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Abstract: Modern control strategies for district-level heating and cooling supply systems pose a
difficult challenge. In order to integrate a wide range of hot and cold sources, these new systems will
rely heavily on accumulation and much lower operating temperatures. This means that predictive
models advising the control strategy must take into account long-lasting thermal effects but must
not be computationally too expensive, because the control would not be possible in practice. This
paper presents a simple but powerful systematic approach to reducing the complexity of individual
components of such models. It makes it possible to combine human engineering intuition with
machine learning and arrive at comprehensive and accurate models. As an example, a simple
steady-state heat loss of buried pipes is extended with dynamics observed in a much more complex
model. The results show that the process converges quickly toward reasonable solutions. The new
auto-generated model performs 5 × 104 times faster than its complex equivalent while preserving
essentially the same accuracy. This approach has great potential to enhance the development of
fast predictive models not just for district heating. Only open-source software was used, while
OpenModelica, Python, and FEniCS were predominantly used.

Keywords: district heating; machine learning; optimization; modelling; dynamics; pipes;
smart systems

1. Introduction

District heating systems (DHS) are a standard solution for the supply of heat to buildings and
technologies in urban areas. The proper operation of DHS can offer several synergistic advantages:
higher efficiency of the central source compared to small decentralized sources, application of efficient
large-scale cogeneration, reduction of specific emissions, better control over the amount of produced
emissions, and use of waste heat from technologies located in different parts of the city. In recent
decades, the main trends in district heating are lowering the temperature of distributed heating water,
application of sophisticated systems of automatic control of DHS, utilizing renewable energy sources,
development of cooperation of heating and cooling supply systems, and increasing storage capacity.
Depending on heat production technology and the parameters of heat distribution, the so-called
generations of heat supply systems have been defined [1]. Generations 1 to 3 include the current
historical development of heating systems.

Proposals of the new 4th and recently recognized 5th generation of district heating and cooling
supply systems are part of the overall answer for lowering carbon emissions. These proposals attempt
to address the problem by focusing on the utilization of multiple sources of waste heat and renewables.
Many of the considered sources can only provide low potential heat. This calls for lower operational
temperatures in the whole DHS. It needs to be combined with some form of temperature boosting (i.e.,
using devices such as heat pumps) to satisfy demands for higher temperature potentials, such as those
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associated with domestic hot water production. The 5th generation of district heating and cooling
supply goes as far as suggesting neutral temperature levels and potentially lowering the requirements
for insulation of the pipes in the distribution network [2]. For efficient utilization of all possible sources,
it is also necessary to deal with the temporal mismatch of demand and production. In principle, this
can be realized with the help of hot and cold water storage, given that there is an efficient control
strategy. The demands on control algorithms further increase with the requirements for predictive
control of DHS. This requires testing a larger number of alternative scenarios, which places extreme
demands on the speed of partial calculations.

If these proposals are to be fulfilled, there needs to be a systematic approach through which the
behavior of these complicated systems can be studied, where new ideas can be tested in the context of
the whole system and their implementation optimized, so their real potential can be assessed accurately
and holistically.

It is quite straightforward to model the physics of the components (for example, using proprietary
solvers for partial differential equations such as ANSYS, COMSOL, and STAR-CCM+), but it is not so
straightforward to make them progress quickly as well (the exception here might be quasi-stationary
models, but those are not considered strict dynamics by definition).

There are several relatively recent papers dealing with thermal modeling and optimization of
district heating pipes. Teleszewski et al. presented a comparison of heat loss of a quadruple pre-insulated
heating network, four pre-insulated single-pipe networks, and two twin-pipe networks. A simplified
2D steady-state model based on the boundary element method was used for calculations [3]. Krawczyk
and Teleszewski also presented possible variants of heat loss reduction by analyzing possible changes
in cross-sectional geometry [4,5]. Ocłon et al. studied steady-state heat losses of the pre-insulated pipe
and twin-pipe in the heating network using an analytical 1D model and a numerical 2D steady-state
model [6]. Heijde et al. presented the derivation of the steady-state heat losses and temperature
changes for a double pipe network, which was implemented in Modelica software [7]. The authors
used equivalent thermal resistances previously derived by Wallenten [8]. Danielewicz et al. developed
a model for heat loss calculations in pre-insulated district heating network pipes using computational
fluid dynamics (CFD) [9]. Sommer et al. compared efficiency, investment costs, and flexibility of
advanced district heating systems, namely, the double-pipe bidirectional network and the single-pipe
reservoir network, using Modelica simulations [10]. Arabkooshar et al. analyzed the performance of a
triple-pipe system in district heating and compared it with a twin-pipe system employing CFD [11].
To combine these models into a single complex simulation of a grid might be very challenging. A fast
dynamical model of a grid where the simulated physical behavior of each component is close to their
real behavior opens up an opportunity for discovery and assessment of new control strategies. Such a
model used to be referred to as a virtual system or digital twin, if it is a simulation of installation.

