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Abstract: High-impedance faults (HIFs) represent one of the biggest challenges in power distribution
networks. An HIF occurs when an electrical conductor unintentionally comes into contact with
a highly resistive medium, resulting in a fault current lower than 75 amperes in medium-voltage
circuits. Under such condition, the fault current is relatively close in value to the normal drawn
ampere from the load, resulting in a condition of blindness towards HIFs by conventional overcurrent
relays. This paper intends to review the literature related to the HIF phenomenon including models
and characteristics. In this work, detection, classification, and location methodologies are reviewed.
In addition, diagnosis techniques are categorized, evaluated, and compared with one another. Finally,
disadvantages of current approaches and a look ahead to the future of fault diagnosis are discussed.
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1. Introduction

High-impedance faults (HIFs) represent a persistent issue in the field of power system protection.
Hence, a comprehensive understanding of such faults is a necessity for many engineers in order
to innovate practical solutions. The authors of [1,2] introduced an HIF detection-oriented review.
Their research defined the HIF problem as a pattern classification task that can be encountered using
neural network classifiers trained via features extracted from measurements (i.e., current, voltage,
and magnetic field intensity). Mishra et al. [3] further reviewed HIF detection techniques and expanded
on mathematical and mechanical approaches. Industrially applied schemes were discussed by the
authors of [4] to detect HIFs such as the broken conductor detection method, watt-metric protection
relaying, and the ground wire grid approach. HIFs prior to the 2000s were covered by [5]. This article
aims to provide an up-to-date comprehensive review on the current HIF detection, classification,
and location techniques. The article will be divided as follows: the rest of this section will discuss
the HIF definition, hazard, and characteristics; Section 2 will review the up-to-date HIF modeling
techniques; Section 3 will discuss the recent HIF diagnosis methodologies attempted by researchers;
Section 4 will compare the performance of most novel approaches in HIF detection, classification,
and location; and finally, Section 5 will illustrate the conclusions and future recommendations.

1.1. Definition

When an electrical conductor unintentionally comes into contact with a highly resistive medium,
it creates what is commonly referred to as a high-impedance fault (HIF). HIFs can be classified
into two main types: active and passive, the latter of which occurs in underground conductor
insulation deuteriation over a period of time [6], and the other occurs when an overhead conductor
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breaks and touches highly resistive ground, creating an immediate transient arc [7,8]. The current
levels of the resulting phenomena are marginally higher than the normal drawn ampere from the
load, hence deeming them impossible to be detected by conventional overcurrent relays [9–16].
Moreover, ground-sensitive relays proved to be unreliable during unbalanced loading conditions [17].
According to [5,6,17], current values can range between 1 and 75 A in 20 kV systems, as shown in
Table 1, and it can be observed that the nature of the conductive medium and its humidity affect the
HIF current.

Table 1. High-impedance fault (HIF) current on various surfaces.

Surface Current (A)

Reinforced concrete 75
Wet grass 50
Wet sod 40

Dry grass 25
Dry sod 20

Wet sand 15
Dry asphalt <1

Dry sand <1

1.2. Hazards

It has been reported in the literature that 5% to 10% of overall system faults are classified as
HIFs [18]. However, this figure only reflects HIFs that further developed into high-current short-circuit
faults. Furthermore, [19] stated that conventional relays are blinded to 80% of HIFs occurring in a
distribution system which highlights the present level of ambiguity towards HIFs in power system
protection schemes. During its undetected state, an HIF is a risk to public safety, since a downed
conductor can create hazardous shock, fire, or life-threatening injuries through unintentional human
contact [20–23]. Equipment damages due to the presence of HIFs are also considered as a threat to the
facility’s assets and may cause irreparable damage [24,25].

1.3. Characteristics

HIFs exhibit different characteristics from normal short-circuit faults and are highly complex.
Such complexity is due to the following typical traits presented in the literature and shown in Figure 1:

A- Low current magnitude [26,27] that can be difficult to distinguish from a normal increase or
decrease in the electrical load.

