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Abstract: In order to improve the accuracy of wind power ramp forecasting and reduce the threat of
ramps to the safe operation of power systems, a wind power ramp event forecast model based on
feature extraction and deep learning is proposed in this work. Firstly, the Optimized Swinging Door
Algorithm (OpSDA) is introduced to detect wind power ramp events, and the extraction results of
ramp features, such as the ramp rate, are obtained. Then, a ramp forecast model based on a deep
learning network is established. The historical wind power and its ramp features are used as the input
of the forecast model, thereby strengthening the model’s learning for ramp features and preventing
ramp features from being submerged in the complex wind power signal. A Convolutional Neural
Network (CNN) is adopted to extract features from model inputs to obtain the coupling relationship
between wind power and ramp features, and Long Short-Term Memory (LSTM) is utilized to learn
the time-series relationship of the data. The forecast wind power is used as the output of the model,
based on which the ramp forecast result is obtained after the ramp detection. Finally, the wind power
data from the Elia website is used to verify the forecast performance of the proposed method for wind
power ramp events.
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1. Introduction

As renewable clean energy, wind energy is widely used in China. According to the statistical
results released by the National Energy Administration, the installed capacity of national wind power
integration has increased by 25.74 million kW in 2019, with an installed gross capacity of 210 million
kW [1]. With the scale integration of wind power increasing, the safe and stable operation of the power
system has been seriously affected by uncertainty. In particular, problems caused by wind power
ramps, such as the imbalance of the power grid between power generation and power supply, induce
great safety hazards or serious economic losses to the operation of the power grid [2]. Therefore,
for the safe operation and economic dispatch of power systems, it is extremely important to be able to
obtain accurate forecast results of ramp events. The difference between ramp forecasting and wind
power forecasting is that the event is used as the object of ramp forecasting. There are two methods for
forecasting ramps: direct forecasting and indirect forecasting.

Direct forecasting is used to obtain the detection mechanism by training historical ramp data,
and then the features of ramp events (such as ramp amplitude, ramp duration, or ramp rate) are directly
obtained without the need for wind power forecasting [3]. In [4], a model based on the autocorrelation
statistical characteristics of ramps and a day-ahead forecast algorithm for the sequence of ramps were
established. In [5], the Support Vector Machine (SVM) was used to classify and forecast the ramp
amplitude directly based on historical wind power data. However, there are obvious shortcomings in
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direct forecasting; that is, a large amount of historical wind power data is required to train the model,
and the completeness of the ramp data in these historical data affects the forecast accuracy.

Indirect forecasting is the current mainstream method for wind power ramp event forecasting,
which is based on the use of wind power forecasting to obtain ramp forecast results by ramp detection [6].
For example, the Back Propagation (BP) neural network and Radial Basis Function (RBF) neural network
were used in [7,8], respectively, to forecast the components of wind power decomposed by the Atomic
Sparse Method (ASD). However, because a ramp event is both a strong mutation and a low-probability
event, it is difficult for traditional neural networks to learn the features of wind power when a ramp
event occurs. Thus, it is difficult to obtain a high forecast accuracy. Currently, deep learning networks
with stronger learning capabilities are widely used in wind power forecasting. The forecast accuracy
can be improved by extracting wind power features with a Convolutional Neural Network (CNN).
In [9,10], a CNN was used to extract the hidden features of the coupling relationship between wind
energy, wind speed and wind direction. In [11], a CNN was used to extract spatial features from
the spatial wind speed matrix. The time-series feature of wind power can be effectively learned by
Long Short-Term Memory (LSTM) with a special structure to obtain more accurate forecast results [12].
In [13,14], LSTM was also used as a nonlinear mechanism for forecasting. Although the performance
of wind power forecasting based on the deep learning network is improved, for ramp forecasting,
the wind power ramp features are not sufficiently considered in the forecast model input, which also
affects the accuracy of the ramp forecast model.

In order to solve these problems, many scholars have carried out research on the input of the
forecast model and used the relevant feature data of wind power as the input of models to improve the
forecast accuracy. For example, in [15], the effective meteorological variables in Numerical Weather
Prediction (NWP) were utilized as the model inputs. In [16,17], the long-term trend features of wind
power were captured by physical models before forecasting. In [18], not only were the spatial features
of wind power considered, but the combination of a deep neural network and multi-task learning was
also adopted, and the input from multiple wind farms was simultaneously received to forecast ramps
based on the spatial correlation of wind farms. However, it is still uncertain whether these feature data,
used as the inputs in existing studies, are directly related to ramp features.

In [19], the abrupt feature in the wind power time-series extracted by a CNN was applied as the
ramp feature, and this feature was utilized as the input of LSTM to capture the long-term wind power
ramp feature. However, the extraction process of ramp features based on CNN was not strictly defined.
As a small sample event in a wind power sequence, ramp events are easily submerged by wind power,
and the ramp feature information is quite complicated. If ramp features are not extracted according
to the definition of the ramp or are not used as the input, a complete feature situation is difficult for
models to learn, and thus it is hard to obtain effective results from wind power ramp event forecasting.

In summary, a wind power ramp event forecast model based on the Optimized Swinging Door
Algorithm (OpSDA), a Convolutional Neural Network and Long Short-Term Memory is proposed in
this paper. Firstly, OpSDA is used to detect historical wind power ramp events and extract feature
values. Then, the hidden ramp features are automatically extracted by a deep learning network,
which can effectively explore the coupling relationship between power and ramps. The second
extraction for ramp features with CNN is conducive to the effective learning of small-sample ramp
events by the forecast model. Then wind power and ramp features are used as the input of the LSTM
model. Finally, the wind power forecast data are detected again to obtain the forecast results of
ramp events.

