1, Q2, and Q3 represent three kinds of different heat loads flowing into the system
generated from the indoor environment, electric equipment, and computers with thermal resistance,
R1, R2, and R3, respectively. The sum of three heat loads (Qt = Q1 + Q2 + Q3) flows through R4 and
Rr, and then is released to the isothermal node (To), which is similar to the ground connection in the
electricity field. VT represents the virtual thermo-motive force to keep the inlet temperatures and
outside temperature constant, as shown in Figure 2.
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On the basis of the overall heat current layout and Kirchhoff’ law, we can directly obtain the
system-level thermal energy transfer matrix equation as follows:

∆T = RQ (1)

where the driven potential, thermal resistance, and heat current are the following:
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where Gin and Gout are the heat capacity flow rate of internal and external loop fluids, i.e., the product of
the mass flow rate and specify heat capacity, respectively. R1, R2, R3, R4, and Rr are the inlet temperature
difference-based general thermal resistance, and they have the following unified expression [47]:

R =
Th,in − Tc,in

Q
=

GceNTUh −GheNTUc

GhGc(eNTUh − eNTUc)
(3)

where NTUh and NTUc are the hot-end and cold-end numbers of heat transfer units in each heat
exchanger, and they are the ratios of effective thermal conductance to heat capacity flow rates of hot
and cold fluids:

NTUh =
φKA
Gh

NTUc =
φKA
Gc

(4)
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where φ is the geometric correction factor for a practical heat exchanger and represents the heat
transfer degradation because of various flow arrangements as compared with a counter-flow heat
exchanger, that is, the correction factor has a different calculation expression suited to a particular flow
arrangement. K and A are the overall heat transfer coefficient and total heat transfer area of the heat
exchanger, respectively. Gh and Gc are the heat capacity flow rates of hot and cold fluids in each heat
exchanger, respectively.

When geometrical parameters of each heat exchanger are given, the mass flow rate influences
the overall heat transfer coefficient of both fluids. Therefore, in this research, we introduce some
empirical correlations for considering the total heat transfer coefficients and pressure drops of each
heat exchanger with different flow arrangements in the thermal management system optimization.
The following subsections provide the calculation expressions of heat transfer and pressure drop
factors of each heat exchanger.

3.2. A Cross-Flow Plate-Fin Heat Exchanger (HX1)

A cross-flow plate-fin heat exchanger is always available for water-air heat transfer in a double-loop
heat exchanger, as shown in Figure 3. The total flow lengths of cold water and hot air are Lc and
Lh, respectively. The full height of all channels of hot air and cold water is Ln. The hot-end and the
cold-end fins have the same geometry as offset strip fins but different sizes. H is the fin height, W is the
width between the adjacent fins, t is the fin thickness, and l is the length of each fin. These structural
parameters of fins are the joint influences of the thermal-hydraulic performance of a cross-flow plate-fin
heat exchanger.
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Next, in this manuscript, we apply a general thermal resistance model to describe the heat transfer
process of a cross-flow plate-fin heat exchanger. In Equation (4), the correction factor φ of a cross-flow
plate-fin heat exchanger can be expressed as follows [48]:

φ =

ln


Gh1 exp

Gh1
Gc1

e−
(KA)1

Gh1 −1




Gh1−Gc1+Gc1 exp

Gh1
Gc1

e−
(KA)1

Gh1 −1





(KA)1

Gh1
−

(KA)1
Gc1

(5)

Combining with Equations (4) and (5), the general thermal resistance expression is the function
of all influence factors regarding the heat transfer performance, wherein two vital parameters are
the overall heat transfer coefficient (K) and the total heat transfer area (A) for the heat exchanger.
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Neglecting the heat conduction resistance of the material, the thermal conductance of HX1 is the
following [49]:

1
(KA)1

=
1

α1_hA1_h
+

1
α1_cA1_c

(6)

where A1_h and A1_c are hot-side heat transfer area and cold-side heat transfer area, respectively, and
their corresponding calculations are:

A1_h = LhLcNh[1 + 2nh(Hh − th)] (7)

