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Abstract: Reactive power compensation with Capacitor Banks (CBs) is one of the most successful
approaches used in distribution systems, mainly due to their versatility, long-term acceptance in the
power industry, and reduced costs. Most allocation methods, however, lack specific strategies to handle
the limited discrete nature of CBs sizes seeking to improve the overall optimization and computational
performance. We present an algorithm for the Optimal Placement of Capacitor Banks (OPCB) in
distribution systems by means of a hybrid Flower Pollination Algorithm (FPA)–Exhaustive Search
(ES) approach. The pollination process itself determines the sets of buses for placement, while CBs
sizes and the final fitness values of each pollen are selected after a full-search is conducted in the sizing
space. As the sizing phase works on the limited search space of predetermined discrete bank values,
the computational effort to find the optimum CB capacity is greatly reduced. Tests were performed on
distribution systems of 10, 34, and 85 buses with respect to the objective function, final losses, and voltage
profile. The algorithm offers an excellent compromise between solution quality and computational effort,
when compared to similar approaches.

Keywords: Flower Pollination Algorithm; Exhaustive Search; Capacitor Banks Placement; hybrid
algorithm

1. Introduction

Technical losses can account for up to 13% of the power delivered in distribution systems [1], which,
besides representing a challenging management problem, have profound social and economic impacts.
Losses can be efficiently minimized with the adequate placement of compensation devices, such as shunt
CBs. The CBs capacities in kVAr are normally chosen from commercially available discrete values.

The Optimal Placement of Capacitor Banks (OPCB) problem is a well-researched topic
usually addressed through Mixed-integer Nonlinear Programming (MINLP). Solution approaches
include analytical or “exact” methods [2], numerical programming (NP) [3,4], heuristics [5,6], or
meta-heuristics [7,8]. In general, the computational complexity increases with the network size or the
inclusion of discrete variables [9]. Analytical methods have been widely used in the past, when computing
power was scarce [10]. In [11], an analytical procedure to define the optimal placement strategy and reactive
compensation level with load variation is proposed. In [12], a method based on Dynamic Programming
(DP) with different formulations for CBs costs is presented. In [13], the optimal placement of fixed and
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switched shunt capacitors is analyzed considering load growth, aiming at reducing losses and maximizing
energy savings. An analytical technique based on algebraic expressions is also proposed in [14]. The OPCB
problem can be efficiently addressed with heuristics, yet final solutions may not be optimal [15]. In [16], it is
applied to discrete variables while CBs installation costs and losses are minimized. In [17], candidate buses
for placement are provided by a Fuzzy expert system, and CBs sizes are chosen employing Differential
Evolution (DE) and a multi-agent optimization approach. A similar process is carried out in [18] using
Fuzzy membership functions for voltage sensitivity and power losses. In [19], a method for allocating
multi-period switchable CBs is proposed. Methods based on Computational Intelligence (CI) such as
as Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO) are advocated in [20–27]. Among
meta-heuristics, the Flower Pollination Algorithm (FPA) has been a popular choice, especially due to its
robustness and formulation simplicity. In [28], FPA is used to obtain both the sizes and locations of CBs
based on a set of buses chosen according to a loss sensitivity index. In [29], a modified FPA with dynamic
switching probability is used to perform network reconfiguration and CBs placement. A comprehensive
review of the problem is provided in [30].

Recently, some studies have focused on combining different approaches to OPCB with the purpose of
improving convergence and optimality performance. In [31], the solutions generated by GA are evaluated
through Sensitivity Analysis (SA) in order to reduce computing time. In [32], the authors proposed a
modified Black-Hole (BH)-PSO algorithm seeking to overcome the premature convergence of a classical
PSO. A mixed Gravitational Search–PSO algorithm is used in [33] to enhance accuracy and performance,
while, in [34], an Electromagnetic-like (EM) algorithm is merged with PSO to address local optimal and
convergence problems. Other CI-based methods have also been proposed, such as PSO [23] and Cuckoo
Search Algorithm (CSA) [35]. The search for solutions in large-scale problems can be difficult due to the
multi-modal nature of OPCB, leading to intermediate solutions [34].

