Wind Power Ramp Event Forecasting Based on Feature Extraction and Deep Learning
Abstract
:1. Introduction
2. Feature Extraction Based on Ramp Events
2.1. Features of Wind Power Ramp Events
2.2. Ramp Detection and Feature Extraction Based on OpSDA
3. Ramp Forecasting Based on Deep Learning
3.1. Basic Principles of Deep Learning Network
3.1.1. CNN
3.1.2. LSTM
3.2. Structure Design of CNN–LSTM
- (1)
- The input
- (2)
- Feature extraction based on CNN
- (3)
- Forecasting based on LSTM
4. Case Study
4.1. Ramp Forecasting Evaluation Indexes
4.2. Ramp Detection and Feature Extraction
4.3. Performance Analysis of Ramp Forecast Model
4.3.1. Ramp Forecast Performance with Different Parameters
4.3.2. Performance Analysis of Different Forecast Models
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- National Energy Administration. Grid-Connected Operation of Wind Power in 2019. Available online: http://www.nea.gov.cn/2020-02/28/c_138827910.htm (accessed on 28 February 2020).
- Zhang, D.; Dai, Y.; Zhang, X.; Zhang, J.; Wang, Z.; Xue, L. Review and prospect of research on wind power ramp events. Power Syst. Technol. 2018, 42, 1783–1792. [Google Scholar]
- Zheng, H.; Kusiak, A. Prediction of wind farm power ramp rates: A data-mining approach. J. Sol. Energy Eng. 2009, 131, 376–385. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.; Xu, J.; Jiang, S.; Liu, Y.; Sun, Y.; Ke, D. Statistical characteristics modeling and forecasting of ramp events based on frequent patterns mining. Autom. Electr. Power Syst. 2020. Available online: http://kns.cnki.net/kcms/detail/32.1180.TP.20200713.1547.006.html (accessed on 15 July 2020).
- Zareipour, H.; Huang, D.; Rosehart, W. Wind power ramp events classification and forecasting: A data mining approach. In Proceedings of the IEEE Power & Energy Society General Meeting, Detroit, MI, USA, 10 October 2011. [Google Scholar]
- Ouyang, T.; Zha, X.; Qin, L.; Xiong, Y.; Huang, H. Wind power ramps prediction method based on amendment of similar events. Proc. CSEE 2017, 37, 572–581. [Google Scholar]
- Cui, M.; Sun, Y.; Ke, D. Wind power ramp events forecasting based on atomic sparse decomposition and BP neural networks. Autom. Electr. Power Syst. 2014, 38, 6–11. [Google Scholar]
- Huang, Q.; Wang, Z.; Du, B.; Sheng, G.; Liu, S. Wind power ramp forecasting based on the front decomposition combination forecast method. Renew. Energy Reso. 2016, 34, 1847–1852. [Google Scholar]
- Yin, H.; Ou, Z.; Chen, D.; Meng, A. An ultra-short-term wind power prediction based on two-layer mode decomposition and cascaded deep learning. Power Syst. Technol. 2019, 39, 2093–2106. [Google Scholar]
- Chen, J.; Zhu, Q.; Shi, D.; Li, Y.; Zhu, L.; Duan, X.; Liu, Y. A multi-step wind speed prediction model for multiple sites leveraging spatio-temporal correlation. Proc. CSEE 2019, 39, 2093–2106. [Google Scholar]
- Yin, H.; Ou, Z.; Huang, S.; Meng, A. A cascaded deep learning wind power prediction approach based on a two-layer of mode decomposition. Energy 2019, 189, 116316. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, H.; Wang, Z.; Chen, J.; Wang, B. Short-term wind power forecasting based on LSTM. Power Syst. Technol. 2017, 41, 3797–3802. [Google Scholar]
- Hu, Y.; Liang, C. A nonlinear hybrid wind speed forecasting model using LSTM network, hysteretic ELM and differential evolution algorithm. Energy Convers. Manag. 2018, 173, 123–142. [Google Scholar] [CrossRef]
- Yuan, X.; Chen, C.; Min, J.; Yuan, Y. Prediction interval of wind power using parameter optimized Beta distribution based LSTM model. Appl. Soft Comput. 2019, 82, 105550. [Google Scholar] [CrossRef]
- Ouyang, T.; Zha, X.; Qin, L.; Xiong, Y.; Xia, T.; Huang, H. Prediction method of wind power ramp events by using meteorological conditions to select adjacent points. Power Syst. Technol. 2015, 39, 3266–3272. [Google Scholar]
- Ouyang, T.; Huang, H.; He, Y. Ramp events forecasting based on long-term wind power prediction and correction. IET Renew. Power Gen. 2019, 13, 2793–2801. [Google Scholar] [CrossRef]
- Ouyang, T.; Zha, X.; Qin, L.; He, Y.; Tang, Z. Prediction of wind power ramp events based on residual correction. Renew. Energy 2019, 136, 781–792. [Google Scholar] [CrossRef]
- Dorado-Moreno, M.; Navarin, N.; Gutiérrez, P.A.; Prieto, L.; Sperduti, A.; Salcedo-Sanz, S.; Hervás-Martínez, C. Multi-task learning for the prediction of wind power ramp events with deep neural networks. Neural Netw. 2020, 123, 401–411. [Google Scholar] [CrossRef]
- Jing, H.; Han, L.; Gao, Z. Wind power ramp forecast based on convolutional neural network for feature extraction. Autom. Electr. Power Syst. 2020. Available online: http://kns.cnki.net/kcms/detail/32.1180.TP.20200713.1548.010.html (accessed on 15 July 2020).