A1_c = LhLcNc[1 + 2nc(Hc − tc)] (8)

where nh and nc are equal to the reciprocal of the fin width (W) of the hot side and cold side, respectively.
According to [49], the expression of the total heat transfer area is as follows:

A1 = A1_h + A1_c (9)

Wherein, the free flow areas for the plate-fin heat exchanger of the hot and cold sides are as
follows [49]:

A1_ f ,h = LcNh(Hh − th)(1− nhth) (10)

A1_ f ,c = LhNc(Hc − tc)(1− nctc) (11)

Meanwhile, the convective heat transfer coefficient between the hot fluid or cold fluid and the
heat exchanger plate is obtained by the following [50]:

α1 = j1M1cpPr−0.667 (12)

where the mass flux velocity (M) is calculated by the ratio of mass flow rate to the free flow areas [12]
as:

M1 =
m1

A1_ f
(13)

In Equation (12), the parameter j1 is the Colburn factor for both hot and cold sides with the
following expression [50]:

j1 = 0.6522Re−0.5403β−0.1541κ0.1499γ−0.0678
(
1 + 5.269× 10−5Re1.34β0.504κ0.456γ−1.055

)0.1
(14)

where β, κ, and γ are the dimensionless parameters.

Re =
MD1

µ
, β =

W − t
H − t

,κ =
t
l
,γ =

t
W − t

(15)

where D1 is the hydraulic diameter (D1_h and D1_c), and its expression is as follows:

D1 =
4(W − t)(H − t)l

2[(W − t)l + (H − t)l + (H − t)t] + t(W − t)
(16)

Meanwhile, the frictional pressure drop for the two fluid streams can be calculated by:

∆p1_h =
2 f1_hL1_hM2

1_h

ρ1_hD1_h
, ∆p1_c =

2 f1_cL1_cM2
1_c

ρ1_cD1_c
(17)

where the calculation expression of friction factor f 1 is [50] as follows:

f1 = 9.6243Re−0.7422β−0.1856κ0.3503γ−0.2659
(
1 + 7.669× 10−8Re4.429β0.920κ3.767γ0.236

)0.1
(18)
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Equations (14) and (18) are feasible when 120 < Re < 104, 0.134 < β < 0.997, 0.012 < κ < 0.048, and
0.041 < γ < 0.121.

3.3. Double-Pipe Counter-Flow Heat Exchangers (HX2, HX3, and HX4)

In this double-loop thermal management system, HX2, HX3, and HX4 are double-pipe counter-flow
heat exchangers, as shown in Figure 4. For HX2 and HX3, the hot fluid flows through the outer
tube, and the inner-circulating fluid with lower temperature flows through the inner tube. For HX4,
the circulating fluid with higher temperature flows through the inner tube, and the outer-circulating
fluid flows through the outer tube. For each heat exchanger, the inside diameters of inner and outer
tubes are Din_2, Din_3, Din_4, and Dout_2, Dout_3, Dout_4, respectively. Meanwhile, the thickness of the
tube wall of HX2, HX3, and HX4 are the same, δ. The outside diameters of the inner tube are Dm_2

(Din_2 + 2δ), Dm_3 (Din_3 + 2δ), and Dm_4 (Din_4 + 2δ), respectively. Moreover, the total heat transfer
length of HX2, HX3, and HX4 are L2, L3, and L4, respectively.
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For each heat exchanger, the heat transfer coefficient and heat transfer area can be written as:

1
K

=
Dm

Dinαin
+

Dm

2λw
ln(

Dm

Din
) +

1
αout

(19)

A = πDmL (20)

where αin and αout are convective heat transfer coefficients of the inner tube and outer tube, and their
expressions are the following:

αin =
λinNuw_in

Din
(21)

αout =
λoutNuw_out

(Dout −Dm)
(22)

For the fluids of inner and outer tubes, the Nu can be calculated by the empirical correlation given
by Gnielinsk’s equation [50] as:

Nuw =

fw
8 (Rew − 1000)Prw

1 + 12.7
(

fw
8

)0.5(
Pr2/3

w − 1
) (23)

where Rew and Prw are the Reynolds number and Prandtl number. fw is a friction factor and is
calculated by:

fw = (1.82logRew − 1.64)−2 (24)
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The pressure drop expression, of the fluid flowing in each tube, is as follows:

∆p =
fwLM2

2ρD
(25)

3.4. A Cooling-Plate Heat Exchanger (HXr)

In the external loop, HXr is a cooling-plate heat exchanger, as shown in Figure 5, i.e., a radiator for
releasing the heat to the environment with assumed constant temperature. In the analysis, the total
heat transfer area is Ar, the circulating fluid in the external loop with high temperature is divided into
n parallel parts, and then enters the radiator to transfer the heat, and the hot fluid flows through the
cooling plate and cooled by the lower outside temperature. Equations (21) and (25) can calculate the
heat transfer coefficient and pressure drop, respectively. When the temperature of the cold side is
constant, the thermal resistance of the cooling plate can be written as:

Rr =
eNTUh

Gh(eNTUh − 1)
(26)
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4. Optimization Model and Process

4.1. Optimization Objective

For a typical double-loop thermal management system used for battery cooling, spacecraft
thermal control, or data center/building cooling, the minimum operational cost is always beneficial
in the thermal management system applications, and thus has received more attention. In general,
the operating cost is related to the pump power or the fan power to overcome the flow resistance of
each fluid. Therefore, the optimization objective is the minimum total pressure drop caused by the
flow resistance:

min(∆pt)= min
∑

∆p1 + ∆p2 + ∆p3 + ∆p4 + ∆pr (27)

where ∆p1, ∆p2, ∆p3, ∆p4, and ∆pr are total pressure drops of both hot and cold fluids of HX1, HX2,
HX3, HX4, and HXr, respectively. The total mass flow rate is rated as:

mt = mh1 + mh2 + mh3 + min + mout (28)

where mh1, mh2, and mh3 are mass flow rates of each hot fluid in HX1, HX2, and HX3, respectively. min
and mout are mass flow rates of internal and external loop fluids, respectively.
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4.2. Optimization Process

Combining with the system heat transfer constraint expressed in Equation (2), the optimization
problem of the minimum total pressure drop is a typical conditional extremum problem. With the
constraint of the rated total mass flow rate, a Lagrange function J is constructed as:

J = (∆p1 + ∆p2 + ∆p3 + ∆p4 + ∆pr)

+θ1

[
Th,in_1 − To −

(
Q1R1 + QtR4 + QtRr −

Qt
mincp

−
Qt

moutcp

)]
+θ2

[
Th,in_2 − To −

(
Q2R2 + QtR4 + QtRr −

Q2+Q3
mincp

−
Qt

moutcp

)]
+θ3

[
Th,in_3 − To −

(
Q3R3 + QtR4 + QtRr −

Q3
mincp

−
Qt

moutcp

)]
+θ4(mt −mh1 −mh2 −mh3 −min −mout)

(29)

where θ1, θ2, θ3, and θ4 are Lagrange multipliers, respectively. Making the differential of J with respect
to each variable equal to zero gives the following:

∂J
∂Xl

= 0, Xl ∈ [mh1, mh2, mh3, min, mout,θ1,θ2,θ3,θ4] (30)

These equations contain nine variables, i.e., the mass flow rate of each working fluid and four
Lagrange multipliers. Solving these equations expressed in Equation (30) will obtain the optimal results.

5. Synergy Optimization Results and Discussions

5.1. The Simulation Calculation Cases

Here, we present the analysis and optimization of the thermal management system under some
necessary given conditions. The heat loads of HX1, HX2, and HX3 are 4000, 6000, and 2000 W,
respectively. Meanwhile, the inlet temperatures of hot fluids flowing into HX1, HX2, and HX3 are
340, 330, and 320 K, respectively. The cooling-plate temperature remains constant, at 275 K. For the
cross-flow plate-fin heat exchanger HX1, the total flow length of the cold-end and hot-end are 0.12
and 0.11 m, respectively. Table 1 gives the fin width, height, length, and thickness of the hot-air side
and cold-water side. The fin number of the hot-side and cold-side are 7 and 8, respectively. Moreover,
the inner diameter of the internal pipe of HX2, HX3, and HX4 is the same, i.e., 20 mm. The tube wall
thickness is 2 mm of each counter-flow heat exchanger. The inner diameters of the external pipe of
HX2, HX3, and HX4 are 50, 50, and 60 mm, respectively.