2. Feature Extraction Based on Ramp Events

2.1. Features of Wind Power Ramp Events

A wind power ramp event refers to a phenomenon in which wind power changes greatly in one
direction in a short time. In accordance with the work presented in [2], a ramp event is defined by
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Equation (1) in this paper. It indicates that a ramp event occurs when the absolute value of the difference
between the power at the beginning and the end of a period of time exceeds the decision threshold.∣∣∣Pt+∆t − Pt

∣∣∣ > Pthreshold, (1)

where Pt+∆t is the power at time t+ ∆t, Pt is the power at time t, and Pthreshold is the decision threshold,
which is set to 3% of the installed capacity in this paper in accordance with the work in [13]. Ramps can
be divided into up-ramps and down-ramps depending on the direction. An up-ramp is a sudden
increase in wind power over a period of time (Pt+∆t − Pt > 0), and a down-ramp is a sudden decrease
in wind power over a period of time (Pt+∆t − Pt < 0).

Based on the performance analysis of the wind power ramp event, four important features that
define the ramp event are shown in Figure 1, which includes the ramp rate RR, the ramp amplitude
RSW , the ramp start time RST and the ramp duration RD [20].
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Figure 1. Features of the wind power ramp event.

Wind power ramp events pose a serious threat to the power quality and safe operation of the
power grid. They even cause problems such as frequency instability, load shedding and blackouts.
In order to reduce the hazards caused by wind power ramps, high-precision ramp forecasting is
urgently needed to provide data support for subsequent grid dispatching [21]. Due to the strong
randomness and great fluctuation of wind power ramps and the stronger nonlinearity of ramps than
of non-ramps, the features of the ramp segments in wind power are quite different from those of the
non-ramp segments. Therefore, it is more difficult to forecast the wind power in the ramp segment,
and large errors are formed by using the traditional wind power forecast method when a ramp occurs.

A forecast method that considers the influence of ramp features in the forecast process to improve
the accuracy is proposed in [22]. The reasons for considering ramp features are as follows: (1) a wind
power ramp event is a low-probability event for the entire wind power time-series, so the impact of
ramp features on the forecast needs to be fully considered when using the deterministic model to
forecast wind power; (2) four key ramp features are designed to measure whether a ramp occurs and
the severity of a ramp. Therefore, a larger ramp rate when a ramp occurs means wind power with
stronger nonlinearity, and forecast errors of ramps are higher than those of non-ramps. On the one
hand, the ramp features are used as the input of the forecast model to learn the relationship between
wind power and ramp events during the training process and to improve the forecast accuracy. On the
other hand, this is also conducive to the safe, stable and economic operation of the wind power grid,
which can reduce the reserve margin during grid dispatching and the impact of ramps on the power
generation and power supply balance of the grid.

2.2. Ramp Detection and Feature Extraction Based on OpSDA

The Swinging Door Algorithm (SDA) is a data compression algorithm that filters samples according
to the parallelogram rule. The parallelogram rule refers to the construction of a parallelogram based
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on adjustable parameters ε (door width) to divide a long sample into multiple small samples [23].
The initial point and the end point of each segment of data are detected as SDA piecewise points, and
the data in the middle of each segment are compressed. As shown in Figure 2, the first sample point A
is acquired as the initial point, and multiple parallelograms are constructed in the order of samples,
with 2ε as the height to enclose samples, such as in the parallelogram AC and the parallelogram AD.
Each time we construct a parallelogram, we need to determine whether the parallelogram covers
all the samples in the segment. When the parallelogram cannot completely cover all the data in the
segment, such as the parallelogram AF, the previous sample point E is acquired as the end point of the
segment and the initial point of the next segment [24]. By analogy, points A, E, I and K in Figure 2 are
SDA piecewise points. Points B, C and D are compressed in the first segment, points F, G and H are
compressed in the second segment, and point J is compressed in the third segment.
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In SDA, only ramps are detected between the piecewise points according to Equation (1). Generally,
a ramp event on the long-term scale can be divided into several adjacent small events by the SDA,
and defects are present in the detection effect. Given an appropriate scoring function S, the Optimal
Swinging Door Algorithm (OpSDA) is suitable for ramp detection on a long-term scale. The objective
function P(i, j) is constructed for any wind power time-series in the time interval (i, j), and ramps are
recognized by obtaining their maximum. Depending on SDA piecewise points, adjacent events with
the same ramp direction are classified as the same event by the optimized algorithm.

P(i, j) = max(S(i, k) + P(k, j)),∀k ∈ (i, j), (2)

The constraint of the objective function P(i, j) is

S(i, j) > S(i, k) + S(k + 1, j), (3)

S(i, j) = ( j− i)2R(i, j), (4)

where S(i, k) is the score of the time interval (i, k) and R(·) is the ramp rule. If Equation (1) is satisfied
within the time interval (i, j), a ramp event occurs, and R(i, j) = 1 is obtained; otherwise, R(i, j) = 0
is obtained.

In order to improve the accuracy of ramp detection, some events, called bumps, in the wind
power time-series that have a small amplitude but are opposite to the adjacent ramp direction also
need to be recognized by OpSDA. Up-ramp detection is taken as an example by using Equation (5) to
determine whether a bump occurs.

(pk+1 − pk) × [1− B(k, k + 1)] ≥ 0, (5)
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where pk+1 and pk are the wind power data at time k + 1 and k, respectively, and B(·) is the bump
rule. If a bump occurs in the time interval (k, k + 1), then B(k, k + 1) = 1; otherwise, B(k, k + 1) = 0.
Because only up-ramps are recognized, the algorithm continues to execute at pk+1 − pk > 0 or stops at
pk+1 − pk < 0.