B- Intermittent arcing [28–30] associated with low harmonics and noises in the measurement signals.
C- Asymmetry and randomness [31] due to the varying fault path which leads to a change in the

HIF current magnitude from cycle to cycle.
D- Nonlinearity [32–34] in the relationship between voltage and current sinusoidal signals during

the HIF condition.
E- Build-up and shoulder [35] where the current magnitude of an HIF gradually increases during

several cycles until it reaches a steady state condition.
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Figure 1. Characteristics of HIFs [26].

2. HIF Modeling

The modeling of HIFs represents the cornerstone for many research papers as the accuracy of
the results rely highly on the modeling method’s ability to simulate the characteristics of an HIF.
Characteristics such as nonlinearity, asymmetry, randomness, intermittence, build-up, and shoulder
require elaborate techniques to be modeled in a simulated environment. Hence, this section will
discuss the current modeling techniques utilized in the literature.

2.1. Real-Time Models

HIF diagnosis aims to eventually solve a real-world problem. Therefore, utilization of real-world
data modeled in a high-current research laboratory is an obvious path to take. In [18], materials such
as tree branches, grass, and concrete surfaces were used in dry and wet conditions with utilization of
digital data recording equipment to simulate several HIFs and record relevant current and voltage
magnitudes. Figure 2 shows the experimental setup performed by [18]. Although this methodology
represents the closest approximation to an HIF and provided valuable study data, it can be unpractical
for many other researchers due to space limitations. Moreover, laboratories will require expensive
high-voltage equipment to replicate the performances of a real HIF and strict safety measures to
mitigate any potential dangers from HIF arcing.
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2.2. Simulated Models

The second class of modeling is performed in a simulated environment. This section will explain
the three main models used in the literature to simulate HIFs characteristics in electromagnetic
transients (EMT) modules.

2.2.1. Single Variable Resistor

This model was proposed by [36–38] to simulate the arcing characteristics of an HIF based
on Cassie’s and Mayr’s [39,40] theories via utilizing the following equation to calculate the arcing
resistance RArc:

RArc(t) =
R0

1− e− t/τ
(1)

where R0 is the system’s initial fault resistance, t is time, and τ is the time constant defined by the
user. This approach provides a layer of randomness to the simulated HIF. However, asymmetry and
nonlinearity aspects of the fault are not represented correctly.

2.2.2. Variable Resistor and Single Inductor

Alternatively, [41] proposed the representation of an HIF shown in Figure 3. Fault resistance R f
can be calculated via the following mathematical equation:

R f = R0(1 + α

( I f

I0

)β
) (2)

where α and β are constants defined by the user, I f is the fault current, and I0 is the initial fault current.
The fault resistance is connected in series with an inductor with a typical value of L f = 3 mH as
per [42]. This approach is simple and will reduce the overall computational burden of the experiment,
but it is far from a real data representation due to empirical assumptions.
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2.2.3. Two Variable Resistors

In another model proposed by [43,44] using two variable resistors as shown in Figure 4, R1 is
designed to model the HIF asymmetry and nonlinearity between the voltage (V f ) and current (I f )
via calculating their respective ratios as stated by Ohm’s law. The values of the current and voltage
are sampled over time, where each sample is taken from one complete cycle. Values used in R1 are
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from cycles that are similar in amplitude to the preceding cycles so that build-up characteristics are
excluded. The current can be calculated via the following equation [45]:

I f =

 I f (n) +
I f (n+1)− I f (n)
V f (n+1)−V f (n)

×

(
V f −V f (n)

)
, V f (n) < V f < V f (n + 1)

I f (n), V f (n) = V f

(3)

where V f (n) and I f (n) are extracted from the voltage vs. current characteristic curve in sample n.
On the other hand, R2 is designed to represent the build-up and shoulder characteristics of an HIF.
The resistance in this variable will start at a high value and decrease over time so that the fault current
will eventually reach a steady state value.

The polynomial expression defining R2 is as follows [45]:

R2 =

{
bm · tm + bm−1 · tm−1 + · · ·+ b1 · t + b0, t < ∆t

10−5, t ≥ ∆t
(ohms) (4)

where m is the polynomial degree, bm is the coefficient, and ∆t is the growing period of the HIF
current. The methodology presents a good approach to emulate nonlinearity, asymmetry, build-up,
and shoulder features of an HIF. It is worth mentioning that sampling data can vary depending on the
surface material and condition. This model is unique in the sense that it is the closest representation
to the HIF’s build-up and shoulder characteristics. However, the discharged arcing component is
not considered.