Table 1. Some given geometrical parameters of HX1.

Cold-Water Side Value (mm) Hot-Air Side Value (mm)

Width (Wc) 3 Width (Wh) 2
Height (Hc) 3 Height (Hh) 9
Length (lc) 3 Length (lh) 4

Thickness (tc) 0.1 Thickness (th) 0.15

Under the given conditions, when the mass flow rate of the fluid in the external loop is 0.5 kg/s,
we simulate the thermal management system and obtain the working temperatures of the internal and
external fluids, as shown in Table 2. The minimum and maximum temperatures of the internal fluid
are 277.05 and 317.77 K. The temperature of the external fluid decreases from 282.76 to 277.02 K by
releasing the heat through the cooling-plate heat exchanger. Meanwhile, the mass flow rates of hot
fluid in HX1, HX2, HX3, and HX4 are 0.097, 0.08, 0.253, and 0.07 kg/s, respectively. The total pressure
drop of this system is 68.71 KPa. The simulation results show that the combination of heat current
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method and empirical correlations is feasible and convenient for the combined component-system
synergy analysis.

Table 2. Simulation temperatures of the internal loop and external loop fluids.

Tc,in_1 (K) Tc,in_2 (K) Tc,in_3 (K) Tc,in_4 (K) Tm,in (K) Tm,out (K)

277.05 290.62 310.98 317.77 277.02 282.76

5.2. Synergy Optimization Results

When the structural parameters of each heat exchanger are given and shown in the above entries,
we obtain the optimal mass flow distribution when the total mass flow rate is 1 kg/s, by solving these
equations showed in Equation (29). Meanwhile, numerical simulation cases and results under different
mass flow rates of the external fluid are obtained and pictured in Figure 6. Compared with simulation
cases, the total pressure drop, using the proposed optimization method, is the minimum. After the
optimization, the mass flow rates of hot fluids in HX1, HX2, and HX3 are 0.099, 0.083, and 0.426 kg/s,
respectively. The mass flow rates of fluids flowing through internal and external loops are 0.071 and
0.321 kg/s. The minimum pressure drop is 63.14 kPa, reducing 8.1% as compared with the above
simulation result when the mass flow rate of the fluid in the external loop is 0.5 kg/s. Meanwhile,
the thermal resistances of each heat exchanger are 0.0083, 0.0032, 0.0020, 0.0029, and 0.003 K/W,
respectively, that is, the optimal allocation of the mass flow rate of fluids in the thermal management
system is necessary for reducing the total pressure drop and the operational cost.
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5.3. Parameters Analysis and Discussions

For the introduced typical double-loop thermal management system, any one structural parameter,
operational parameter, and boundary condition can generate influence on optimization results.
Therefore, the following parts show the impact analysis of such factors as the fin width of the cross-flow
plate-fin heat exchanger, the inlet temperatures, the heat load, and the total mass flow rate.

Figure 7 presents these variations of the total pressure drop and mass flow rates of each fluid in a
thermal management system with an increase in fin width of the cold-water side in HX1. Wherein,
the total pressure drop decreases from 63.21 to 63.08 kPa when the fin width increases from 2.5 mm to
3.5 mm. Meanwhile, the mass flow rates of the internal loop fluid and hot fluids in HX2 and HX3 keep
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constant. The mass flow rates of hot fluid in HX1 and the external loop fluid will increase and decrease,
respectively. Consequently, an increase in the fin width of the cold-water side is a benefit to reduce
the total pressure drop of the thermal management system and generate some minor impacts on the
optimal allocation of mass flow rate.
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Moreover, Figure 8 shows these influences of the fin width of the hot-air side in HX1 on the
optimization results. When the fin width of the hot-air side increases from 1.5 mm to 2.5 mm, the total
pressure drop reduces from 63.63 kPa to 62.63 kPa, about 1 kPa. Since an increase in the fin width of
the hot-air side reduces the convective heat transfer coefficient, the mass flow rate of hot air increases
by 38.7% for keeping the same heat transfer ability. Meanwhile, the mass flow rates of fluid in the
external loop and that of the hot fluid in HX3 both decrease, while the mass flow rate of other fluids
has a minor variation. Therefore, an increase in the fin width of the hot-air side is more effective for
reducing total pressure drop and the total operational cost. Meanwhile, according to Figures 7 and 8,
these optimization results show that variations of local geometrical parameters of the heat exchanger
influence the optimal operation of other heat transfer components.Energies 2020, 13, x FOR PEER REVIEW 12 of 18 