- Sevlian, R.; Rajagopal, R. Detection and statistics of wind power ramps. IEEE Trans. Power Syst. 2013, 28, 3610–3620. [Google Scholar] [CrossRef]
- Ma, H.; Li, C.; Liu, Y. Assessing impact of wind power ramp events on operation adequacy of power systems. Autom. Electr. Power Syst. 2017, 41, 41–47. [Google Scholar]
- Gan, D.; Ke, D.; Sun, Y.; Cui, M. Short-term probabilistic wind power forecast considering ramp characteristics. Electr. Power Autom. Eq. 2016, 36, 145–150. [Google Scholar]
- Ye, L.; Lu, P.; Teng, J.; Zhai, B.; Wu, L.; Lan, H.; Zhang, W. Power prediction and correction model considering wind power ramping events. Autom. Electr. Power Syst. 2019, 43, 49–58. [Google Scholar]
- Cui, M. Study of Wind Power Ramping Events. Ph. D. Thesis, Wuhan University, Wuhan, China. Ph.D. Thesis, Wuhan University, Wuhan, China, December 2015. [Google Scholar]
- Elia. Wind-Power Generation Data. Available online: http://www.elia.be/en/grid-data/power-generation/wind-power (accessed on 20 October 2020).
- Rodger, J.A.; George, J.A. Triple bottom line accounting for optimizing natural gas sustainability: A statistical linear programming fuzzy ILOWA optimized sustainment model approach to reducing supply chain global cybersecurity vulnerability through information and communications technology. J. Clean Prod. 2017, 142, 1931–1949. [Google Scholar] [CrossRef]
- Zhou, F.; Jin, L.; Dong, J. Review of convolutional neural network. J. Comput. Appl. 2016, 36, 2508–2515. [Google Scholar]
- Lu, J.; Zhang, Q.; Yang, Z.; Tu, M.; Lu, J.; Peng, H. Short-term load forecasting method based on CNN-LSTM hybrid neural network model. Autom. Electr. Power Syst. 2019, 43, 131–137. [Google Scholar]
- Han, L.; Qiao, Y.; Jing, H. Interval estimation of wind power based on error classification. Autom. Electr. Power Syst. 2020. Available online: http://kns.cnki.net/kcms/detail/32.1180.TP.20200729.1639.008.html (accessed on 30 July 2020).
- National Energy Administration. Interim measures for the management of wind farm power forecast and forecast. Solar Energy 2011, 14, 6–7. [Google Scholar]
- Ouyang, T.; Zha, X.; Qin, L.; Xiong, Y.; Zhu, X. Selection of time window to predict wind power ramp events. Power Syst. Technol. 2015, 39, 414–419. [Google Scholar]
Layer (Type) | Output Shape | Param |
---|---|---|
input_1 (Input Layer) | (None, 32, 5) | 0 |
conv1d (Conv1D) | (None, 32, 4) | 44 |
conv1d_1 (Conv1D) | (None, 32, 16) | 144 |
conv1d_2 (Conv1D) | (None, 32, 32) | 1056 |
max_pooling1d (MaxPooling1D) | (None, 1, 32) | 0 |
lstm (LSTM) | (None, 128) | 82,432 |
dense (Dense) | (None, 16) | 2064 |
Ramp | Direction | ||||
---|---|---|---|---|---|
1 | ↓ | 115.05 | 575.24 | 737,791.0521 | 5.00 |
2 | ↑ | 45.11 | 146.60 | 737,791.2604 | 3.25 |
3 | ↓ | 36.46 | 136.72 | 737,791.4271 | 3.75 |
4 | ↑ | 33.18 | 82.96 | 737,791.5833 | 2.50 |