Assuming that the number of ramps in the sample is M(∀m : 1 ≤ m < M) , the total time interval
set of ramps is ξ = {t1, · · · , tm, · · · , tM}, where the time interval of the m-th ramp event is tm = (ts

m, te
m).

ts
m and te

m are the start time and end time, respectively. The total time interval set of non-ramps is
ξ =

{
t1, · · · , tm, · · · , tM

}
; similarly, tm =

(
t
s
m, t

e
m

)
. The wind power sequence can be expressed as the

optimal (Θ =
{
t1, t1, · · · , tm, tm, tm+1, tm+1, · · · , tM, tM

}
) by the combination of ramps and non-ramps.

In order to detect bumps, suppose that the total time interval set of bumps in the sample is β ={
t1,b, · · · , tn,b, · · · , tN,b

}
, and the n-th non-ramp is tn,b. The wind power sequence can be signified as{

t1, t1, · · · , tn, tn,b, tn+1, · · · , tM, tM
}
. A bump (tn,b) and two adjacent ramps (tn, tn+1) are integrated into

one ramp event—that is, tn,b = (te
n + 1, ts

n − 1)—and the number of ramps in the sample is changed
into M−N.

The wind power ramp event is detected by the OpSDA, and the process of extracting its features
is shown in Figure 3. For indirect forecasting, the accuracy of ramp forecasting is determined by the
degree of ramp detection. Wind power data from a Belgian wind farm from 5:30 on 4 April to 2:00 on
6 April 2019—taken from the Elia website [25]—represent an example detected by OpSDA, and the
results are shown in Figure 4. In the first and third up-ramps, the detected bumps and the adjacent
ramps are classified as one event, which improves the shortcomings of SDA not being able to detect the
long-term ramps. Therefore, the ramp trend of the wind power sequence can be effectively detected by
OpSDA, which provides a data basis for the second feature extraction.

Energies 2020, 13, x FOR PEER REVIEW 5 of 20 

 

where 1k+p  and kp  are the wind power data at time 1k +  and k , respectively, and  B  is the 

bump rule. If a bump occurs in the time interval  1k,k + , then  1 1B k,k + = ; otherwise, 

 1 0B k,k + = . Because only up-ramps are recognized, the algorithm continues to execute at 

1 > 0－k+ kp p  or stops at 1 < 0－k+ kp p . 

Assuming that the number of ramps in the sample is M : )1  （ m m M , the total time interval 

set of ramps is  , , , ,1 m Mξ t t t , where the time interval of the m -th ramp event is  s e
m m mt = t ,t

. s
mt  and e

mt  are the start time and end time, respectively. The total time interval set of non-ramps is 

 , , , ,1 m Mξ t t t ; similarly,  s e
m m mt = t , t . The wind power sequence can be expressed as the 

optimal (  = , , , , ,1 1 1 1Θ m m m+ m+ M Mt , t t , t ,t t t , t ) by the combination of ramps and non-ramps. In order 

to detect bumps, suppose that the total time interval set of bumps in the sample is 

 = , , ,1,b n,b N,bβ t t , t , and the n -th non-ramp is n,bt . The wind power sequence can be signified as 

 , ,1 1 n n,b n+1 M Mt , t , t , t ,t , t , t . A bump ( n,bt ) and two adjacent ramps ( 1n n+t ,t ) are integrated into one 

ramp event—that is,  1 1－e s
n,b n nt = t + ,t —and the number of ramps in the sample is changed into 

－M N . 

The wind power ramp event is detected by the OpSDA, and the process of extracting its features 

is shown in Figure 3. For indirect forecasting, the accuracy of ramp forecasting is determined by the 

degree of ramp detection. Wind power data from a Belgian wind farm from 5:30 on 4 April to 2:00 on 

6 April 2019—taken from the Elia website [25]—represent an example detected by OpSDA, and the 

results are shown in Figure 4. In the first and third up-ramps, the detected bumps and the adjacent 

ramps are classified as one event, which improves the shortcomings of SDA not being able to detect 

the long-term ramps. Therefore, the ramp trend of the wind power sequence can be effectively 

detected by OpSDA, which provides a data basis for the second feature extraction. 

Start

O b t a i n  th e  i n i t i a l  p i ece w i se  p o i n t  

b y  SD A

O b t a i n  t h e  ti m e  i n t e r v a l  ( i ,  j )  o f  e a ch  

P i ecew i s e  p o i n t  i n  t h e  s l i d in g  w i n d o w

Wind power data

 ,k i j For

 , =1R i j  , 0S i j 

No

Yse

Yse

No

   
2

,S i j j i 

Obtain the ramp event set

 
1 1 1 1

1, , ,

+ ={ , , , , , , , ,

, }+ , , , ,

m m m m

M M b n b N b

t t t t t t

t t t t t

  

   1 1 , 1 0k kp p B k k       
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3. Ramp Forecasting Based on Deep Learning

Compared to traditional machine learning methods, a deep learning network captures data
features using multiple hidden layers and emphasizes the depth of the model, which means that the
hidden features of data can be mined and the forecast accuracy is effectively improved. However, it is
difficult to learn complex wind power ramp features based only on one kind of certain deep learning
network [26]. Therefore, the Convolutional Neural Network–Long Short-Term Memory network
forecast model is proposed in this paper to deeply learn the ramp features of wind power and then
obtain the forecast results of ramp events.