 

1.4 1.6 1.8 2.0 2.2 2.4 2.6
0.05

0.10

0.25

0.30

0.35

0.40

0.45

m
(k

g/
s)

Wh(mm)

 mh1   mh2

 mh3   min

 mout

62.5

62.7

62.9

63.1

63.3

63.5

63.7

 ∆p

∆
p (

kP
a)

 
Figure 8. The total pressure drop and mass flow rate vary with the fin width (Wh) of the hot-air side 
in HX1. 

When the inlet temperature of hot fluid in each heat exchanger varies with the heat load, the 
optimal allocation of mass flow rates changes. As shown in Figure 9, the total pressure drop increases 
about 0.55 kPa and the mass flow rate of the hot air in HX1 decreases 22.68%, when the inlet 
temperature of the hot air in HX1 increases from 335 K to 345 K. According to the definition of inlet 
temperature difference-based thermal resistance, due to a rise in the inlet temperature of hot fluid, 
the driven potential for heat transfer will increase. Under the same heat load, the thermal resistance 
increases with a decrease in the mass flow rate of hot fluid. Meanwhile, the optimal mass flow rates 
of the hot fluid in HX3 and the external loop fluid increase due to an increase in the inlet temperature 
of hot air in the HX1. 

334 337 340 343 346
0.06

0.10

0.26

0.30

0.34

0.38

0.42

0.46

 mh1  mh2

 mh3  min

 mout

m
(k

g/
s)

Th,in_1(K)

62.8

63.0

63.2

63.4

63.6

 ∆p

∆
p t

(k
Pa

)

 
Figure 9. The total pressure drop and mass flow rate vary with the inlet temperature of hot air in HX1. 

Moreover, Figure 10 presents variations of the total pressure drop and mass flow rates of each 
fluid in the thermal management system with an increase in the inlet temperature of the hot fluid in 
HX3. Because the location of HX3 is different from the HX1 in the thermal management system, the 
variation of the inlet temperature of the hot fluid in HX3 will bring different trends. The total pressure 
drop will reduce about 2.41 kPa when the inlet temperature of the hot fluid (Th,in_3) increases 10 K 
under the same load. Compared with the inlet temperature of the hot fluid (Th,in_1) in HX1, Th,in_3 will 
have a more distinct influence on the total operational cost. Meanwhile, the optimal allocation of 

Figure 8. The total pressure drop and mass flow rate vary with the fin width (Wh) of the hot-air side
in HX1.



Energies 2020, 13, 6347 12 of 17

When the inlet temperature of hot fluid in each heat exchanger varies with the heat load, the optimal
allocation of mass flow rates changes. As shown in Figure 9, the total pressure drop increases about
0.55 kPa and the mass flow rate of the hot air in HX1 decreases 22.68%, when the inlet temperature
of the hot air in HX1 increases from 335 K to 345 K. According to the definition of inlet temperature
difference-based thermal resistance, due to a rise in the inlet temperature of hot fluid, the driven
potential for heat transfer will increase. Under the same heat load, the thermal resistance increases
with a decrease in the mass flow rate of hot fluid. Meanwhile, the optimal mass flow rates of the hot
fluid in HX3 and the external loop fluid increase due to an increase in the inlet temperature of hot air in
the HX1.
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Moreover, Figure 10 presents variations of the total pressure drop and mass flow rates of each
fluid in the thermal management system with an increase in the inlet temperature of the hot fluid
in HX3. Because the location of HX3 is different from the HX1 in the thermal management system,
the variation of the inlet temperature of the hot fluid in HX3 will bring different trends. The total
pressure drop will reduce about 2.41 kPa when the inlet temperature of the hot fluid (Th,in_3) increases
10 K under the same load. Compared with the inlet temperature of the hot fluid (Th,in_1) in HX1, Th,in_3