Distributed methods have been proven effective in solving the resource allocation in distribution
systems. The authors of [36] proposed an optimization technique for Economic Dispatch that uses parallel
processing for boosting computing performance in large power systems. In [37], a distributed dynamic
event-triggered Newton–Raphson method provides a double-mode energy management model for the
multi-energy system. In [38], a distributed optimization algorithm is applied for the real-time energy
management problem. Many of these algorithms use an initial set of individuals (random candidate
solutions) who travel through the solution region and move into promising areas by sharing information
with each other about the objective function evaluation, i.e., their aptitudes. As with any probabilistic
method, in general, it is not possible to guarantee the achievement of the global optimal solution when
using a computational intelligence technique on an optimization problem. However, with an appropriate
strategy, considering the particularities of the problem, the probability of finding the global optimum or a
sub-optimal solution increases.

We propose in this work a hybrid algorithm mixing FPA and a limited Exhaustive Search (ES), namely
FPAES, to solve OPCB with an improved strategy for CBs sizing. The proposal leverages the fact that a
limited range of discrete CBs sizes is normally available for placement. Hence, a full-search algorithm can
be used with no extra computational burden for the purpose of improving the overall optimal performance.
The CBs placement is carried out using FPA, and then the limited search determines the optimal CBs
capacities, working in a reduced set of buses defined in the first stage. As FPA is built under a single
strategic parameter p, it can provide excellent convergence properties with a small population and few
iterations [39,40]. By combining both techniques, the prohibitive computing time of ES becomes viable,
allowing the method to yield feasible and high-quality solutions in a robust and effective way.

The organization of this article is as follows. The mathematical formulation of the problem is
presented in Section 2. In Section 3, the proposed hybrid FPAES approach is stated. Numerical simulations
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demonstrating the effectiveness of the methodology are shown in Section 4. The concluding remarks are
presented in Section 5.

2. Problem Formulation

The OPCB problem consists in determining the the places and sizes of CBs with the purpose of
reducing network losses and improve voltage profile and power factor, satisfying technical and operational
constraints. The objective function is commonly designed to minimize the net energy cost and maximize
the network cost-saving, also taking into account the CBs installation investment. In this paper, we adopt
the following compound cost function [41]:

min C = Kp

Nl

∑
i=1

Pi + Kc

Ncb

∑
j=1

Qcj (1)

where

Kp is the yearly cost per unit of power loss ($/kw-year);
Kc is the total CB investment cost ($/kVAr);
Pi represents the active losses in lines i;
Nl is the total number of lines;
Ncb number of CBs allocated; and
Qcj is the net reactive power injected at bus j.

The objective function (1) is subjected to the following constraints.

2.1. Load Flow Constraints

Equations (2) and (3) represent the active and reactive power balance, respectively.

0 = Pk −Vk ∑
m∈k

Vm(Gkm cos θkm + Bkm sin θkm) (2)

0 = Qk −Vk ∑
m∈k

Vm(Gkm sin θkm − Bkm cos θkm) (3)

where

Pk and Qk are the active and reactive power injections, respectively, at bus k;
Vk and Vm denotes the voltage magnitudes at buses k and m, respectively;
Gkm and Bkm represent the real and imaginary parts of the network admittance matrix Y = Gkm +

jBkm; and
θkm is the angular difference between buses k and m.

2.2. Bus Voltage Constraints

Inequality (4) represents the minimum and maximum limits imposed on voltage Vk.

Vmin
k ≤ Vk ≤ Vmax

k (4)
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2.3. Reactive Compensation Constraints

Inequality (5) represents the minimum and maximum limits of reactive power injected at location j.