In order to bring these ideas closer to life, there needs to be an open exchange of tools, software,
and data among researchers. The thriving discipline of machine learning is one example, where this
attitude helps develop the technology significantly. The approach to district heating needs to be
similarly bottom-up. It means that the components of the district heating and cooling systems must be
modeled first. Further, they must be easy to combine into more complex simulations and the tools
should be available to anyone who chooses to contribute. A recent review of open-source tools for
energy-related modelling and optimization concluded that open-source development has received
more attention but its success is still relatively limited [12].

Two programming languages seem to be most appropriate to the above. The first is Python,
which is a general-purpose language, highly suitable for scientific computing. There is a vast amount
of very competent libraries available. The other is Modelica, which is highly suitable for modelling
multi-component and multi-physics dynamical systems. There is a library for modelling of district
heating networks written in Modelica language called DisHeatLib [13], but it is not compatible with
the open-source environment OpenModelica.
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The presented research addresses the problem of generating efficient dynamical models (using
open-source tools) as the means by which faster and more complex simulations of DHS can be
constructed efficiently. Human engineering intuition can be efficiently combined with machine-learning
algorithms into an efficient process of developing the models. An optimization tool capable of interfacing
with OpenModelica as well as other software is presented in this contribution. It is capable of learning
the parameters of nested Modelica models, so the models acquire the desired dynamical behavior. It
can run on distributed hardware, which allows it to scale quite well for more-complicated models.

In this paper, the authors present a functional example of semi-automated model complexity
reduction. First, the cross-sectional thermal dynamics behavior was modeled using the open-source
tool FEniCS. Then, simple components representing thermal capacities and heat conductors were
created in Modelica and a simple equivalent scheme was built from them. Then, the values of the
parameters of the capacitors and heat conductors were learned, so the simplified model approximated
the results of the complex model. These steps create an innovative solution process that is characterized
by short computational time and robustness, corresponding to DHS needs.

2. Materials and Methods

This chapter describes the individual steps of the used calculation solution procedure. The
solution to the problem can be divided into three main stages. At first, the data needs to be generated.
This is achieved using an open-source platform for solving partial differential equations called the
FEniCS project [14]. A serial topology generator was created for this purpose. It takes the geometry
and its material properties (temperature-independent) as input and outputs topology containing
mesh and its relevant annotations (see Figure 1). This topology is then loaded and passed into a
finite element method assembler along with input data (driving temperatures of the water and air).
An assembly object is produced, containing objects such as mass matrix, conductivity matrix, and
boundary condition-related mathematical entities. The boundary conditions applied during this
process are also shown in Figure 1. The open-source application ParaView is used for visualization of
the domain and the spatial data.
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20 W·K−1
·m−2), T is the domain temperature, T0 is a constant temperature of the Dirichlet boundary

condition, and Tws, Twr, and Ta are driving temperature of the adjacent media.

This assembly is then passed to an adaptive time step solver. The adaptation is governed by the
measurement of violation of the conservation of energy. The progress of the simulation is recorded
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in a comma-separated value file (CSV). The data recorded in this file are explained in Table 1. The
CSV file is then converted into a Modelica package with highly efficient interpolation kernels wrapped
around the data (constant computational complexity), so it can be used conveniently in the graphical
OpenModelica environment and directly compiled into the executable model. This whole process is
later referred to as data mining. If set, the simulator can also store snapshots of the whole domain after
each time step.

Table 1. Data recorder during the complex simulation.

Name Description Unit

time simulation time s
dt the time step used/chosen by the adaptation strategy s

T_ws a driving boundary temperature of the water in the supply pipe K
T_wr a driving boundary temperature of the water in the return pipe K
T_a driving boundary temperature of the air K

T_avg_s the average temperature of the inner surface of the supply pipe K
T_avg_r the average temperature of the inner surface of the return pipe K
T_avg_a the average temperature of the ground (top edge) K

Q_s heat flow from the domain to water to the supply pipe W/m
Q_r heat flow from the domain to water to the return pipe W/m
Q_a heat flow from the domain to the air (through top edge) W/m

Q_dbcs heat flow through locations with Dirichlet boundary conditions W/m
Error error norm used for adaptation W/m

The output data of this rather complex simulation must contain enough relevant dynamics. The
driving temperatures used in the training dataset along with several explanatory snapshots are shown
in Figure 2. It includes fast dynamics as well as long periods of equalization, so the heat has enough
time to spread and affect the relevant areas if they are thermally distant from each other. Steady-state
behavior is implicitly present.
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In the second stage, a simplified model was implemented in Modelica. It consisted mainly of two
components. The first is a thermal capacitor with a parameter, M, which represents its thermal mass.
The governing equation is a simple ordinary differential equation (ODE):

M·
dT
dt

=
.