will have a more distinct influence on the total operational cost. Meanwhile, the optimal allocation of
mass flow rates is different. The mass flow rates of the internal loop and external loop fluids all reduce,
and the mass flow rates of hot fluids in HX2 and HX3 increase, respectively.
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In addition, Figure 11 shows that the total pressure drop and the optimal allocation of the mass
flow rate vary with an increase in the heat load of HX2. When the heat load of HX2 increases, the total
pressure drop increases, that is, the total operational costs increase with a rise in the heat load of HX2.
Meanwhile, the mass flow rates of the hot fluids in HX2 and HX3 increase and decrease, respectively.
Therefore, the variation of local heat load generates an influence on the optimal allocation of the mass
flow rate. Finally, when the total mass flow rate increases, due to the increase in the mass flow rates of
the fluids in HX3 and the external loop, Figure 12 shows that the optimal total pressure drop increases
from 60.6 to 66.54 kPa.
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Figure 12. The total pressure drop and mass flow rate of each fluid vary with the total mass flow rate.

The above-combined simulation and optimization of components and systems are achieved
by combining the heat current method for system-level analysis with the empirical correlations for
component-level analysis. For each heat transfer component, the heat transfer performance and fluid
flow characteristic are described by the empirical correlations obtained by the experiment results.
Besides, the system typology characteristic is described using the heat current layout combining with
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Kirchhoff’s law. In this framework, the intermediate temperatures of the circulating fluid in internal
and external loops are omitted, and thus benefit the holistic analysis and synergy optimization.

6. Conclusions

Integration modeling and optimization of component and system provide a holistic perspective
for thermal management system design and optimization. This contribution introduced a typical
double-loop thermal management system and applied the heat current method for constructing its
overall heat current layout, and then deduced the heat transfer matrix by Kirchhoff’s law. In the
deduced heat transfer matrix, the network thermal resistance reflects the component performance
and system typology characteristic. Moreover, we introduced some empirical correlations of heat
transfer and pressure drop to consider the influences of structural and operational parameters of
each heat transfer component on the system overall performance. The combination of the general
thermal resistance and the empirical correlation provides a new solution for optimizing the component
structure at the system level.

Furthermore, the research provided a simulation case and optimization case for validating the
proposed component-system modeling and optimization method. Solving these optimal governing
equations derived by the Lagrange multiplier method with consideration of the physical constraints
and operational conditions shows that the minimum pressure drop reduces about 8.1% with the optimal
allocation of mass flow rates of each fluid. In addition, a variation of the local geometrical parameters of
the heat exchanger influences the optimal operation of other heat transfer components. Consequently,
the consideration of the heat exchanger structural parameters in system-level optimization can be
achieved by combining the heat current method and the empirical correlation. This combination
provided a feasible and significant solution for the integrated component-system optimization for the
thermal management system.
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Nomenclatures

A area, m2

cp specific heat capacity, J kg−1 K−1

D hydraulic diameter, m
f friction factor
G heat capacity rate flow, G =mcp, W K−1

H height, m
j Colburn factor
J Lagrange function
K overall heat transfer coefficient, W m−2 K−1

l length of a single fin, m
L total length, m
m mass flow rate, kg s−1

M mass flux velocity, kg m−2 s−1

n fin frequency, m−1
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N channel number
Nu Nusselt number
p pressure, Pa
Pr Pr number
Q heat flux, W
R thermal resistance, K W−1

Re Re number
t thickness, m
T temperature, K
V virtual thermo-motive force
W width, m
α convective heat transfer coefficient, W m−2 K−1

β dimensionless parameter
δ thickness, mm
γ dimensionless parameter
κ dimensionless parameter
λ thermal conductivity, W K−1 m−1

ρ density, kg m−3

φ correction factor
θ Lagrange multiplier
ε additive thermo-motive force, K subscripts
a air
c cold fluid
h hot fluid
in inner, inlet
m intermediate heat exchanger
out outer, outlet
r radiator
t total
w water
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