Qmin
c ≤ Qcj ≤ Qmax

cj (5)

2.4. Total Reactive Compensation Constraints

It is also required that the net reactive injection QTotal
c be lower than the net load reactive power QTotal

L ,
as (6):

QTotal
c ≤ QTotal

L (6)

3. Solution Approach

Usually, the optimization process for OPCB consists in simultaneously obtaining the node and size
of CBs. The most methods, e.g. the Hybrid Local Search Algorithm [41], the Ant Colony Optimization
Algorithm [42], or the Shark Smell Optimization [43], consider the optimization process as a unique phase
to allocate and define the size of CBs. As a MINLP problem, however, the search space in OPCB can be
very large even for medium-size radial distribution systems [9]. If there are Ncb CBs ready to be allocated
to a network of Nbus nodes, the total CBs of placement possibilities (nP) is given by:

nP =
Nbus!

(Nbus − Ncb)! Ncb!
(7)

On the other hand, the number of sizing possibilities (nS) for each allocation strategy is:

nS = Nd
Ncb (8)

where Nd is the number of CBs’ discrete sizes available.
If both placement and sizing are required, the total search space size is therefore nT = nP · nS. Table 1

shows numerical values for nP, nS, and nT for networks of 9, 33, and 84 buses, considering Ncb = 4 and
ND = 12. Clearly, we observe that a huge computational gain can be achieved by splitting the OPCB
problem into placement and sizing phases. Moreover, while nP grows with the network size, nS remains
fixed for a given choice of Ncb and ND, which favors the use of distinct solution approaches.

Table 1. Search space.

Nbus−1 nP nS nT

9 126 20,736 2612.736
33 40,920 20,736 848,517.120
84 1929.501 20,736 40,010,132.736

The outline of the proposed hybrid algorithm to solve the OPCB problem is shown in Figure 1. Unlike
in conventional methods, the solution vector is split into Xp

i (candidate buses for CB placement) and
Xs

i (the optimal discrete sizes). The FPA phase is responsible for providing the locations (buses) for the
placement of CBs. In the ES phase, a limited ES is performed considering all available sizing possibilities
for each CB. The main concepts underlying the algorithm are discussed as follows.
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FPAES: placement (FPA) sizing (ES)︷ ︸︸ ︷
Xp

i1
Xp

i2
· · · Xp

i Nbus

︷ ︸︸ ︷
Xs

i1 Xs
i2 · · · Xs

i Ncb

Figure 1. Placement and sizing strategies for FPAES.

3.1. The Flower Pollination Algorithm

Flower Pollination Algorithm (FPA) is a meta-heuristic method originally proposed in [44] that
mimics the reproductive process in flowering plants. It is a powerful optimization tool applied with good
results to non-linear, non-convex, and MINLP problems [29,39,40]. The distinguishing features of FPA are
the reduced number of parameters and the strategy of alternating between local and global search. Pollen
transfer can be connected to pollinators agents, such as insects, bats, birds, and other animals, and assume
abiotic or biotic forms. About 90% of plants follow the biotic pollination form, carried out by active agents
such as insects and animals. In the abiotic form, the pollination process is based on nonliving agents such
as wind and water. The reproductive process can be achieved through cross-pollination, which occurs in
the same flower or plant, or self-pollination, among flowers from distinct plants [45].

In the flower pollination process, the survival and reproduction of the most suitable plants are sought,
which can be considered as a process for optimizing plant species. Biotic cross-pollination can be viewed
as a kind of global pollination, where pollinators move long distances by performing Levy flight [45].
Abiotic and self-pollination are a form of local pollination. Pollination activities can occur at both global
and local scales.

In FPA, the optimization is performed locally and globally, controlled by a switch probability
parameter p ∈ [0; 1] updated after each generation. The global pollination process is describe by (9):

Xt+1
i = Xt

i + L(Xt
i − g∗) (9)

where

Xt
i is the ith pollen grain (or solution vector xi) at iteration t;

g∗ is the prevailing best solution among all grains at generation/iteration t; and
L is the pollination strength, representing a step size related to the Lévy flight.

The Lévy flight parameter is represented by (10):

L ∼
λγ(λ) sin(πλ

2 )

π

1
S1+λ

(10)

where γ(λ) is the gamma function valid for large steps (S� 0).