3.1. Basic Principles of Deep Learning Network

3.1.1. CNN

The CNN is a feedforward neural network and one of the representative algorithms of deep
learning, with four characteristics: a local connection, weight sharing, pooling operation and a
multi-layer structure [27]. Moreover, compared with a traditional neural network, the CNN can
automatically extract the effective local features of the data with lower computational complexity and
stronger generalization ability. In order to extract the coupling relationship between wind power and
other influencing factors and the time-series relationship of features, the CNN has been widely used in
the field of wind power in recent years [28].

The typical structure of a CNN usually consists of the convolutional layer, the pooling layer and
the fully connected layer. In the convolution layer, the input is extracted by a convolution operation,
which is expressed by Equation (6):

Ll
j = f (

∑
i∈N j

xl−1
i ∗ kl

i j + bl
j), (6)

where the output of the i-th feature map in the (l− 1)-th layer is represented by xl−1
i ; ‘∗’ is the convolution

operation; kl
i j is the convolution kernel weight matrix, which is used to connect the j-th feature map in

the l-th layer and the i-th feature map in the (l− 1)-th layer; bl
j is the bias matrix; N j is the set of input

feature maps; Ll
j is the output of the j-th feature map in the l-th layer; and f (·) is the activation function.

The output of the convolutional layer is subjected to second feature extraction and information
filtering in the pooling layer, thereby retaining the most significant features. The numbers of parameters
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and data are compressed in the pooling layer, which can effectively reduce overfitting and minimize
the complexity of the network. The operation in the pooling layer is shown in Equation (7):

Ll
j = down(xl−1

i ), (7)

where down(·) implicates a subsampled function.
Common pooling methods mainly include the mean-pooling with the average feature value and

the max-pooling with the maximum feature value. In wind power ramp forecasting based on ramp
features, for the law information of the power and ramp feature sequence to be effectively learned by
the subsequent LSTM model, the max-pooling is selected to extract the most important information of
ramp features.

Taking the time-series data of wind power and its four ramp features as the input, the one-
dimensional convolution model is used in this paper to extract features, as shown in Figure 5.
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According to Figure 5, the input of the model is five one-dimensional data feature maps with
image height n, where n is also the sliding window width of the model. Multiple hidden layers are
used for training data by the deep learning network to effectively learn essential features. In this
paper, the CNN model is set with three convolutional layers and a max-pooling layer to deeply learn
the data set and extract features. Features are extracted by moving the convolution kernels (filters)
on feature maps for convolution operation. The size of feature maps is determined by the size of
convolution kernels, which is the depth of the next layer of the CNN. The size of the convolution
kernels in the first convolution layer is 2 × 4, and the stride is 1, so the original output size should
be (n− 1) × 4. However, in order to prevent the loss of ramp feature information and keep the CNN
output feature size unchanged from the size of the original feature map, all-zero padding is adopted by
the model to maintain the feature dimension, setting the padding as “equal”. Thus, the output of the
first convolutional layer should be n × 4. By analogy, the size of the convolution kernel in the second
convolution layer is 2 × 16, and the output size is n × 16. The size of the convolution kernel in the third
convolution layer is 2 × 32, and the output size is n × 32. As the number of feature maps in each layer
increases, multi-layer convolution can extract more complex features from low-level features. In the
deep learning network, a nonlinear activation function f (·) is also needed to construct a sparse matrix
to remove the redundancy of the data and retain the features of the data as far as possible. Therefore,
the model in this paper includes a rectified linear unit (ReLU) with good generalization performance
after each convolutional layer. The pooling kernel size in the max-pooling layer is 32. After the feature
map obtained by the convolutional layer is processed by the max-pooling layer, the final output vector
size is 1 × n and forms the input of the LSTM model.



Energies 2020, 13, 6449 8 of 19

3.1.2. LSTM

In recent years, LSTM has been used a great deal in the field of wind power forecasting. Dynamic
changes of time-series can be captured by LSTM, which can solve the problem of the long-term
dependence on wind power and prevent the gradient of wind power from disappearing in the network
transmission. The basic unit structure of LSTM is shown in Figure 6, including three control gates: the
input gate, the forget gate and the output gate. The important ramp features can be retained by the
unique memory cell of LSTM, and the unimportant features can be discarded by the forget gate to
strengthen the network’s learning ability for ramp features.
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The activation function formula [29] of each gate is

it = σ(Wxiyt + Whiht−1 + Wcict−1 + bi)

ft = σ(Wxfyt + Whiht−1 + Wcict−1 + bf)

ot = σ(Wxoyt + Whoht−1 + Wcoct−1 + bo)

ct = ftct−1 + ittanh(Wxcyt + Whcht−1 + bc)

ht = ottanh(ct)

, (8)

where σ is the sigmoid activation function or the tanh activation function; yt is the input vector at time
t; Wxi, Whi, Wci, Wxf, Wxo, Who, Wco, Wxc and Whc are all weight parameter matrices; bi, bf, bo and bc

are all bias vectors; ct is the instant state vector of the state unit; ht is the output of the state unit; it is
the output of the input gate; ft is the output of the forget gate; and ot is the output of the output gate.