2.2.4. Two Antiparallel Diodes

Emanuel et al. [46] proposed another model to replicate the unique characteristics of an HIF.
As shown in Figure 5, R1 and R2 alongside L1 and L2 add the nonlinearity dimension to the HIF, and Vp

and Vn factor in the discharged arcing voltage of the incident. This model is designed with directional
diodes so that if V f > Vp, the fault current will flow from the source to the ground. The opposite will
occur at V f < Vn as the current will flow back to the source, and when Vn < V f < Vp, no current will
flow into the system. Other researchers in [47–50] expanded into Emanuel’s model by experimenting
with a variable resistor, as shown in Figure 6. However, this model lacks the ability to simulate the
build-up and shoulder characteristics of an HIF.
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3. HIF Diagnosis Techniques

During its undetected state, an HIF is a risk to public safety and eventually the electrical distribution
system. Hence, many researchers attempted to identify techniques that can detect, classify, and locate
HIFs. This section is going to discuss the recent methodologies used to diagnose HIFs.
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3.1. Traditional Methods

In a balanced three-phase system, the summation of the currents in all phases is equal to zero as
per the following equation:

Ia + Ib + Ic = Izero sequance = 0 (5)

Monitoring Izero sequance via a core balanced current transformer (CT) can be referred to in the
industry as sensitive ground fault relaying [51]. This method is widely used. However, loads in nature
are unbalanced. Therefore, residual current is always present in the system, which will require the
relay to be set at a certain tolerance rate to avoid nuisance trips. This tolerance rate may increase the
difficulty of HIF detection. The comparison between outgoing and incoming current flows is used in
differential protection schemes similar to pipeline leakage detection, where the flow rates are observed.
The methodology is sensitive to HIFs. However, the implementation of differential protection in
distribution networks is a difficult task as the network may contain various generation points and
loading busses.

An alternative technique can be to install a ground grid below the phases of a transmission line,
as shown in Figure 7. The method proposed by [4] is intended to capture the falling conductor prior
to it being in contact with a high-impedance surface. Once the conductor is in contact with the grid,
the overcurrent relay will be able to detect the fault easily and trip the breaker. However, such method is
economically infeasible as it requires an additional ground grid mounted at the transmission line poles
over lengthy distances. An approach to install a mechanical hook underneath the phase conductors
and connected to the natural grid was proposed by [52]. The method will cause a line-to-neutral short
circuit in case of a downed conductor, which will trigger the existing overcurrent relays and isolate
the line.
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3.2. Signal Processing Techniques

To tackle HIFs during the presence of nonlinear loads, [53] presented a fast Fourier transform
(FFT)-based approach to analyze electrical currents in single-phase feeders. The method considers the
even and odd harmonic components to assess the condition of the electrical distribution system. In the
harmonic magnitude vs. time plane, it was observed by the authors that the relevant distance between
the third- and seventh-order harmonics clearly changes during an HIF, hence allowing the method to
detect HIFs. It is worth noting that such approach is noise-sensitive and will require a noise reduction
scheme to achieve desirable results.

A Stockwell transform (ST)-based approach was proposed by [54] to continuously monitor the
third harmonic phase angle of the current sinusoidal signal. The variation in third harmonics is
correlated with load operations and switching. Therefore, a stabilized value will indicate the presence
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of an HIF in the system. However, the method may take up to 150 ms to detect the fault which may
allow for incident energy build-up.

The authors of [55] introduced a novel approach hybridizing maximum overlap discrete wavelet
packet transform (MODWPT) and empirical mode decomposition (EMD). The scheme estimates the
change in the inter-harmonic energy content in the fault signal normalized by the pre-fault condition.
Such presence indicates the possibility of an existing HIF. The model is unlikely to succeed in real
operating conditions for all types of HIFs.

Roy and Debnath [56] proposed an approach utilizing power spectral density (PSD) calculated
from a wavelet covariance matrix. The method decomposes current signals up to the third level via
wavelet transform. The detailed coefficients are then used to calculate the wavelet transform and PSD
for both frequency and time domains. Threshold analysis is applied as the basis for fault detection in
the presented approach, but the method was not tested for fault location estimation.