Local pollination and flower constancy (the tendency of pollination agents to visit certain types of
flowers) can be represented as:

Xt+1
i = Xt

i + ε(Xt
j − Xt

k) (11)

where

Xt
j and Xt

k are pollen grains from same plant species; and
ε is a random number from a uniform distribution in [0,1].
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Parameter p provides an efficient mechanism to alternate between intensive local pollination and
common global pollination, resulting in enhanced search capabilities.

3.2. The Proposed FPAES Algorithm

FPA is applied in this work to find the best places for CBs placement, where each pollen is a candidate
solution in the search space. To reach a compromise between the computational effort and solution quality,
once candidate buses are found by FPA, a Limited ES remains in charge of determining the optimal CBs
size for the selected set of nodes, thus improving the overall optimality performance.

An outline of the proposed hybrid algorithm proposed hybrid algorithm is presented in Figure 2. The
inputs are the network data, the predetermined CBs’ discrete values, and the configuration parameters of
FPA (p, population size, and maximum iteration). An initial topology preprocessing for radial networks
is recommended to improve Load Flow (LF) efficiency. The solution process consists in first optimizing
vector Xp

i (the candidate buses for CBs placement) and then Xs
i (optimal discrete sizes). The former are

handled by FPA and the latter by ES.
The iterative steps are as follows. For each iteration, a random number µ (0 ≤ µ ≤ 1) is initially

created to decide whether FPA will follow global or local pollination to optimize Xp
in. If µ < p, global

pollination via Levy flight is employed using (9); otherwise, local pollination is applied, using (11). Once
the solution vectors Xp

i are computed, the actual evaluation of the cost function is delayed until a limited
ES is carried out. At this point, a LF solution is obtained for all combinations of discrete CBs values to find
the optimal in order to find the optimal Xs

i size for each grain. The fitness values are then computed, and
FPA resumes its execution by updating the current best grain gp

∗ . The best sizing strategy (gs
∗) of the best

grain is also stored. The iterative process ends when a a predefined number of iteration is achieved. The
final solution g∗ is then presented.
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Start

Input
- CBs data: number,

and pre-set size.
- FPA data: population

size, maximum iteration,
and parameter p.

Initialization
-Perform topology preprocessing for LF

-Randomly initialize placement vector XP
i

FPA (optimization of Xp
i )

If rand < p use equation (9) for global
pollination via Levy flight, otherwise
use equation (11) for local pollination.

Limited ES (optimization of Xs
i )

For each grain Xp
i , determine the optimal

Xs
i size through Exhaustive Search.

Return the final fitness values to FPA.

Update
Update FPA’s current best grain gp

∗ ,
and the correponding sizing vector gs

∗;

i < imax ?

Retrieve the
best solution g∗

No

yes

Figure 2. Flowchart of the proposed approach.

4. Test Results and Discussion

In this section, the performance of the method in solving the OPCB problem is tested on distribution
systems of 10 [46], 34 [46], and 85 [47] buses. The systems are balanced three-phase networks, so they
can be represented as single-line networks. The algorithm was implemented in MATLAB R© Rand tested
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on a Windows 10 Home 64-Bits system with 16 GB of memory RAM and a workstation core I7-8700 3.20
GHz processor. The results are compared against a regular “full” FPA algorithm, ES, and other OPCB
techniques. The best solutions of 50 trials are taken.

The following parameters were considered in the simulations: number of flowers = 35; maximum
iterations = 100; p = 0.25; and λ = 1.5 [45]. The constants Kp and Kc were fixed at 168 kW/year and
5$/kVAr, respectively [42]. Maintenance and operation costs are not considered in the model. Only
fixed-type CB units were considered, with discrete values varying in steps of 100 kVAr, as presented in
Table 2. In all tests, the allocation of 4 CBs was considered, as in [9,23,24,46,48]. The voltage limits in
all buses were set as 0.8 and 1.0 p.u. A Backward-Forward-Sweep (BFS) [49] method was used to obtain
the LF solutions. A topological preprocessing of the tests systems was previously done to improve the
algorithm efficiency.