3.2. Structure Design of CNN–LSTM

On the basis of Section 3.1, if only wind power is utilized as the input, it is difficult for the forecast
model to capture the ramp features of wind power. Therefore, historical wind power and ramp features
corresponding to the time-series extracted by OpSDA are utilized as the input of the CNN–LSTM deep
learning network model established in this paper. They are constructed as a feature map by the sliding
time window, and the wind power to be forecasted is used as the output. Thus, the learning of the
relationship between wind power and ramp features is deepened in the network to reduce the ramp
forecast error. In the deep learning network model, a CNN is adopted for the second feature extraction
for wind power and ramp features, and LSTM is adopted to forecast wind power. The structure of the
CNN–LSTM model is shown in Figure 7.
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(1) The input

Wind power and four ramp features form a data set that is used as the input. The four ramp
features are the ramp rate RR, the ramp amplitude RSW , the ramp start time RST and the ramp duration
RD. In order to maintain the continuity of the ramp features, the features are filled with zeros in
non-ramps according to the original time-series sequence, meaning that the feature dimension is
consistent with the wind power dimension. In Figure 7, P is the wind power data from the Belgian
Elia website, with a data point every 15 min. t is any moment in the wind power, m is the forecast
ahead step and n is set to 32, which is the width of the sliding window. Thus, the input data set is{
Xt, Xt, L, Xt−n+1, Xt−n

}
, where Xt =

{
Pt, (RR)t, (RSW)t, (RST)t, (RD)t

}
.

(2) Feature extraction based on CNN

As shown in Figure 7, three convolutional layers and a max-pooling layer are used in the CNN
model in this paper for deep learning and feature extraction. Since a wind power ramp event is a
contingency, for continuous wind power sequence data, discontinuity is a feature of the ramp feature
data. The convolution kernels of CNN operate on the original feature map and perform convolution
operations at the same time so that the potential relationship of each data point in the feature map
can be effectively extracted to form feature vectors. Furthermore, the CNN model can start from a
small area and extract the ramp features in the entire dataset layer-by-layer from the deep structure by
deep learning.

A batch of wind power samples taken from the Elia website in January 2020. Figure 8a–c is
drawn from the three convolutional layers based on the samples. The horizontal axis represents the
samples arranged in the order of sampling time, and the sample time interval is 15 min; the vertical
axis represents the normalized wind power value at that moment, and the light pink background
indicates that a ramp event occurred in this segment.
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According to Figure 8, there are mutations in the feature map output of the three convolutional
layers near the samples where the ramp occurs. From Figure 8a—the first convolutional layer—due
to the small number of convolution kernels, the more accurate ramp feature is only extracted by the
second feature map output. The output of the remaining three feature maps basically shows no ramp
trend. In Figure 8b, features are extracted by the 16 convolution kernels in the second convolution layer,
and the ramp trend can basically be described by the feature map outputs. However, the fluctuation
range of the outputs is large and the concentration is weak. According to Figure 8c, after features
are extracted by the third convolutional layer, the ramp trend of the outputs is more concentrated.
The outputs of the 15th, 22nd and 30th feature maps show a corresponding mutation when a ramp
event occurred. Among them, the 30th feature map output includes a strong mutation, while the
features basically stabilize when there is no ramp. Therefore, it can be seen that there is a certain
relationship among adjacent samples of wind power ramp features. The ability of CNN to capture
local trends is conducive to learning the relationship and extracting wind power ramp features.

(3) Forecasting based on LSTM

Due to the time-series relationship of samples that can be learned by LSTM, ramp features
extracted by the CNN model and wind power are used as the input of the LSTM model so that the
relationship between ramps and the wind power can be determined. To learn the data rules without
over-fitting, a single-layer LSTM network is used, where the number of neurons is set to be 128, and the
wind power forecast results are exported by the fully connected layer.

In order to meet the dispatching requirements, it is necessary to forecast the long-term wind
power ramp situation in advance. As shown in Figure 7, Xt−n, Xt−n+1, . . . , Xt are the data input
to the model each time and Pt+1, Pt+2, . . . , Pt+m are the outputs. According to National Energy
Administration documents [30], wind farms report the forecast curve for the next 4 h every 15 min.
In other words, to forecast 16 future wind power data points, the forecast ahead step is usually set to
be m = 16. To further improve the forecast accuracy, this paper adopts the rolling multi-step forecast
method, and the forecast data are updated every 15 min. Only the first forecast point is retained for
4 h-ahead forecasting.

The structure of the CNN–LSTM model established in this paper is shown in Table 1, and end-
to-end training is applied to the model.
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Table 1. The structure of the CNN–LSTM model.

Layer (Type) Output Shape Param

input_1 (Input Layer) (None, 32, 5) 0
conv1d (Conv1D) (None, 32, 4) 44

conv1d_1 (Conv1D) (None, 32, 16) 144
conv1d_2 (Conv1D) (None, 32, 32) 1056

max_pooling1d (MaxPooling1D) (None, 1, 32) 0
lstm (LSTM) (None, 128) 82,432

dense (Dense) (None, 16) 2064

In summary, the overall idea of multi-step forecasting based on ramp features and deep learning
proposed in this paper is as follows:

Step 1: OpSDA is used to detect historical wind power, and four types of ramp features
are extracted;

Step 2: A sliding window is used to divide the input, composed of wind power and ramp features,
that is input into the CNN–LSTM model. The ramp features are extracted by the CNN again, and 16
steps-ahead forecast results are forecast by the LSTM. The final rolling multi-step wind power forecast
result is obtained by extracting the first forecast point of the multi-step forecasting;

Step 3: Based on the ramp detection of the forecast power, the forecast results of ramp events
are obtained.

4. Case Study

4.1. Ramp Forecasting Evaluation Indexes

According to [2], there are four situations for ramp forecast results: forecasting a ramp to
occur that does not actually occur; forecasting a ramp not to occur that actually occurs; forecasting
a ramp to occur that actually occurs; and forecasting a ramp not to occur that does not actually
occur. The occurrence times of the four situations are represented by NFP, NFN, NTP and NTN in turn.
There are many evaluation indexes for ramp forecasting, and they have not been uniformly specified.
Therefore, this paper selects multiple indexes to evaluate the performance of the forecast model from
different perspectives.