Qin −
.

Qout (1)

where M (J·K−1) is a thermal mass of the node, T (K) is a temperature of a node, t (s) is time, and
·

Qin (W)

and
·

Qout (W) are incoming and outgoing heat flow, respectively. The initial condition associated with
this ODE is simply an initial value (unlike the complex model, the simple model cannot be initialized
to a steady-state solution prior to the training process). The other component is the thermal conductor
(or resistor, if preferred). It has a parameter, K, that represents its thermal conductance. The following
equation describes its behavior:

.
Q12 = K·(T1 − T2) (2)

where
·

Q12 (W) is a heat flow through the conductor in direction 1–2, K (W·K−1) is a thermal conductance,
and T1 (K) and T2 (K) are temperatures of the adjacent points 1 and 2, respectively. Along with these
two components, there are also models representing the boundary conditions (for supply pipe, return
pipe, and ground-level surface). These boundary models look up the corresponding data from the
data package generated during the data-mining process. They also evaluate absolute errors between
temperature and heat flow at the boundary interfaces. The total loss for training is the weighted sum
of those errors from all instances of these boundary models accumulated over time.

.
Qmodel = K·

(
Tdata_medium − Tmodel_sur f ace

)
(3)

where
·

Qmodel (W) is a boundary heat flow evaluated inside the simplified model, Tdata_medium (K) is a
driving temperature of the media (one of Tws, Twr or Ta), which is the only input to the simplified
model, and Tmodel_surface (K) is the average temperature also evaluated inside the simplified model.

L = w1·
∣∣∣Tdata_sur f ace − Tmodel_sur f ace

∣∣∣+ w2·

∣∣∣∣ .
Qdata −

.
Qmodel

∣∣∣∣ (4)

where L (which has no meaningful units) is actual weighted loss or mismatch for a given surface, w1 and
w2 are dimensionless weights, Tdata_surface (K) and Tmodel_surface (K) are temperatures of a corresponding
surface, and Qdata_surface (K) and Qmodel_surface (K) are heat flow through the corresponding surface
evaluated by complex and simplified model, respectively.

These models are then assembled into a simple grid (see Figure 3). The sparsity of the model is
mostly resolved in this step. In a matrix form, the typical row would therefore have five non-zero entries,
since the typical thermal capacitor is connected to four other thermal capacitors. A mathematical
model of this kind should be enough to capture the macroscopic relations between variables that are
recorded during the complex simulation.
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The third stage is the learning and training process. For this purpose, a custom optimization
tool called Lofi was written from scratch in Python. It contains an application interface (API) to the
OpenModelica compiler and several derivative-free optimizers that were also written from scratch. So
far, the optimizers that were included are based on swarm intelligence and evolutionary strategies.
Lofi is fully parallelized and capable of running on a distributed hardware (within a message-passing
environment such as Open MPI or MPICH). Objectives and parameters subjected to optimization are
annotated inside the Modelica code using the hashtags/keywords #objective and #optimize in the
description of the variables (at this stage, only type Real is supported with the #optimize keyword).
This overall architecture of Lofi is presented in Figure 4. The capability of Lofi is not at all limited to
the problems presented in the main text of this article (see Appendix A for a short summary).
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3. Results

The training and validation datasets were generated during the data-mining stage. The validation
dataset was never used during the training stage. The training of the simple model was mainly
performed using a particle swarm optimizer (PSO) modified by a custom adaptation strategy. This
modified algorithm is referred to as a greedy random adaptation particle swarm optimizer (GRAPSO).
As Lofi is still in its infancy and is missing some rather important features, such as automatic parameter
scaling, the scales had to be set manually in the Modelica model. Several optimization runs have
been performed to make sure that the solution is not suboptimal (convergence toward a good solution
does not mean that there is no better one). Figure 5 shows the convergence of the training process
performed on hardware with 40 physical CPU cores.
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Figure 6. Accuracy of the new model for the validation dataset. Indices s, r, and a correspond to
interfaces of supply, return, and air, respectively. The top part shows predicted heat flows from the
domain to the adjacent media; the bottom part shows the absolute difference in predicted heat flow.

Table 2. The comparison of the computational expensiveness of both models on given datasets.