Table 2. KVAr ratings of the CBs units.

100 200 300 400 500 600

700 800 900 1000 1100 1200

4.1. Ten-Bus System

The 10-bus system is a one-feeder radial distribution system with rated voltage of 23 kV [46].
According to Table 1, assuming there are nine positions available for CBs placement, the search space
encloses 2612.736 candidate solutions. If 35 particles and 100 iterations are used in FPA, there will be a
maximum of 3500 agents exploring the search space, which is a low value comparing to the total number
of combinatorial possibilities (less than 1% of the total evaluations).

An outline of the optimization process performed by FPAES is shown in Table 3. In each iteration,
FPA initially identifies Ncb =4 buses for placement among the Nbus =9 nodes. Global or local pollination
can be employed, depending on the current value of µ. In sequence, the Limited ES finds the optimal CB
size from Nd = 12 discrete values (as listed in Table 2), for all candidate nodes. The process ends after
Iteration 50 is completed. In this case, it is found that the method provides an adequate level of losses and
reactive compensation after the seventh iteration. Additional results for FPAES, as well as PSO [24], PGSA
[9], FPA, and ES (optimal values), are reported in Table 4. The optimal CB sizes and buses determined
by ES are 1200, 1100, 500, and 200 kVAr, at Buses 5, 6, 9 and 10 respectively. It can be observed that only
the proposed method finds a similar CBs placement strategy. The total active power losses are lower than
the other methods, with a total reactive power installed of 3000 kVAr. The annual costs are improved
significantly.

Table 3. Ten-bus system: outline of the optimization process.

Iteration Obj. Losses (kW) CBs Places Sizes (kVAr)
FPA ES

1 121.96 696.4 5-7-9-10 1200-1100-500-200
2 121.63 692.5 5-6-8-10 1200-1100-700-200
3 121.63 692.5 5-6-8-10 1200-1100-700-200
...

...
...

...
...

7 116.65 694.4 5-6-9-10 1200-1100-500-200
...

...
...

...
...

50 116.65 694.4 5-6-9-10 1200-1100-500-200
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Table 4. Simulation results of the 10-bus system.

Base-Case
Compensated

PSO [24] PGSA [9] ES FPA FPAES

Losses (kW) 783.7 696.2 694.9 694.4 695 694.4
Loss reduction % 11.1 11.3 11.3 11.3 11.3

Annual Cost $ (year) 131,661 116,961 116,743 116,659 116,760 116,659

CB Location/kVAr

5 (1182) 5 (1200) 5 (1200) 5 (1200) 5 (1200)

6 (1174) 6 (1200) 6 (1100) 6 (1200) 6 (1100)

9 (264) 9 (200) 9 (500) 9 (300) 9 (500)

10 (566) 10 (407) 10 (200) 10 (200) 10 (200)

CBs Cost $ (year) 15,930 15,035 15,000 14,500 15,000
Voltage Sub. (p.u.) 1.0 1.0 1.0 1.0 1.0 1.0

Voltage bus (p.u.) (10) 0.83 0.86 0.86 0.86 0.86 0.86

Figure 3 presents a statistical analysis of ES, FPA, and FPAES with regard to dispersion, median,
maximum, and minimum values along the 50 simulation runs. The top and bottom edges of the box
indicate the 75th and 25th percentiles, respectively, and the median is represented in the central mark.
Outliers are indicated by the ’+’ symbol. The results highlight the FPAES capability to achieve better
solutions more frequently than FPA. This behavior is mainly due to the division of the OPCB among FPA
and ES, which enhance search optimality. Finally, Figure 4 illustrates how the voltage profile is improved
after the CBs placement, with the voltage magnitude at bus 10 increasing from 0.83 to 0.86 p.u.

ES FPA FPAES
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Figure 3. Box plot of 50 simulations, 10-bus system (the median is represented in the central mark, and the
’+’ symbol denotes the outliers).
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Figure 4. Voltage profile: 10-bus system.