The recall is defined by

RC =
NTP

NTP + NFN
, (9)

the precision is defined by

PC =
NTP

NTP + NFP
, (10)

the bias index is defined by

BS =
NTP + NFP

NTP + NFN
, (11)

the critical success index is defined by

CSI =
NTP

NTP + NFN + NFP
, (12)

the accuracy is defined by

ACC =
NTP + NTN

NTP + NFN + NFP + NTN
, (13)

the missing report rate is defined by

MI =
NFN

NTP + NFN + NFP + NTN
, (14)



Energies 2020, 13, 6449 12 of 19

the false alarm rate is defined by

ER =
NFP

NTP + NFN + NFP + NTN
, (15)

the up-ramp forecast accuracy rate is defined by

SR =
CR

NR
, (16)

and the down-ramp forecast accuracy rate is defined by

SNR =
CNR

NNR
, (17)

where CR and CNR are, respectively, the number of correct forecast up-ramps and down-ramps; NR and
NNR are, respectively, the total number of actual up-ramps and down-ramps.

The mean absolute percentage error is defined by

IMAPE =
1
n

n∑
t=1

∣∣∣Pactual − P f orecast
∣∣∣

Pactual
, (18)

where n is the number of wind power samples, Pactual is the actual wind power value, P f orecast is the
forecast wind power value and Pactual is the average of the actual wind power.

The recall indicates the probability of the forecast occurrence of the ramp in terms of its actual
occurrence. The precision represents the probability that the ramp is forecasted to occur and that it
then occurs in reality. The bias index expresses the ratio of the correct forecast number of the ramp to
the actual number. The critical success index measures the accuracy of ramp forecasting and indicates
the validity of the forecast results. The accuracy is the probability of correctly forecasting the wind
power event, which reflects the accuracy of the model in the forecasting of ramps. The missing report
rate is the probability of ramp actually occurring that is forecasted not to occur. The false alarm rate is
the probability of forecasting a non-ramp as a ramp. The accuracy rate of up-ramp and down-ramp
forecasting evaluates the performance of the model from different ramp directions. The mean absolute
percentage error is a common index used to evaluate the accuracy of the deterministic wind power
forecast model. This paper is about ramp forecasting, and thus in order to better evaluate the model,
the mean absolute percentage error is only analyzed when a ramp occurs.

4.2. Ramp Detection and Feature Extraction

In this section, the wind power data from the Elia Belgian wind farm with an installed capacity of
3796 MW in January 2020 are used to detect ramps. The ramp detection and feature extraction based on
OpSDA were realized in MATLAB R2019b. The detection results are shown in Table 2. The start time
in Table 2 is expressed in a numeric format by using “datenum”. Due to space limitations, only the
features of the first 24 ramp events in January are displayed.

The 1000 wind power samples from the Elia Belgian wind farm in January 2020 are taken as an
example, and the results of the ramp features detected and extracted by OpSDA are shown in Figure 9.
Each rectangle in Figure 9 represents a ramp event. The rectangle in the first quadrant represents an
up-ramp, and that in the fourth quadrant represents a down-ramp. The abscissa in Figure 9 represents
the duration of each ramp and the sample point of the wind power at the beginning of the ramp.
The ordinate represents the amplitude of each ramp.
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Table 2. Ramp events and their features.

Ramp Direction RR/(MW/h) RSW/MW RST RD/h

1 ↓ 115.05 575.24 737,791.0521 5.00
2 ↑ 45.11 146.60 737,791.2604 3.25
3 ↓ 36.46 136.72 737,791.4271 3.75
4 ↑ 33.18 82.96 737,791.5833 2.50
5 ↓ 36.42 118.37 737,791.8646 3.25
6 ↑ 205.04 256.30 737,822.2083 1.25
7 ↑ 62.10 263.91 737,822.2708 4.25
8 ↑ 140.85 316.91 737,822.4688 2.25
9 ↑ 129.48 1068.22 737,822.6042 8.25
10 ↑ 180.97 135.73 737,851.0521 0.75
11 ↑ 204.59 255.74 737,851.2292 1.25
12 ↓ 140.65 140.65 737,851.3958 1.00
13 ↑ 56.32 197.12 737,851.4375 3.50
14 ↑ 353.36 176.68 737,851.6042 0.50
15 ↓ 288.88 1516.6 737,851.6250 5.25
16 ↑ 227.20 170.4 737,851.8958 0.75
17 ↓ 272.34 340.43 737,851.9583 1.25
18 ↑ 297.13 519.98 737,882.0104 1.75
19 ↓ 351.00 263.25 737,882.0833 0.75
20 ↑ 180.30 225.38 737,882.1146 1.25
21 ↓ 328.36 164.18 737,882.1667 0.5
22 ↑ 469.53 469.53 737,882.1875 1.00
23 ↑ 271.94 611.87 737,882.2917 2.25
24 ↓ 70.296 175.74 737,882.3854 2.5

‘↑’ means an up-ramp and ‘↓’ means a down-ramp.
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22 ↑ 469.53 469.53 737,882.1875 1.00 

23 ↑ 271.94 611.87 737,882.2917 2.25 

24 ↓ 70.296 175.74 737,882.3854 2.5 

‘↑’ means an up-ramp and ‘↓’ means a down-ramp. 
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4.3. Performance Analysis of Ramp Forecast Model

Python was adopted as the programming language by the CNN–LSTM forecast model in this
paper. The compiling environment was PyCharm Community Edition 2020, 16 GB of RAM was used,
and the processor was an AMD Ryzen 7 4800H. The forecast model implementation of this paper was
the Keras deep learning framework, which can be used as a high-level application program interface
for TensorFlow, Theano and Microsoft Cognitive Toolkit (Microsoft-CNTK), enabling rapid model
construction and experimental development. The forecast performance of CNN–LSTM was analyzed
by using the data from the Elia website. The first 500 points and the second 500 points of the data of
each quarter from October 2019 to September 2020 were used to train and test the network, respectively.
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Additionally, in this section, the model performance is analyzed with different parameters and with
other models to verify the feasibility.