Dataset Model Execution Time on
Singe Core

Execution Time Using
40 CPU Cores

Single-Core
Speedup Ratio

Training FEniCS 1915 s 125 s 47,875
OpenModelica 0.04 s not performed

Validation
FEniCS 1180 s 71 s 51,305

OpenModelica 0.023 s not performed
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4. Discussion and Conclusions

Accurate dynamics of heat losses in DHS is often being excluded due to the higher computational
costs associated with it. The quasi-steady solution is usually implemented instead. In the context of
the 4th- and 5th-generation DHS, it might be not enough. The results presented in this paper show
that machine learning provides an opportunity for substantially reducing complexity in the models of
thermal dynamics. An element of the straight buried pipes forming the basic element of DHS was
used as a suitable example to demonstrate the suggested optimization procedure. The example shows
a very promising path toward fast and fully dynamical models with very little compromise needed.
Both accuracy and speed are possible at the same time. This predestines the presented solution for
use in advanced models of DHS and subsequently improves the efficiency of DHS operation. Even
the modelling process is quite simple, since it is performed on a drag-and-drop basis in the graphical
environment. The price that is paid is that there is no meaningful information available on temperature
distribution or heat fluxes outside the three media-domain interfaces. Nevertheless, those are often the
only valuable information, since they directly affect the temperature of the transported media. It is not
yet clear, however, whether the complexity of the new model can be reduced even further. The future
outlook is to access the performance of a model of the straight distribution line that is based on the
new approach, combined with our previous contribution [15], where a fluid region is modelled. After
a few minor adjustments, it should be possible to combine these models. Further, Lofi would be able to
take advantage of further improvements.
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Appendix A

During the development of Lofi, the performance was studied in several other cases. The three most
interesting examples are presented below. More details are available in the repository accessible through
the https://github.com/liborkudela/lofi, the Python codes of the whole solution procedure presented in
the main text of this contribution are available at https://github.com/liborkudela/pipe_physics.

Appendix A.1. Generating a Second-Order Advection Scheme for a Given Context

Lofi was used for tuning a second-order one-dimensional upwind biased advection scheme. The
aim was to find a good compromise between sharp interface capturing and unwanted unphysical
oscillations, which is desirable behavior in simulations of DHS. A Modelica model that is essentially a
numerical simulation of advection was built. The optimization took less than a minute. The progress
of the GRAPSO optimizer is shown in Figure A1. The approximation of the first-order differential
operator that is being optimized has the following form:

dyi

dt
= u

c1·yi−2 − (c1 + c2 + c3)·yi−1 + c2·yi + c3·yi+1

∆x
(A1)

where yi is the value of advected property y in node i, t is time, u is drift velocity, ∆x is the distance of
two adjacent nodes, and c1, c2, and c3 are the optimized coefficients. The one-dimensional domain
with normalized length was discretized into 100 elements.

https://github.com/liborkudela/lofi
https://github.com/liborkudela/pipe_physics
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Appendix A.2. Heat Transfer Inversion

In the second presented example, a heat flux at a boundary is searched for. A one-dimensional
model of a thermally transient wall was coded in Modelica. The numerical solution is based on the
finite difference method. One instance of this model is used to generate training data and a second
one is used to simulate given input (value of second-order boundary condition distributed over time).
This input is a heat flux that is meant to cause the desired temperature response on the opposite
side of the wall. In this example, we used a custom optimizer named OPLES, which is a simple
evolutionary strategy with isotropic Gaussian sampling, adaptive standard deviation, and parental
point momentum. The optimization took about two minutes to reach the mean error of 0.001 K. The
progress of the procedure is shown in Figure A2.
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Appendix A.3. Neural Ordinary Differential System—Lotka-Volterra System

The last example shows the ability of Lofi to learn an ODE system from data. The true system
(representing the unknown ODE system) is Lotka-Volterra equations (A2). The model structure, which
should learn the underlying relation from the data, is an implementation of a neural network with
50 neurons in a hidden layer, and it is formed into an ODE system (see Equation (A3)). OPLES was
able to train this model within eight minutes. The progress of the training is shown in Figure A3. The
advantage of neural networks lies in the fact that they can be trained into almost anything, so very
little prior knowledge about the underlying mechanism hidden in the data is needed. This is also its
disadvantage because the optimization process is more challenging.

.
x = αx− βxy

.
y = δxy− γy (A2)

where α, β, δ, and γ are real coefficients, while x and y are the state values of the system.[ .
x
.
y

]
= W2·tanh

(
W1·

[
x
y

]
+ b1

)
+ b2 (A3)

where Wi are neural weights in a matrix form, bi are neural biases in a vector form, and x, y are the
state values of the system. The weights and the biases are initialized with a value of 0.1.
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