4.2. Thirty-Four-Bus System

The 34-bus system [46] comprises a feeder and four laterals, according to the diagram in Figure 5.
The voltage at the substation is 11 kV (1.0 p.u.), and the lowest voltage level is 0.94 p.u (Bus 27). The
total size of the search space is 848,517.120, which is reduced to about 40,920 when only the placement
possibilities are considered. Before CB placement, the total losses amounts to 222.2 kW, with an operation
cost of $37,329 (year).

The best results of FPAES, FPA and three other methods based on Fuzzy Logic [46], Ant Colony
(ACO) [42], and Bacterial Foraging Optimization (BFOA) [50] are listed in Table 5. FPA and FPAES data
refer to the best outcome in 50 runs. It is shown that FPAES achieves a loss reduction of 27.8 %, a little
lower than the “full” FPA. The CBs are positioned in the same buses, yet different sizes are chosen.

A statistical analysis of FPA and FPAES in terms of real losses is presented in Figure 6. The graph
demonstrates the efficiency of FPAES in finding good solutions with less dispersion, when comparing to
the regular FPA. The voltage profile in the network after reactive compensation is improved, as shown in
Figure 7, with the voltage of Bus 27 increasing to 0.95 p.u.

1  2  3  4  5  6  7  8  9 10   11    12
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33 
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18 
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21 22   23    24   25   26   27

Substation

S

Capacitor Bank

Figure 5. Thirty-four-bus radial distribution test system (Source: Authors, based on [46]).
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Table 5. Simulation results of 34-bus system.

Base-Case
Compensated

Fuzzy [46] ACO [42] BFOA [51] FPA FPAES

Losses (kW) 222.2 168.4 162.6 161 160.43 160.41
Loss reduction % 24.2 26.8 27.5 27.7 27.8

Annual Cost $ (year) 37,329 28,291 27,316 27,048 26,952 26,948

CB Location/kVAr

4 (250) - - 10 (600) 10 (600)
11 (750) 9 (645) 10 (625) 20 (700) 20 (800)
17 (300) 22 (719) 20 (940) 25 (700) 25 (600)

26 (1400) 25 (665) 25 (610) 29 (200) 29 (200)

CBs Cost $ (year) 13,500 10,145 10,875 11,000 11,000
Voltage Sub. (p.u.) 1.0 1.0 1.0 1.0 1.0 1.0

Voltage bus (p.u.) (27) 0.94 0.95 0.95 0.95 0.95 0.95

FPA FPAES
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Figure 6. Box plot of 50 simulations, 34-bus system (the median is represented in the central mark, and the
’+’ symbol denotes the outliers)
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Figure 7. Voltage profile: 34-bus system.
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4.3. Eighty-Five-Bus System

In this last experiment, FPAES was tested on an 85-bus feeder [47], represented in Figure 8.
The system’s original losses are 315.7 kW, with an annual cost of $53,037 (year). As previously shown in
Table 1, the search space of the placement problem in this case constitutes only 0.05% of the total size, thus
favoring the use of a split strategy, as proposed in this paper.

Table 6 shows the results obtained by FPAES, PSO [23], PGSA [9], MINLP [48], MBA [26], and FPA.
Although MBA reported losses of 149.7 MW for the allocation of five CBs, a more economical solution was
obtained by the proposed method, allocating four units to Buses 26, 48, 67, and 80, with sizes 700, 300,
600, and 300 kVAr, respectively. The total losses decrease by 52.7% after reactive compensation. Although
the results of FPA and FPAES are in many cases comparable, FPAES provides an excellent compromise
between the former and ES (optimal solution), with the advantage of exploring only a negligible portion
of the search space.

1
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Figure 8. Eighty-five-bus radial distribution test system (Source: Authors, based on [47]).