The signal processing-based orthogonal component decomposition of three-phase voltage and
current signals method was explored by [57]. The projection of voltage and current components in the
plenary function will produce eight components for voltages and eight for the current. The calculated
values maintain an absolute value equivalent to zero during normal operating conditions. However,
the components may experience variations during a faulty condition, which will lead to HIF detection.
While the method is robust in terms of fault detection, its fault distance estimation absolutive error is
higher than 10% for half of the cases tested.

3.3. Mathematical Approximation

To estimate the zero-sequence grid capacitance, the authors of [58] implanted an algorithm
employing differential equations to estimate the capacitance upstream and downstream of the fault.
The calculated values are compared to the expected capacitance during normal operation to detect
variations. The method proved to be fast, self-calibrating, and noise-independent. However, it was
only introduced for isolated neutral grids. Another estimation method was introduced in [59] to
calculate the fault admittance in a medium voltage by relying on field measurements. The method was
verified for HIFs with resistance ranging from 100 to 200 kΩ for detecting and locating HIFs.

A state estimation model modified to diagnose HIFs was presented in [60] consisting of elements
such as voltage measurements as well as power measurements. The authors were able to prove
the efficacy of such an approach in HIF detection. However, faulty line identification results show
significant errors while the load is varied. An iterative-based approach for the fault location problem
was discussed in [61]. The presented algorithm will estimate an initial location of the fault and fault
current and voltage. The weighted least squares (WLS) approach is used to calculate the resistance
and reactance estimate of the fault. Afterwards, the estimate is compared with a tolerance rate for
convergence, returning the final fault distance, resistance, and reactance. The method requires heavy
iterative computational processing and may delay the fault identification time. Ramos et al. [62]
employed an analytical WLS state estimator to calculate the fault voltage and current and identify
HIFs in distribution networks; the methodology further utilizes the values obtained from the linear
regression of the estimated fault distance components.

Monitoring the zero-sequence voltage to reconstruct the declining periodic components via the
extended Prony method was the subject of [63]. The methodology aimed to estimate the single-phase
to ground fault information with the deployed feeder terminal units. The method’s robustness was
only proved for single-line to ground fault location estimation.

A searching-based technique was developed in [64]. The method will estimate the fault location
based on a comparison of the calculated fault parameters (voltage and current) at certain locations
of the feeder and compares it with the reference data for faults in a feeder. Such approach requires a
high calculation burden for lower tolerance rates and can be considered only effective at single-feeder
distribution lines. Linear prediction was used by [65] to represent time series of signal samples over



Energies 2020, 13, 6447 9 of 18

time. The model uses the energy raising of the linear prediction error to detect HIFs. However,
the authors of this research did not consider nonlinear loads existing in the power distribution network.

3.4. Artificial Intelligence-Based Methods

Artificial intelligence-based methods to diagnose HIFs revolve around three main processes:
acquisition of data, feature extraction with signal processing techniques, and training using machine
learning algorithms. This section will discuss the latest developments in each process.

3.4.1. Data Acquisition

The basis of intelligent-based methods is the measurement signal type used to diagnose HIFs.
Various signals were used in the literature, however, current waveforms in HIFs carry over harmonic
components that can be distinguished from normal loading situations [1]. The subject measurements
were applied in [66,67] to detect and classify HIFs in distribution networks. It is worth noting that
current measurements are affected by current transformers ration percentage errors.

On the other hand, a voltage transient spike can be observed due to arcing phenomena in HIFs
while considering a fault caused by moving objects such as trees. The movement will introduce air
gaps between the conductor and surface which will result in a varying fault impedance. The authors
of [68] based their approach on arcing voltage measurements. However, the changes in the voltage
waveform are increasingly difficult to capture as the voltage dip is low in case of HIFs. Therefore,
many authors such as [69,70] experimented on utilizing both current and voltage waveforms in
training the neural network to diagnose HIFs in distribution systems which provided better results.
Nevertheless, the approach increases the dataset size for the neural network and will require extensive
analysis to limit the training on useful features so that the computational burden can be controlled.