4.3.1. Ramp Forecast Performance with Different Parameters

According to the process of ramp detection, the wind power data are firstly compressed by
OpSDA based on the ε-value, and multiple SDA piecewise points are obtained. Ramp detection and
subsequent ramp forecasting are affected to a certain extent by the ε-value. In the multi-step forecast
model, different forecast results are attained due to different forecast-ahead steps.

In conclusion, to evaluate the different forecast results obtained with different parameters and
to show the effect of considering the ramp features in the input of the forecast model to improve the
accuracy, data from January 2020 are used for analysis. The performance of the multi-step ramp forecast
model with different forecast-ahead steps, different door widths and different inputs is evaluated by
four indexes: RC, PC, BS and CSI. Based on Equations (19) and (20), the relationship between the four
evaluation indexes is shown in Figure 10.

CSI =
1

1
RC

+ 1
PC
− 1

, (19)

BS =
RC
PC

, (20)
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The forecast effect of the model can be displayed intuitively according to the evaluation index
results in Figure 10. The abscissa represents the precision PC, the ordinate represents the recall RC,
the gray dashed line represents the critical success index CSI and the green dashed line represents the
bias index BS. Moreover, the better the forecast effect, the closer the evaluation index is to the upper
right corner. The recall results of the model input including the ramp features are generally higher than
these of only power, and RC reaches more than 0.9 many times. When ε = 25, the evaluation points
are mainly distributed near the diagonal line, which shows that the model can simultaneously obtain
higher recall and higher precision than ε = 50 and ε = 10. The evaluation results of 16 forecast-ahead
steps (4 h) are arranged more closely; thus, the forecast effect is more stable. Combined with the
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statistical results in [31], about 95% of wind power ramp events last less than 4.04 h, so the forecast
ahead step is set to 16 steps (4 h) in this paper.

The yellow solid point in Figure 10 is the optimal parameter point. The input of this point contains
ramp features, a forecast-ahead step that is set to 16 steps (4 h) and a door width that is set to be ε = 25.
In this case, the precision is 0.8587. In addition, not only is the probability of correct results, accounting
for all ramp forecast results, higher, but the probability of the correct forecasting of ramp occurrence
also reaches the optimal result for PC, and the RC-result is 0.9240. Furthermore, a higher BS and better
CSI are obtained in the meanwhile. In summary, the case with the optimal parameters is adopted in
this paper for the CNN–LSTM forecast model. In actual engineering applications, different optimal
parameters can be set for forecasting according to different wind power data.

4.3.2. Performance Analysis of Different Forecast Models

In this section, BP and LSTM are compared with the proposed model in this paper by using
data from the ELIA website to evaluate the performance of wind power ramp forecasting. The wind
power data are detected by OpSDA and its ramp features are extracted, and they are used as the input
together for the CNN-LSTM model, the LSTM model and the BP model for training. In the data from
October 2019 to September 2020, 1000 data points are taken every quarter. The first 500 are used as
the training set and the last 500 are used as the test set. To analyze the performance of the forecast
model, IMAPE, ACC, MI, ER, RC, PC, SNR and SR are obtained and shown in Table 3. Based on Table 3,
the annual average of each model for each index is obtained and shown in Figure 11 so that the forecast
performance of the three models can be more intuitively displayed.

Table 3. Comparison of evaluation indexes with different forecast models in each quarter. BP:
Back Propagation.

Model Quarter IMAPE ACC MI ER RC PC SNR SR

CNN–LSTM

Q1 0.0748 0.8274 0.0575 0.1150 0.9240 0.8587 0.8769 0.8480
Q2 0.0880 0.8407 0.0819 0.0774 0.9051 0.9098 0.8172 0.9020
Q3 0.0603 0.8451 0.0973 0.0575 0.8725 0.9205 0.7941 0.7847
Q4 0.0982 0.7323 0.0597 0.2080 0.9221 0.7729 0.7974 0.8041

LSTM

Q1 0.1274 0.7588 0.1482 0.0929 0.8040 0.8675 0.7464 0.7892
Q2 0.1463 0.7611 0.1239 0.1150 0.8564 0.8652 0.6559 0.77451
Q3 0.1155 0.5465 0.4049 0.0487 0.4695 0.8804 0.4853 0.4163
Q4 0.2464 0.5819 0.2389 0.1792 0.6888 0.7468 0.3006 0.6082