Figure 9 highlights the method’s capability in providing solutions with low dispersion. It should be
noted that both FPA and FPAES methods were tested with the same initial conditions. The placement
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strategy found by FPAES results in a significant improvement of the voltage profile, as shown in Figure 10,
especially at critical load buses. Table 7 presents the optimal CBs locations and sizes for various load
levels.

The convergence characteristics in terms of average iterations are presented in Table 8, for all tested
systems. It is shown that FPAES converges more quickly than FPA in all cases.

Table 6. Simulation results for the 85-bus system.

Base-case
Compensated

PSO [23] PGSA
[9]

MINLP
[48]

MBA
[26] FPA FPAES

Losses (kW) 315.7 163.3 161.4 159.8 149.7 149.25 149.11
Loss reduction % 48.2 48.8 49.3 52.5 52.7 52.7

Annual Cost $ (year) 53,037 27,438 27,115 26,858 25,149 25,074 25,050

CB Location/kVAr

7 (324) 7 (200) 7 (300) 8 (700) 9 (1000) 26 (700)

8 (796) 8 (1200) 8 (700) 27 (300) 33 (400) 48 (300)

27 (901) - 29 (900) 34 (400) 50 (300) 67 (600)

58 (453) 58 (908) 58 (500) 58 (400) 68 (400) 80 (300)

- - - 64 (300) - -

CBs Cost $ (year) 12,370 11,540 12,000 11,000 10,500 9,500
Voltage Sub. (p.u.) 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Voltage bus (p.u.) (54) 0.87 0.91 0.90 0.91 0.91 0.91 0.91

Table 7. Simulation results for the 85-bus system with load variation.

Base-Case

Compensated
MBA
[26] FPAES MBA

[26] FPAES MBA
[26] FPAES

(100% load) (75% load) (50% load)

Losses (kW) 315.7 149.7 149.11 91.07 83.04 41.94 37.72

CB Location/kVAr

25 (700) 26 (700) 8 (800) 8 (700) 8 (800) 35 (400)

27 (300) 48 (300) 27 (300) 48 (400) 27 (300) 67 (300)

68 (300) 67 (600) 58 (400) 34 (400) 58 (400) 80 (200)

58 (400) 80 (300) 63 (300) 85 (200) - -

64 (300) - - - - -

Total kVAr 2.200 1.900 1.800 1.700 1.500 900
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Figure 9. Box plot of 50 runs, 85-bus system (the median is represented in the central mark, and the ’+’
symbol denotes the outliers).
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Figure 10. Voltage profile: 85-bus system.

Table 8. Convergence characteristics for the 10-, 34-, and 85-bus systems.

System Average Iterations
FPA FPAES

10 77 21
34 81 72
85 80 70

5. Conclusions

In this work, a hybrid method for solving the OPCB problem is presented. The meta-heuristic FPA
is employed in the first phase in order to find the candidate buses for CBs allocation, and a limited ES
is then employed to determine the best CBs sizes based on predefined discrete values. The method
was tested in several distribution systems, showing excellent performance in solving the OPCB problem
when compared to other meta-heuristics. The optimal performance of the algorithm is mainly due to the
division of the search space into placement and sizing phases, thus greatly reducing the computational
effort required. The solutions obtained are a good compromise between stochastic search and the full
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combinatorial strategy. Finally, the method can be applied to allocate switchable CBs, under varying
demand conditions, and also to other MINLP problems.
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The following abbreviations are used in this manuscript:

ACA Ant Colony Algorithm
BH Black Hole
CB Capacitor Bank
CI Computational Intelligence
CSA Cuckoo Search Algorithm
DP Dynamic Programming
ES Exhaustive Search
FPA Flower Pollination Algorithm
GA Genetic Algorithm
GSA Gravitational Search Algorithm
HSA Harmony Search Algorithm
LF Load Flow
OPCB Optimal Placement of Capacitor Banks
MGABC Modified Gbest-guided Artificial Bee Colony
MINLP Mixed-integer Nonlinear Programming
PGSA Plant Growth Simulation Algorithm
PSO Particle Swarm Optimization
SA Sensitivity Analysis
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