Resistance measurements were used by the authors of [71] to diagnose HIFs. Such measurements,
when compared to the original impedance values of a transmission line, will provide an insight to
the fault location in the line and reduce the network downtime. The issue is resistance alone cannot
represent the nonlinearity, asymmetry, or arcing characteristics of HIFs. Hence, the detection of such
faults using this measurement is highly compromised.

The representation of a signal in a defined period of time as an absolute value paired with the phase
angle is the objective of synchronized phasor measurement units (SPMUs) [72]. Such measurements
provide an accurate representation of current and voltage waveforms in power systems. An application
of SPMUs in HIF diagnosis was discussed in [73,74] but the implementation of SPMUs in HIF location
considering fault asymmetry and load nonlinearity is subject to further research.

3.4.2. Feature Extraction

Feature extraction using signal processing techniques is an essential tool for the efficient
performance in machine learning algorithms. One which is widely used in power quality disturbance
application is Fourier transform (FT). This signal processing tool detects the existence of signal
frequency components during disturbances [75]. FT is continuous over time; however, discrete Fourier
transform (DFT) is commonly used in computational applications and was implemented in [76] for
HIF detection. Another form known as fast Fourier transform (FFT) was applied in [77]. However,
for HIF diagnosis application, FT can only represent the features in the frequency domain.

Unlike FT, wavelet transform (WT) is an advanced signal processing tool that can represent the
features of a signal in the time–frequency domain [78]. This representation is useful in HIF diagnosis
applications when represented in discrete format, as shown in [79]. Furthermore, wavelet packet
transform (WPT) provides more information in comparison to discrete wavelet transform (DWT) as
higher and lower bands of frequency can be decomposed at each decomposition level. Such application
was introduced in [80,81] providing satisfactory results in HIF detection and classification. Moreover,
the application of multi-wavelet transform (MWT) was discussed in [82]. It was observed that MWT
is the extension of scalar wavelet where numerous scaling functions and related multiple wavelets
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are applied. WT can provide information on the fault during a specified period of time and in
decision-making applications, this downfall can compromise the reliability of such applications.

3.4.3. Machine Learning

A neural network (NN) is an interconnection of several processing nodes performing a series of
mathematical operations governed by the network’s internodal strength, or weight, influenced by
an external input referred to as bias attained by a set of historical patterns through the process of
adaptation [83–85].

A typical artificial neuron input comprises signals weighted through multiplication factors and
summed together alongside the bias to feed a node, as shown in Figure 8, where X represents the
inputs, W is the weight, and b is the bias. The resulting value is then compared to a threshold; if the
result exceeds the threshold, the node will produce a value output close or equal to one, otherwise it
yields zero. The objective of training a neural network is to identify the optimal weights and biases to
obtain the desired output.
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A multilayer perceptron neural network (MLP-NN) model was used by [86–88] to diagnose HIFs.
The algorithm utilized the effective backpropagation technique to train the network in detecting and
classifying faults. However, a technique to choose the accurate number of hidden layers and neurons
is required to achieve optimal results with less computational time. Moreover, a hybrid approach
using MLP-NN and Gaussian process regression (GPR) was implemented by [80,89]. In the subject
research, MLP-NN was used to determine the optimum weights and biases for HIF detection and
classification, and on the other hand, GPR plays the role of a linear regressor that aims to approximate
the fault location in a transmission line. The authors of [90] utilized MLP-NN in a live experimental
setup to diagnose faults in a modeled transmission line. The approach utilized Stockwell transform as
a preprocessing and feature extraction tool in the attempts at developing the optimal approach.

4. Comparative Analysis

The presented measurement signals, feature extraction techniques, and machine learning classifiers
have distinctive abilities to detect, classify, and locate HIFs. Hence, a comparison was made, as shown
in Table 2. The evaluation criteria of such papers can depend on the following [2,31]:

1. Accuracy is used to measure the performance of proposed techniques against the expected results.
2. Dependability and security can measure the precision percentage and miscalculation ratio of HIF

diagnosis techniques which are missing in most studies.

It can be observed that in most of the literature, wavelet transform dominates the signal processing
techniques. However, other methods utilizing the time–frequency domain such as Stockwell transform
have been introduced in recent years.
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Table 2. Comparison between existing techniques.