BP

Q1 0.3152 0.6055 0.2260 0.1684 0.6997 0.7576 0.3043 0.3721
Q2 0.4012 0.5756 0.3624 0.0618 0.575 0.8880 0.2737 0.4143
Q3 0.3837 0.6268 0.2196 0.1535 0.7065 0.7750 0.2721 0.4279
Q4 0.2448 0.6524 0.1812 0.1663 0.2448 0.6524 0.3562 0.4221
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As shown in Table 3, the IMAPE results of the CNN–LSTM model for four quarters at the ramp are
all less than 0.1. The smaller the mean absolute percentage error, the better the wind power forecasting
effects. Here, the wind power forecast effect in the third quarter is the best and the IMAPE result is only
0.0603. Besides, the IMAPE results of the LSTM model and the BP model are both significantly larger
than the proposed ramp forecast model. The other seven indexes mainly reflect the accuracy of the
forecast model for ramp forecasting. In the first three quarters, the ACC results of the CNN–LSTM
forecast model are above 0.82. Although the ACC result of CNN–LSTM in the fourth quarter is slightly
insufficient, it is still higher than that of the other two forecast models. Based on SR in Table 3 reaching
0.8041, the model is proven to be useful for up-ramp forecasting. There are cases in which the missing
report rate MI or the false alarm rate ER of the BP model and the LSTM model is lower than that of the
CNN–LSTM model, as in the third quarter, but the ACC result of these two methods is far inferior to
the CNN–LSTM model. In the CNN–LSTM model, higher accuracy can be obtained when the missing
report rate and false alarm rate are relatively low. Furthermore, in the fourth quarter, higher RC and
PC values are obtained by the CNN–LSTM model, which are both above 0.9 in the second quarter;
that is, the number of correctly forecasted ramps accounts for more than 90% of the total number
of forecasted ramps and the total number of actual ramps. In general, the forecast accuracy of each
model for down-ramp forecasting is higher than that for up-ramp forecasting, and up-ramps are more
difficult to forecast than down-ramps.

According to the definition of each evaluation index, the requirements for the evaluation index of
a model with good ramp forecast performance are as follows: a high accuracy ACC, recall RC, precision
PC, up-ramp forecast accuracy rate SNR and down-ramp forecast accuracy rate SR; and a low mean
absolute percentage error IMAPE, missing report rate MI and false alarm rate ER. As shown in Figure 11,
the annual average PC values of BP and LSTM are both above 0.75, and the annual average ER value
is below 0.14. However, according to the annual average results of other indexes, the above index
requirements are not satisfied; for example, due to the low SNR-result. For the CNN–LSTM model,
the results of the three indexes on the left of Figure 11 are all below 0.12, and the results of the five
indicators on the right in Figure 11 are all above 0.81. Moreover, the annual average RC is as high as
0.9059. Therefore, ramp forecast results that are more stable and satisfy the above index requirements
can be obtained based on the CNN–LSTM model.

In order to further verify the performance of the wind power ramp forecast model, based on the
same evaluation indexes, the optimal results forecasted by the model in this paper are compared with
those of three recent ramp forecast research works, as shown in Table 4. The three results are based on
the multilayer perception–boosted trees (MLP–BT) model, the multilayer perception–Markov switching
auto-regression (MLP–MSAR) model, and the deep neural networks–Multi-Task Learning model with
four shared layers and a specification layer (DNN–MTL(C4S1)). Although the overall forecast accuracy
ACC of the proposed ramp forecast model is slightly lower than that of the MLP–BT model and the
MLP–MSAR model, the proposed ramp forecast model can balance the various evaluation indexes
better and can obtain a better precision PC while ensuring a higher recall RC, and each index result
is higher than 0.81. In addition, RC, PC and SR are all above 0.9, so the performance of the proposed
ramp forecast model is better for forecasting up-ramps and down-ramps.

Table 4. Comparison of evaluation indexes with models in other research works.

Model ACC RC PC SNR SR

CNN–LSTM 0.8407 0.9051 0.9098 0.8172 0.9020
MLP–BT [16] 0.8669 0.9286 0.8125 — —

MLP–MSAR [17] 0.8600 0.8889 0.8571 — —
DNN–MTL(C4S1) [18] 0.7133 — — 0.6567 0.7047

The ramp forecast results in January 2020 based on CNN–LSTM are shown in Figure 12. Figure 12a
shows the 16-step-ahead wind power forecast results obtained from the original wind power and ramp
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features based on three models. Based on these results, the final ramp forecast results are obtained after
being re-detected by OpSDA, as shown in Figure 12b–d. According to Figure 12, the forecast effect of
the model is shown more intuitively by the display method of the ramp forecast results proposed in
this paper. The ramp amplitude and the ramp time are acquired as the forecast results to provide a
better dispatch basis for the power grid.
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According to Figure 12, severe fluctuations are found in the forecast results of the LSTM model
and the BP model. In particular, the long-term ramp event is forecasted by the BP model as multiple
events with a short ramp duration but large ramp amplitude. As shown in Figure 12b, it can be
clearly concluded that the CNN–LSTM model has better performance in terms of forecasting the
ramp amplitude and the ramp duration. After the ramp features are extracted for the second time
by the CNN, the continuity of the wind power and the ramp can be effectively learned by LSTM.
Ramp forecast results for long-term wind power can be obtained by CNN–LSTM, which is conducive
to the safe operation of the power system and economic dispatch.

5. Conclusions

Aiming at ramp features and the long-term trend features of wind power, a wind power
ramp forecast method based on feature extraction and deep learning is proposed in this paper.
Firstly, the historical wind power is detected by OpSDA to obtain the historical ramp features.
Then, the CNN-LSTM forecast model is established, in which historical ramp features and power are
used as the input and the forecast power is used as the output. Deep learning is applied to explore the
coupling relationship between ramp features and wind power. Finally, the ramp forecast results are
obtained by re-detecting the forecast power.
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In this paper, the ramp features can be effectively extracted by CNN from the model input,
meaning that the relationship between wind power and ramp events can be learned by LSTM more
effectively to obtain more accurate ramp forecast results. The forecast performance of the proposed
model with different parameters is discussed and optimal parameters are obtained, which means that
high precision and high recall can be obtained simultaneously. Based on the evaluation indexes of
ramp forecasting, the wind power samples from the Elia website are used for case analysis. It can be
concluded that the evaluation results based on the CNN–LSTM model meet the index requirements,
and the annual average recall is as high as 0.9059. In the end, the comparison with other research
results verifies the high precision and effectiveness of the deep learning network model proposed in
this paper.
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