5 | ↓ | 36.42 | 118.37 | 737,791.8646 | 3.25 |
6 | ↑ | 205.04 | 256.30 | 737,822.2083 | 1.25 |
7 | ↑ | 62.10 | 263.91 | 737,822.2708 | 4.25 |
8 | ↑ | 140.85 | 316.91 | 737,822.4688 | 2.25 |
9 | ↑ | 129.48 | 1068.22 | 737,822.6042 | 8.25 |
10 | ↑ | 180.97 | 135.73 | 737,851.0521 | 0.75 |
11 | ↑ | 204.59 | 255.74 | 737,851.2292 | 1.25 |
12 | ↓ | 140.65 | 140.65 | 737,851.3958 | 1.00 |
13 | ↑ | 56.32 | 197.12 | 737,851.4375 | 3.50 |
14 | ↑ | 353.36 | 176.68 | 737,851.6042 | 0.50 |
15 | ↓ | 288.88 | 1516.6 | 737,851.6250 | 5.25 |
16 | ↑ | 227.20 | 170.4 | 737,851.8958 | 0.75 |
17 | ↓ | 272.34 | 340.43 | 737,851.9583 | 1.25 |
18 | ↑ | 297.13 | 519.98 | 737,882.0104 | 1.75 |
19 | ↓ | 351.00 | 263.25 | 737,882.0833 | 0.75 |
20 | ↑ | 180.30 | 225.38 | 737,882.1146 | 1.25 |
21 | ↓ | 328.36 | 164.18 | 737,882.1667 | 0.5 |
22 | ↑ | 469.53 | 469.53 | 737,882.1875 | 1.00 |
23 | ↑ | 271.94 | 611.87 | 737,882.2917 | 2.25 |
24 | ↓ | 70.296 | 175.74 | 737,882.3854 | 2.5 |
Model | Quarter | ||||||||
---|---|---|---|---|---|---|---|---|---|
CNN–LSTM | Q1 | 0.0748 | 0.8274 | 0.0575 | 0.1150 | 0.9240 | 0.8587 | 0.8769 | 0.8480 |
Q2 | 0.0880 | 0.8407 | 0.0819 | 0.0774 | 0.9051 | 0.9098 | 0.8172 | 0.9020 | |
Q3 | 0.0603 | 0.8451 | 0.0973 | 0.0575 | 0.8725 | 0.9205 | 0.7941 | 0.7847 | |
Q4 | 0.0982 | 0.7323 | 0.0597 | 0.2080 | 0.9221 | 0.7729 | 0.7974 | 0.8041 | |
LSTM | Q1 | 0.1274 | 0.7588 | 0.1482 | 0.0929 | 0.8040 | 0.8675 | 0.7464 | 0.7892 |
Q2 | 0.1463 | 0.7611 | 0.1239 | 0.1150 | 0.8564 | 0.8652 | 0.6559 | 0.77451 | |
Q3 | 0.1155 | 0.5465 | 0.4049 | 0.0487 | 0.4695 | 0.8804 | 0.4853 | 0.4163 | |
Q4 | 0.2464 | 0.5819 | 0.2389 | 0.1792 | 0.6888 | 0.7468 | 0.3006 | 0.6082 | |
BP | Q1 | 0.3152 | 0.6055 | 0.2260 | 0.1684 | 0.6997 | 0.7576 | 0.3043 | 0.3721 |
Q2 | 0.4012 | 0.5756 | 0.3624 | 0.0618 | 0.575 | 0.8880 | 0.2737 | 0.4143 | |
Q3 | 0.3837 | 0.6268 | 0.2196 | 0.1535 | 0.7065 | 0.7750 | 0.2721 | 0.4279 | |
Q4 | 0.2448 | 0.6524 | 0.1812 | 0.1663 | 0.2448 | 0.6524 | 0.3562 | 0.4221 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, L.; Qiao, Y.; Li, M.; Shi, L. Wind Power Ramp Event Forecasting Based on Feature Extraction and Deep Learning. Energies 2020, 13, 6449. https://doi.org/10.3390/en13236449
Han L, Qiao Y, Li M, Shi L. Wind Power Ramp Event Forecasting Based on Feature Extraction and Deep Learning. Energies. 2020; 13(23):6449. https://doi.org/10.3390/en13236449
Chicago/Turabian StyleHan, Li, Yan Qiao, Mengjie Li, and Liping Shi. 2020. "Wind Power Ramp Event Forecasting Based on Feature Extraction and Deep Learning" Energies 13, no. 23: 6449. https://doi.org/10.3390/en13236449
APA StyleHan, L., Qiao, Y., Li, M., & Shi, L. (2020). Wind Power Ramp Event Forecasting Based on Feature Extraction and Deep Learning. Energies, 13(23), 6449. https://doi.org/10.3390/en13236449