Reference Measurement Data Feature Extraction Technique Machine Learning Classifiers Experiment Objectives Accuracy % Dependability % Security %

[91] Voltage and Current WT SVM Detection 91.38 90.04 92.6
[67] Current DFT ANFIS Detection and Classification 99.64
[92] Arc Voltage EMD ANN Detection 99.35
[71] Resistance ANN Location 99
[69] Voltage and Current WT ANN Detection 91.33
[70] Voltage and Current WT ANN Detection 95.989
[93] Current WT SVM Detection and Classification 96
[94] Current VMD SVM Detection and Classification 99
[95] Current TEO FIS Detection and Classification
[82] Voltage and Current WT FLC Classification 88.89
[96] Current MM DT Detection 99.34 100 98.77
[77] Current FFT FLC Detection
[79] Current WT ANN Classification
[97] Voltage and Current ST ANN Detection 95.43
[98] Current MG FLC Detection 99.4 99.78 99.07
[99] Voltage and Current SVM Detection 100 100

[100] Current WT FLC Location 99.24
[87] Voltage and Current ANN Location 99.67

[101] Current MM DT Detection 98.33 98.88 100
[102] Voltage and Current WT SVM Location 99.34
[86] Voltage and Current WT ANN Detection
[80] Current WT ANN+GPR Location 99.4

[103] Current FLC Detection and Classification
[104] Current WT ANN Detection and Classification 99
[89] Voltage and Current WT ANN Detection 96

[105] Current WT SVM Detection 99
[106] Current WT DT Detection 98.22 95.79 100
[107] Voltage and Current ANFIS Location 99.25
[108] Current WT ELM Detection
[109] Current WT SOMN Location 91.27
[110] Current ST ANN Location 99.15
[90] Current ST ELM Detection and Classification 99.3
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5. Conclusions and Future Recommendations

A comprehensive review on HIF detection, classification, and location techniques was discussed in
this paper. The review defined the phenomenon of HIFs, where the current levels of the resulting fault
are marginally higher than the normal drawn ampere from the load, hence deeming the fault impossible
to be detected by conventional overcurrent relays. Such a fault, while undetected, is a risk to public
safety since a downed conductor can create hazardous shock, fire, or life-threatening injuries through
unintentional human contact. Most challenges in HIF diagnosis result from the unusual characteristics
associated with the occurrence of HIFs such as low current magnitude, intermittent arcing, randomness,
asymmetry, nonlinearity, build-up, and shoulder.

Moreover, the paper also discussed modeling techniques utilized in the literature for HIFs.
The utilization of real-world data modeled in a high-current research laboratory with materials such
as tree branches, grass, and concrete surfaces embodies a path to incorporate real-time data into the
research. On the other hand, most authors used simulated environments with a single variable resistor,
a variable resistor single inductor, two variable resistors, and two antiparallel diodes.

Finally, fault diagnosis techniques were discussed in this review including relay-based
methods, signal processing techniques, parameter estimation, mathematical approaches, and artificial
intelligence-based methods to diagnose HIFs which revolve around three main processes: acquisition of
data, feature extraction, and training using machine learning algorithms.

The presented methodologies in the literature mostly focus on offline systems and will require
extensive research to obtain a developed approach. Moreover, the fault clearing time (FCT) of machine
learning techniques is still in question since such methodologies will require additional processing
time that may increase the risk of hazards resulting from the existence of HIFs.

Highlights on the road ahead for the HIF field are desired. The possible future of the field is
outlined as followed:

1. MLP-NN is known to be a universal approximator that helps solve nonlinear problems such as
HIFs. The utilization of one hidden layer is widely used in the literature. However, a methodology
to determine the optimum number of hidden layers and neurons is still required to increase the
effectiveness of neural network-based approaches.

2. Datasets represent the cornerstone of intelligent-based methods. Therefore, scaling, removing outliners,
and filtering out noises can improve the learning process of neural networks.

3. Convolutional neural network (CNN) algorithms proved to be capable of training
multidimensional data for image processing. An implementation of such techniques to solve the
HIF problem can be considered.

4. PMUs are used to measure the magnitude and phase angle of the voltage and current in a
distribution grid using a common time source for synchronization. Such measurements provide
an additional layer of information to help neural network-based schemes better diagnose HIFs.
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